CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 658

_id ecaade2022_202
id ecaade2022_202
authors Acican, Oyku and Luyten, Laurens
year 2022
title Experiential Learning of Structural Systems - Comparison of design-based and experiment-based pedagogies
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 535–544
doi https://doi.org/10.52842/conf.ecaade.2022.2.535
summary This research aims to compare two experiential learning methods’ effectiveness for (1) a deeper understanding of structural behaviour, and (2) skills to design architectural forms that are structurally informed. A course was planned to investigate the effect of the type and order of the two teaching units: (1) guided experiments on a parametric design model, and (2) parametric design of a tower and custom experiments using Grasshopper and Karamba. Results indicate that the group that started with the experiments learned to ask the relevant questions by experimenting with the appropriate parameters that helped them to find the structural principles and apply them during their design phase. The group that started with the design were lost in the structural concepts and in identifying the meaningful parameters to test for. However, after the experiment was completed, this group could make a knowledge transfer. Acquisition of structures knowledge may require the experience of multiple situations while the application of this knowledge may involve selecting the relevant structural experience with the architectural form-finding process. In the future, a proposed experiential learning method will be compared with an instructive learning approach of structural systems for architecture students.
keywords Structures Education, Experiential Learning, Parametric Structural Analysis, Comparative Pedagogy
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_60
id ecaade2022_60
authors Carl, Timo and Weilandt, Agnes
year 2022
title From Sheet to Folded Plate Structure - Design & build investigations with an interdisciplinary student team
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 517–524
doi https://doi.org/10.52842/conf.ecaade.2022.2.517
summary This paper outlines a teaching methodology that utilizes folding as a form-generator and introduces an interdisciplinary student team to digital tools and research-through-design based methods. At the heart of the project is the design of folded plate structures, which can be manufactured from 10mm cardboard material by using only 2D-CNC miter cutting. We present our computational workflow from conception to completion for two 1:1 scale demonstrators. Lastly, we identify aspects of the project that can be applied for other computational design teaching formats.
keywords Design-Build, Parametric Modelling, Form-Finding, Structural Simulation, Interdisciplinary Collaboration, Digital Fabrication, Folded Plate Structures
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_44
id ecaade2022_44
authors Güzelci, Orkan Zeynel
year 2022
title Machine Learning in Predicting Section Drawings - Case of Anatolian Seljuk Kümbets
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 169–176
doi https://doi.org/10.52842/conf.ecaade.2022.2.169
summary Funerary structures called kümbet emerged as a unique typology during the Anatolian Seljuk period (1077-1307). This study introduces a machine learning (ML) based model to predict sections of kümbets to complete their missing parts. The proposed ML-based model employs the Pix2Pix method, which is a subset of conditional Generative Adversarial Networks (cGAN).The model is trained over a coupled dataset (interior space and exterior shell) of section drawings. Then, the model is validated by predicting overall shape (exterior shell) for a given input (interior space). The outcomes of the validation phase are evaluated objectively by using structural similarity method (SSIM). Initial findings of the implementation show that the proposed ML-based model has the potential to be used as a design decision support tool for further restitution and renovation works.
keywords Anatolian Seljuk Architecture, Kümbet, Pix2Pix, Machine Learning, Section
series eCAADe
email
last changed 2024/04/22 07:10

_id ijac202220103
id ijac202220103
authors Jauk, Julian; Lukas Gosch, Hana Vašatko, Ingolf Christian, Anita Klaus, Milena Stavric
year 2022
title MyCera. Application of mycelial growth within digitally manufactured clay structures
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 31–40
summary In this paper we will demonstrate a digital workflow that includes a living material such as mycelium and makes the creation of structural designs possible. Our interdisciplinary research combines digital manufacturing with the use of mycelial growth, which enables fibre connections on a microscopic scale. We developed a structure that uses material informed toolpaths for paste-based extrusion, which are built on the foundation of experiments that compare material properties and growth observations. Subsequently, the tensile strength of 3D printed unfired clay elements was increased by using mycelium as an intelligently oriented fibre reinforcement. Assembling clay-mycelium composites in a living state allows force-transmitting connections within the structure. This composite has exhibited structural properties that open up the possibility of its implementation in the building industry. It allows the design and efficient manufacturing of lightweight ceramic constructions customised to this composite, which would not have been possible using conventional ce- ramics fabrication methods.
keywords Clay, Mycelium, 3D Printing, Growth, Bio-welding
series journal
last changed 2024/04/17 14:29

_id ecaade2022_324
id ecaade2022_324
authors Lin, Yu-Ting and Hsu, Pei-Hsien
year 2022
title Dynamic Inflatable Structures and Digital Fabrication Process
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 311–320
doi https://doi.org/10.52842/conf.ecaade.2022.1.311
summary Inflatable structures made of flat film materials have an advantage of low cost, lightweight and rapid deployment, but the variation of their forms is relatively limited, and it is a challenge to produce pneumatic deformations. This paper proposes a designing and manufacturing process of inflatable structures which are made of flat film materials and are able to perform dynamic movements. The process includes steps in which a target 3D surface is produced through programmed 2D paths heat-sealed on flat films of different thickness, leading to a structure composed of air chambers. A parametric modelling procedure and associated principles are developed for the relationship between the forms of a flat-film-based inflatable structure and the heat sealing patterns on the film. A system of double-layer air chambers was designed to control the direction of bending movements. In addition, the form variation of a designed inflatable structure can be achieved by a parametric design process described in this paper.
keywords Pneumatic Structural System, Inflatable Structure, Digital Fabrication, Design Tool, Kinetic Structure
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_18
id ecaade2022_18
authors Morales-Beltran, Mauricio and Mostafavi, Sina
year 2022
title Topology Optimization in Architectural Design: a Technique for Obtaining Discrete Structures from Continuum Typologies
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 589–598
doi https://doi.org/10.52842/conf.ecaade.2022.1.589
summary This study explores the advantages of setting a two-dimension continuum topology optimization whose output resembles structures to be assembled from discrete members, within one integrated procedure. The proposed Skeleton Sketch method uses algorithms that connect virtual centers of gravity found in the continuum matrices of the well-known Solid Isotropic Material with Penalization (SIMP) optimization method. The connecting lines are further upgraded to steel profiles through matching required and available cross- sectional areas, obtaining a discrete version of the topology optimized system. Examples of the algorithm’s application on the parametric structural design of three case studies are provided. Results show that the method provides the designer with several layout alternatives through the process, proving to be a versatile and feasible design tool for practical realization of the outcomes of topology optimization.
keywords Topology Optimization, Parametric Design, Algorithms, Steel Structures
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_238
id ecaade2022_238
authors Tommasi, Ilaria and Erioli, Alessio
year 2022
title Branch Making Shells - A multi-agent systems application for the formation of shell branched structures
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 123–132
doi https://doi.org/10.52842/conf.ecaade.2022.2.123
summary This research explores an application of multi-agent systems to the generation of single- layer branched shell structures for architectural application. The study is prompted by the structure and pattern-making capacity of climbing plants’ growth behaviours, in which growth history (affected by internal local processes and environmental conditions), generates a multi-performant outcome. The digital system merges parts of the Space Colonization Algorithm (SCA) with agent-based logic, leveraging iterative local interactions to coherently embed environmental conditions and static requirements in the production of a coherent structural network on a boundary surface, which is translated in a beams-and-nodes glued laminated timber structure. The paper exposes the method and its applications to the case study of a pavilion, discussing geometric constructability’s challenges and limits.
keywords Multi-Agent System, Space Colonization Algorithm, Branching Structures, Structural Shells, Glued Laminated Timber
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_151
id ecaade2022_151
authors Turhan, Gozde Damla, Afsar, Secil, Ozel, Berfin, Doyuran, Aslihan, Varinlioglu, Guzden and Bengisu, Murat
year 2022
title 3D Printing with Bacterial Cellulose-Based Bioactive Composites for Design Applications
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 77–84
doi https://doi.org/10.52842/conf.ecaade.2022.1.077
summary The bacterial cellulose (BC) biofilms are explored in design applications as replacements to petroleum-based materials in order to overcome the irreversible effects of the Anthropocene. Unlike biomaterials, designers as mediators could collaborate with bioactive polymers as a form of wetware to manufacture living design products with the aid of novel developments in biology and engineering. Past and ongoing experiments in the literature show that BC has a strong nanofibril structure that provides adhesion for attachment to plant cellulose-based networks and it could grow on the surfaces of the desired geometry thanks to its inherited, yet, controllable bio-intelligence. This research explores BC-based bioactive composites as wetware within the context of digital fabrication in which the methodology involves distinct, yet integrated, three main stages: Digital design and G-code generation (software stage); BC cultivation and printable bioactive composite formulation (wetware stage); digital fabrication with a customized 3D printer (hardware stage). The results have shown that the interaction of BC and plant- based cellulose fibers of jute yarns has enhanced the structural load-bearing capacity of the form against compressive forces, while pure BC is known only by its tensile strength. Since the outcomes were fabricated with the use of a bioactive material, the degradation process also adds a fourth dimension: Time, by which the research findings could further establish a bio-upcycling process of wastes towards biosynthesis of valuable products. Moreover, developing a BC-based bioactive filament indicates potentially a feasible next step in the evolution of multiscale perspectives on the growth of habitable living structures that could reinforce the interaction between nature and architecture through collaboration with software, hardware, and wetware in innovative and sustainable ways.
keywords Bacterial Cellulose, 3D Printing, Digital Fabrication, Bio-Active Composite
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_360
id ecaade2022_360
authors Azambuja Varela, Pedro, Lacroix, Igor, Güzelci, Orkan Zeynel and Sousa, José Pedro
year 2022
title Democratizing Stereotomic Construction through AR Technologies - A reusable mold methodology to the production of customized voussoirs using HoloLens
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 225–232
doi https://doi.org/10.52842/conf.ecaade.2022.1.225
summary Mass customizing of building components allows new conditions to explore aesthetic and sustainability in architecture. However, such possibilities tend to require the use of expensive and heavy digital fabrication machinery, which is seldomly available in most regions on the planet. In this context, this paper presents a research in progress that explores Augmented Reality (AR) to support craft production of customized stereotomic components. As a portable technology, the work examines the potential of AR to materialize design solutions that are geometrically complex and variable. Considering the current research on augmented fabrication processes, this work contributes to producing variable building components for stereotomic construction with a focus on earth-based materials. Extending the findings of a recently completed PhD thesis, the work replaces the use of a robot with the HoloLens glasses and Fologram application to produce low- cost and reusable molds. This augmented fabrication setup allows the human control of the production of variable molds, ready for casting and assembly of stereotomic components. This work addresses several of the NEB and UN SDGs goals.
keywords Stereotomy, Augmented Reality, Augmented Fabrication, Customized Production, New European Bauhuas
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_205
id caadria2022_205
authors Bielski, Jessica, Langenhan, Christoph, Ziegler, Christoph, Eisenstadt, Viktor, Dengel, Andreas and Althoff, Klaus-Dieter
year 2022
title Quantifying the Intangible, A Tool for Retrospective Protocol Studies of Sketching During the Early Conceptual Design of Architecture
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 403-411
doi https://doi.org/10.52842/conf.caadria.2022.1.403
summary Sketching is a craft supporting the development of ideas and design intentions, as well as an effective tool for communication during the early architectural design stages by making them tangible. Even though sketch-based interaction is a promising approach for Computer-Aided Architectural Design (CAAD) systems, it remains a challenge for computers to recognise information in a sketch. Design protocol studies conducted to deconstruct the sketch and sketching process collect solely qualitative data so far. However, the 'metis' projects aim to create an intelligent design assistant, using an artificial neural network (ANN), in the manner of Negroponte‚s Architecture Machine. By assimilating to the user's idiosyncrasies, the system suggests further design steps to the architect to improve the design decision making process for economic growth, qualitative self-education through the dialogue and reducing stress. For training such ANN quantitative data is needed. In order to produce quantifiable results from such a study, we propose our open-source web-tool ‚Sketch Protocol Analyser‚. By correlating different parameters (i.e. video, transcript and sketch built) through the same labels and their timestamps, we create quantitative data for further use.
keywords Design Protocol Studies, Sketching, Data Collection, Architectural Design Process, ANN, SDG 3, SDG 4, SDG 8, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_396
id ecaade2022_396
authors Hamzaoglu, Begüm, Özkar, Mine and Aydin, Serdar
year 2022
title Towards a Digital Practice of Historical Stone Carvings
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 227–234
doi https://doi.org/10.52842/conf.ecaade.2022.2.227
summary Local traditional crafts in various parts of the world are being transformed by digitalization in tandem with broader social and economic changes. Mardin, a historical and cultural hub in southeast Anatolia, presents an exemplary case with its stone architecture. Whereas the number of skilled craftsmen is diminishing, digital fabrication ateliers are increasingly in demand in the city and rising in number. Training programs have already started integrating CNC milling-based techniques. However, despite the growing interest in adapting computational processes, how the craft knowledge is documented and conveyed to multiple actors for maintaining and even increasing the quality of workmanship is yet to be explored. We present a novel way to document carving procedures and to create an inventory of the 3D motifs using cross-sections as complements to front views. The research engages end-user participants of different backgrounds, such as stone cutting technologies and architecture, with little or no practical knowledge of digital manufacturing. The work focuses on a selection of motifs from the Syriac stone carving heritage in Mardin, the documentation of which is very limited. The proposed workflow begins with recording the surface depth and the variations in the cross-section using digital scans. In the second stage, we consider the potential subtractive transformations that result in the final form and reconstruct them as milling operations with a parametric and procedural modeling approach. Various milling processes are derived by relating the shapes to the available cutting tools and materials. The study contributes to creating the inventory of an engraving culture that has lasted for hundreds of years while developing a generally applicable and transferable knowledge base to increase its sharing and dissemination in the age of digitally supported production.
keywords Cultural Heritage, Digital Fabrication, Craft Knowledge, Digital Craft, Analog-Digital
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_299
id ecaade2022_299
authors Bauscher, Erik, Philipp, Klaus Jan, Reisinger, Stefanie and Wortmann, Thomas
year 2022
title Reimagining Gego: Geometrical Reconstruction of Nubes, an Undocumented and Lost Sculpture from 1974
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 217–226
doi https://doi.org/10.52842/conf.ecaade.2022.2.217
summary This paper describes a method to understand and digitally reconstruct two sculptures by Gertrud Goldschmidt, a German-born, Venezuelan artist also called Gego. Gego is best known for her series of works called “Reticuláres”. These three-dimensional and open installations, mostly hanging freely in space, are playing with the concept and perception of space as well as challenging the definition of the traditional sculpture. The paper aims to generate information about two specific structures called “Nubes” (Clouds for Spanish) to assist in a physical reconstruction for a larger exhibition about Gego and to contribute to understanding Gego’s work process. Originally, the structures were suspended from a building's ceiling as an art installation in Caracas, 1974. There are three main challenges for this reconstruction: (1) The installations exhibit a complex three-dimensional geometry. (2) Scant drawings and photographs exist. (3) Gego might not have followed her initial drawings completely when building Nubes physically, because of the mentioned complexity and due to the light and bendable material properties of the employed material. The paper describes a computational process that recreates the object’s geometry in four steps: (1) Analyse all existing media of the structure. (2) Translate found information to the digital environment of Grasshopper. (3) Use a physical simulation to derive the end state of the hanging structure. (4) Optimize and tune the simulation with an optimization algorithm for better results. This paper demonstrates the usefulness of computational tools for reconstructing lost sculptures with little documentation. In this case, these tools allow a more accurate reconstruction and contribute to a fuller understanding of the design and realization process of Gego's Nubes.
keywords Geometry Reconstruction, Lost Art, Computational Design, Physics Simulation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_201
id ecaade2022_201
authors Buš, Peter, Sridhar, Nivedita, Zhao, Yige, Yang, Chia-Wei, Chen, Chenrui and Canga, Darwin
year 2022
title Kit-of-Parts Fabrication and Construction Strategy of Timber Roof Structure - Digital design-to-production workflow for self-builders
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 449–458
doi https://doi.org/10.52842/conf.ecaade.2022.1.449
summary This project builds upon a premise that complex double-curved geometries can be built out of simple, planar, and straight elements. As such, it is possible to simplify manufacturing, construction, and assembly processes, as well as decrease the delivery time and cost. When operating with planar and simple components in the form of Kit-of- Parts there is an assumption that such components can be easily used by self-builders, not necessarily building experts. This can empower participatory activities leading to a more sustainable and resilient engaged community. This hypothesis is evaluated through the process of design for manufacture and assembly project of the timber shell, supported by proposed advanced computational design-to-production workflow utilising digital fabrication technologies such as CNC machining and robotic milling. The assembled and erected structure is evaluated in the scope of constructability, deliverability, and operability. Therefore, the focus of this project is to test, observe, experiment with, and learn from those aspects from the perspective of a fabricator, maker, and self-builder of the double-curved timber roof structure, while operating with smaller-scale components and smaller sub-assemblies, convenient for hands-on operations. The paper also discusses the limitations of such an approach.
keywords Design-to-Production Workflow, Robotic Digital Fabrication, Self-Builders, Structural Performance, Advanced Labelling
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_102
id ecaade2022_102
authors Casalnuovo, Gianluca and Erioli, Alessio
year 2022
title Deep Trails - Coupling of structural optimization and self-organization processes for the computational design of composite surface tectonics
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 85–94
doi https://doi.org/10.52842/conf.ecaade.2022.2.085
summary This research explores the constructive and expressive capabilities of stigmergic-based creasing patterns integrating structural and ornamental conditions in fibre-composite surface tectonics, generated by the reciprocal influence of multi-agent systems and Non- Linear Time History (NLHT) dynamic structural simulation. Building upon precedents on the use of agent bodies and behavioural tectonics such as the work of Roland Snooks, our approach employs NLTH simulation for the dynamical assessment of the structural failure modes to provide information for agents behaviour and a comparative assessment of the bodies pattern contribution. Considering the obtained results, insights gained on the structural behaviour of multi-agent composite surface tectonics while attempting to explore its embedded architectural, morphological and expressive qualities are discussed.
keywords Computational Design, Multi-Agent System, Ornament, Structural Optimization, Fibre-Composite Materials, Stigmergy, Non-Linear Time History
series eCAADe
email
last changed 2024/04/22 07:10

_id ijac202220310
id ijac202220310
authors Castro Henriques, Goncalo; Pedro Maciel Xavier; Victor de Luca Silva; Luca Rédua Bispo; Joao Victor Fraga
year 2022
title Computation for Architecture, hybrid visual and textual language: Research developments and considerations about the implementation of structural imperative and object-oriented paradigms
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 673–687
summary In the fourth industrial revolution, programming promises to be a fundamental subject like mathematics, science, languages or the arts. Architects design more than buildings developing innovative methods and they are among the pioneers in visual programming development. However, after more than 10 years of visual programming in architecture, despite the fast-learning curve, visual programming presents considerable limitations to solve complex problems. To overcome limitations, the authors propose to associate the advantages of visual and textual languages in Python. The article addresses an ongoing research study to implement Computational Methods in Architectural Education. The authors began by describing the general goal of this project, and of this article in particular. This article focuses on the implementation of two disciplines ‘Computation for Architecture in Python’ I and II. The first discipline uses programming based on the construction of functions in the imperative language, implemented in the text editor, in visual programming, using Grasshopper methods. The second discipline, which is under development, intends to teach object-oriented programming. The results of the first discipline are encouraging; despite reported difficulties in programming fundamentals, such as lists, loops and recursion. The development of the second discipline, in object-oriented programming, deals with the concepts of classes and objects, and more abstract principles such abstraction, inheritance, polymorphism or encapsulation. This paradigm allows building robust programs, but requires a more in-depth syntax. The article reports this ongoing research on this new paradigm of object-oriented language, expanding the application of a hybrid visual-textual language in Architecture
keywords computation, textual programming, visual programming, imperative programming, object oriented programming
series journal
last changed 2024/04/17 14:30

_id ascaad2022_000
id ascaad2022_000
authors El-Bastawissi, Ibtihal Y.; Abdelmohsen, Sherif
year 2022
title ASCAAD 2022: Hybrid Spaces of the Metaverse
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, 743 p.
summary The ASCAAD 2022 theme focuses on Hybrid Spaces of the Metaverse, with the aim of unraveling the opportunities and potentials of architecture in the age of the Metaverse. Historically space was always the container of people’s activities and memories; it is the collective reflection of their life styles. Walls, floors and ceilings of architectural spaces witnessed the moments of joy and happiness, as well as moments of misery that changed human history, from the signing of the United Nations Declaration post WWII, to the first I-phone sold in the Apple store; history is written inside architectural spaces. The new era of the 4th industrial revolution, which is associated with digital transformation, will unlock new opportunities for architects, interior designers and whoever will enter the domain of the metaverse. The metaverse will not only serve as a portal to a new world, but also as an extension to new activities such as commercial, social, educational and business activities that will thrive in the new virtual realm. The metaverse will act as the natural transcendence of technological advancements carrying new potentials to the architectural profession. Active Worlds, Second Life, Roblox and Fortnite are all early versions of what we will witness in the next few years, shifting from entertainment to full commercial, official and governmental activities; all will be hosted inside virtual and hybrid spaces. A new era will start inside virtual realms; real economy will rise inside virtual architecture but without the multiple physical or structural constraints that limit physicality anymore such as gravity, and day and night cycles; no oxygen is needed anymore. But this time, human activities will not only be recorded and saved but also attended and lived in real time. Computational design will continue to thrive and even evolve into new forms aligning with new changes and challenges of the metaverse. Hybrid spaces are the spaces that will be built as a virtual extension of real spaces. They will be in connection to real spaces and reflecting their activities on a real time basis. On the other hand, pure virtual spaces will occur, trespassing time zones and geographical barriers. The importance of hybrid experiences was most realized after the pandemic lockdowns; and now is the time to invent new design methodologies and new theories as a natural transcendence of architecture profession. Hyperlinks portals replacing staircases and elevators, physically impossible structures, open budget interiors, teleportation are all new notions emerging with the new domain. Today, virtual spaces are hosted on various cloud services and registered as Non-Fungible Tokens (NFTs). They are experienced as immersed spaces using headsets or semi immersed spaces presented through laptops and/or mobile screens. With the new accelerating pace of technology, there is high possibility for integration within our neural networks to be experienced in our minds with just closing our eyes in the near future.
series ASCAAD
email
last changed 2024/02/16 13:24

_id ecaade2022_373
id ecaade2022_373
authors Gatóo, Ana, Koronaki, Antiopi, Chaudary, Abhinav, Gin, Yelda, Shah, Darshil U., Wiegand, Eduardo, Hesselgren, Lars, Ainoura, Midori, Bakker, Ron and Ramage, Michael H.
year 2022
title Unfolding Timber - A future of design
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 57–66
doi https://doi.org/10.52842/conf.ecaade.2022.1.057
summary “Unfolding” is a pavilion comprised of six lightweight structures designed for the London Design Biennale 2021. “UnFolding” examines the potential for using engineered timber with digital tools to produce flexible interiors. The pavilion is folded through kerfing methods into fractal-based structures. Extensive research, testing and sample fabrication to acquire optimal flexibility of different timber members through kerf patterns was accomplished for the project.
keywords Engineered Timber, Unfolding Timber, Flexible Housing, Folding Structures, Timber Pavilion
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_226
id ecaade2022_226
authors Hardarson, Matthias K., Larsen, Niels M. and Aagaard, Anders K.
year 2022
title Kerf Guided Glulam - A novel way of creating curved glulam beams
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 85–90
doi https://doi.org/10.52842/conf.ecaade.2022.1.085
summary This paper proposes a novel way of producing curved glulam timber elements where the formwork is integrated into a glulam beam. The method proposed accomplishes this by placing kerf cuts on a timber profile that gets bent and then encased in a wood laminate, forming the glulam beam. The kerf placement allows the beam to be asymmetrically curved. The optimal placement for the kerf cuts is found by feeding an initial goal curve to a form-finding definition that subdivides it and places markers where cuts need to be made while manipulating the beam geometry, ensuring that it matches the initial input curve. The benefit of this method is that it is not reliant on large-scale glulam setups but can be fabricated with basic wood workshop tools in conjunction with a 5-axis CNC mill. The simplified production process enables smaller manufacturers and designers to produce dynamic wooden structures while saving on materials and labour that would have gone into producing formwork that eventually gets discarded.
keywords Digital Wood Workflows, Kerfs, Glulam, Parametric Design, Digital Fabrication, CNC, Design Democratisation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_99
id ecaade2022_99
authors Hemmerling, Marco and Salzberger, Max
year 2022
title InterACT – Laboratory for architecture, crafts, technology
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 557–566
doi https://doi.org/10.52842/conf.ecaade.2022.1.557
summary The InterACT research project focuses on the use of computational design and manufacturing methods in the construction of self-build projects based on wooden structures. The goal is the interdisciplinary development and realization of a prototypical laboratory on the university campus in Cologne. At the intersection of craftsmanship and architecture, the project aims to generate, collect and share interdisciplinary knowledge. The InterACT Lab is intended to function as a hybrid learning and research space, uniting theory and practice. Moreover, the project should make the concept of networked learning and research visible beyond the academic boundaries. The entire development of the project has been set-up as a participative and collaborative learning process, involving students in the conceptual design, decision making and the production of the building components as well as in the assembly of the structure, using digital tools as a common base and connector throughout the process. The paper presents the didactic concept and discusses the findings of the various steps from the early design phase to the realization of a first prototype in scale 1:1.
keywords Didactics, Architectural Curriculum, Design Build Projects, Open Educational Resources (OER), Wood Construction, Digital Fabrication
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_392
id ecaade2022_392
authors Karimian-Aliabadi, Hamed, Adelzadeh, Amin and Robeller, Christopher
year 2022
title A Computational Workflow for Design-to-Assembly of Shingle Covering Systems for Multi-Curved Surface Structures
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 659–666
doi https://doi.org/10.52842/conf.ecaade.2022.1.659
summary Shingle covering of multi-curved surfaces is usually a manual process with no precise plan for the arrangement and assembly of shingle elements. Such processes lack the computational capacity of algorithmic methods for modeling, analysis, and optimization of shingle systems within a seamless digital workflow. As a solution, this paper presents an algorithmic procedure for the design and assembly of shingle covering systems for multi-curved surface structures. The proposed algorithm evaluates the reference surface curvatures to generate an efficient layout of shingles of identical size. The proposed model generates the arrangement of shingles based on given input parameters including the shingle dimensions and overlapping domains. For a precise and quick on-site assembly the corresponding nailing strips are also automatically generated on which the shingles could be installed. The applications and limitations of the proposed algorithm are discussed through a detailed analysis of various case studies.
keywords Shingle Covering, Algorithmic Design, Concave Surface, Multi-Curvature Surface, Overlapping Domain, Curvature Dependent Spacing, Timber Strips
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_488515 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002