CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 675

_id acadia22_001
id acadia22_001
authors Akbarzadeh, Masoud; Aviv, Dorit; Jamelle, Hina; Stuart-Smith, Robert
year 2022
title ACADIA 2022: Hybrids and Haecceities [Projects Catalog]
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 240p.
summary Hybrids & Haecceities seeks novel approaches to design and research that dissolve binary conditions and inherent hierarchies in order to embrace new modes of practice. Haecceities describe the qualities or properties of objects that define them as unique. Concurrently, Hybrids are entities with characteristics enhanced by the process of combining two or more elements with different properties. In concert, these terms offer a provocation toward more inclusive and specific forms of computational design. Hybrids & Haecceities aligns with a fundamental shift away from abstract generalized models of production toward greater degrees of customization at unprecedented scales, made possible by the Fourth Industrial Revolution. With greater reliance on cyber-physical systems, this shift supports more diverse and considered forms of embodiment and participation in the built environment. Conversely, the design and construction industries have profound global effects with significant political, economic, and environmental impacts. The urgent need to decarbonize buildings, and at the same time, provide equitable infrastructure to communities at risk, places responsibility on the design disciplines to form new collaborations in the effort to address today’s social and ecological crises.
series ACADIA
type projects catalog
email
last changed 2024/02/06 14:00

_id acadia22_000
id acadia22_000
authors Akbarzadeh, Masoud; Aviv, Dorit; Jamelle, Hina; Stuart-Smith, Robert
year 2022
title ACADIA 2022: Hybrids and Haecceities [Proceedings]
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 839p.
summary Hybrids & Haecceities seeks novel approaches to design and research that dissolve binary conditions and inherent hierarchies in order to embrace new modes of practice. Haecceities describe the qualities or properties of objects that define them as unique. Concurrently, Hybrids are entities with characteristics enhanced by the process of combining two or more elements with different properties. In concert, these terms offer a provocation toward more inclusive and specific forms of computational design. Hybrids & Haecceities aligns with a fundamental shift away from abstract generalized models of production toward greater degrees of customization at unprecedented scales, made possible by the Fourth Industrial Revolution. With greater reliance on cyber-physical systems, this shift supports more diverse and considered forms of embodiment and participation in the built environment. Conversely, the design and construction industries have profound global effects with significant political, economic, and environmental impacts. The urgent need to decarbonize buildings, and at the same time, provide equitable infrastructure to communities at risk, places responsibility on the design disciplines to form new collaborations in the effort to address today’s social and ecological crises.
series ACADIA
type proceedings
email
last changed 2024/02/06 14:00

_id sigradi2022_193
id sigradi2022_193
authors Kunic, Anja; Naboni, Roberto
year 2022
title Collaborative design and construction of reconfigurable wood structures in a Mixed Reality environment
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 651–662
summary Mixed Reality tools offer new possibilities for cyber-physical design and construction and promote novel collaboration protocols. This work tackles a multi-user open-end design and construction of reconfigurable timber structures in Mixed Reality by introducing a computational workflow, physical setup and custom-designed interface. The developed procedures are demonstrated in the design and making of a real-scale architectural mock-up based on a discrete construction kit that allows for numerous assembly combinations. The results show that such a construction system that is characterized by rich design and assembly data is processed faster and with fewer mistakes by the builders using Mixed Reality. This opens the possibility to execute, change and update the construction directly in the physical environment in real-time. Moreover, the projected holographic analytics and construction data allowed for more structured decision-making and understanding of the impacts that each building action had.
keywords Mixed Realities, Reconfigurable Timber Construction, Collaborative Design, Collaborative Assembly, Wood Architecture Automation
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2022_242
id caadria2022_242
authors Cheng, Chung-Chieh, Sheng, Yu-Ting and Wang, Shih-Yuan
year 2022
title Robotic Fabrication Process of Glued Laminated Bamboo for Material Efficient Construction
doi https://doi.org/10.52842/conf.caadria.2022.2.213
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 213-222
summary This paper aims to introduce the development of a new-style glue-laminated bamboo (GLB) board structure and evaluating computational technologies aiming to enhance the performance of fibre materials and a set of digital manufacturing processes. Specifically, this paper develops a method to introduce the concept of topology optimisation into the properties of fibre materials. At the same time, it explains the unique structure optimisation design and manufacturing process (including the design process, digital tools and auxiliary equipment system). To test the design, this paper compares the data obtained via the gravity suspension test of the physical model and the simulation. Through digital manufacturing methods, the project aims to establish structural elements that could improve material efficiency. Furthermore, it may establish a GLB floor structure system in line with the material economy.
keywords Digital fabrication, Robotic Assembly, Glued Laminate Bamboo, SDG 11, SDG 12, SDG 15
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_69
id caadria2022_69
authors Rogeau, Nicolas, Rezaei Rad, Aryan, Vestartas, Petras, Latteur, Pierre and Weinand, Yves
year 2022
title A Collaborative Workflow to Automate the Design, Analysis, and Construction of Integrally-Attached Timber Plate Structures
doi https://doi.org/10.52842/conf.caadria.2022.2.151
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 151-160
summary This paper introduces a computational framework that fosters collaboration between architects, engineers, and contractors by bridging the gap between architectural design, structural analysis, and digital construction. The present research is oriented toward the formulation of an automatic design-to-construction pipeline for Integrally-Attached Timber Plate Structures (IATPS). This construction system is based on assembling timber panels through the sole interlocking of wood-wood connections inspired by traditional Japanese joinery. Prior research focused on developing distinct computational workflows and dealt with the automation of 3D modelling, numerical simulation, fabrication, and assembly separately. In the current study, a single and interactive design tool is presented. Its versatility is demonstrated through two case studies, as well as the assembly of a physical prototype with a robotic arm. Results indicate that efficiency in terms of data flow and stakeholder synergy is considerably increased. The proposed approach contributes to the†Sustainable Development Goal (SDG) 11 by facilitating the collaborative design of sustainable timber structures. Besides, the research also contributes to SDG 9 as it paves the way for sustainable industrialisation of the timber construction sector through streamlined digital fabrication and robotic assembly processes. This reduces manufacturing time and associated costs while leveraging richer design possibilities.
keywords Timber plate structures, Timber joints, Collaborative design, Interdisciplinary design, Structural performance assessment, Robotic assembly, SDG 11, SDG 9.
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id ijac202220212
id ijac202220212
authors Castriotto, Caio; Felipe Tavares; Gabriela Celani; Olga Popovic Larsen; Xan Browne
year 2022
title Clamp links: A novel type of reciprocal frame connection
source International Journal of Architectural Computing 2022, Vol. 20 - no. 2, pp. 378–399
summary Reciprocal frames (RFs) are complex structural systems based on mutual support between elements. One of the main challenges for these structures is achieving geometrical complexity with ease for assembly. This paper describes the development of a new type of connection for RF that uses a single bolt to fix a whole fan. The method used was the Research Through Design, using algorithmic modelling and virtual and physical prototyping. After the exploration of different alternatives, the connection selected was structurally evaluated with a 3D solid finite element analysis (FEM) software and a 2D bar parametric model. Finally, a fullscale pavilion was built as a proof-of-concept. A total of 47 connections were fabricated using four 3D-printed templates combined with a hand router. The construction allowed us to draw conclusions on the connection design and the assembly method, and the process as a whole can contribute to the development of new structural links and production methods.
keywords Reciprocal frames, connections, computational design, simulations, digital fabrication
series journal
last changed 2024/04/17 14:29

_id caadria2022_490
id caadria2022_490
authors Li, Ce, Guo, Zhe, Cai, Chengzhi, Miao, Junyi, Cao, Xiaoyu, Li, Cong, Guo, Yefei, Cao, Qingning, Zheng, Zifei, Guo, Yuchen, Wu, Wanling, Xu, Zhiyan and Zhou, Xinyan
year 2022
title Softness and Hardness: What Does Concrete Want? Concrete Physical Form Finding Based on Computational Combined Formwork
doi https://doi.org/10.52842/conf.caadria.2022.2.233
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 233-242
summary This project proposes a physical form finding design method by generating concrete flexible formwork through digital algorithm, which aims to explore the potential formal correlation between real material as the medium of transmitting information in physical space and virtual data, so as to discuss the autonomy and intelligence of material under the support of digital design technology. The first part of this paper first discusses the current situation of the application and development of concrete materials in the field of digital construction in recent years, and then studies the adaptability of flexible formwork to the flowable characteristics of concrete materials; Then, the second part puts forward the moulding method of concrete physical shape finding through flexible and rigid composite formwork, and tries to explore the influence of formwork shape under the control of digital algorithm on this process; The third part of the paper records the process of concrete moulding experiment under this method to discuss the internal relationship between the physical form of concrete and combined formwork.
keywords Physical Form Finding, Textile Concrete Formwork, Material Attributes, Concrete Fabrication, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_290
id acadia22_290
authors Mun, Kristine; Bogosian, Biayna
year 2022
title Experimentations in Neuroscience for Architecture
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 290-293.
summary Integrating computational methods in design and construction has intensified the discipline’s focus on quantifying buildings and occupants. However, when quantifying the human body, the metrics are often related to the physical dimensions (proportions, loads, heat, cold) and not psychological or psychophysical (stress, perception, emotion). This Field Note builds on the authors’ experience and research focused on a ‘Neuroscience for Architecture’ approach to designing healthier environments
series ACADIA
type field note
email
last changed 2024/02/06 14:00

_id ecaade2022_52
id ecaade2022_52
authors Nejur, Andrei and Balaban, Thomas
year 2022
title The A(fin)ne Pavilion - Pandemic adapted architectural studio fabrication
doi https://doi.org/10.52842/conf.ecaade.2022.2.507
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 507–516
summary This paper presents the didactical and research process of a pandemic-adapted digital fabrication, material-driven research master studio held at University of Montreal School of Architecture in early 2021 that concluded with the construction of a large-scale research pavilion assembled by the students with hand tools only. The paper focuses on the structure of the studio and how the research was re-oriented to permit material investigations using limited physical interaction between the participants, intermittent access to on-campus fabrication facilities, limited financial resources, and a cohort of students with near-zero computational design experience.
keywords DIY, Education, Pavilion, Construction, Folding, Pandemic, Digital Fabrication
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_100
id caadria2022_100
authors Oghazian, Farzaneh, Brown, Nathan and Davis, Felecia
year 2022
title Calibrating a Formfinding Algorithm for Simulation of Tensioned Knitted Textile Architectural Models
doi https://doi.org/10.52842/conf.caadria.2022.1.111
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 111-120
summary This paper presents an optimization-based calibration process for tuning a digital formfinding algorithm used with knitted textile materials in architectural tension structures. 3D scanning and computational optimization are employed to accurately approximate a physical model in a digital workflow that can be used to establish model settings for future exploration within a knit geometric typology. Several aspects of the process are investigated, including different optimization algorithms and various approaches to data extraction. The goal is to determine the appropriate optimization method and data extraction, as well as automate the process of adjusting formfinding settings related to the length of the meshes associated with the knitted textile behavior. The calibration process comprises three steps: extract data from a 3D scanned model; determine the bounds of formfinding settings; and define optimization variables, constraints, and objectives to run the optimization process. Knitted textiles made of natural yarns are organic materials and when used at the industrial level can satisfy DSG 9 factors to promote sustainable industrialization and foster innovation in building construction through developing sustainable architectural systems. The main contributions of this paper are calibrated digital models of knitted materials and a comparison of the most effective algorithms and model settings, which are a starting point to apply this process to a wider range of knit geometries. These models enhance the implementation and further development of novel architectural knitted systems.
keywords Tensioned Knitted Textiles, Computational Design, Formfinding, Calibrating, Optimization, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_453
id cdrf2022_453
authors Si-Yuan Rylan Wang
year 2022
title Soft Pneumatic Robotic Architectural System: Prefabricated Inflatable Module-Based Cybernetic Adaptive Space Model Manipulated Through Human-System Interaction
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_39
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary In this paper, a cybernetic adaptive space model based on prefabricated inflatable modules and physical interaction manipulation is introduced. The research aimed to redefine an intelligent and organic trend of residing and working by providing an adjustable and performative space system. The conjunction of human-space interaction, as well as the soft and hard architectural elements adaptive to dynamic living modalities and environmental conditions, are included in the methodology. The datasets based on the human body posture are collected through IMU sensors to provide coding inputs for defining modular inflatable structures, which anticipate generating heterogeneous morphological variations apt for flexible scenarios. The elaborated pre-fabricated samples successfully conform to the expected inflating behavior through silicone patterns. The results demonstrated the possibility of future architecture as an unrestrained configuration. Integrating the shape-shifting space within modular manufacturing and interactive technology can deprive the performance of many constraints. It can render a responsive ecosystem through a behavioral transformation of the in-habitants.
series cdrf
email
last changed 2024/05/29 14:03

_id ecaade2022_118
id ecaade2022_118
authors St-Hilaire, Caroline and Nejur, Andrei
year 2022
title WoodN - In search of a constructive system for a sustainable temporary architecture
doi https://doi.org/10.52842/conf.ecaade.2022.1.185
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 185–194
summary Sustainable temporary architecture seems like a dichotomy but should be a major concern for the construction industry. Now aware of its impact, architecture must contribute to a more sustainable management of resources and despite their short time frame, ephemeral structures should be no exception to the rule. This work aims to develop a simpler and more accessible computational workflow based on the particle system tool Kangaroo inside Grasshopper to match design intent with available material stock. The proposed research examines the potential of combining raw or reused materials, such as wood and plastic, with easily accessible architectural technologies and tools to generate temporary and sustainable constructions. The workflow allows for many design variations using only simple and intuitive tools in both its digital and physical stages and aims to support the simple development non-standard, responsible temporary architecture that fully implements the principles of a circular economy.
keywords Wood, Reclaimed Material, Kit-Based Design, 3D Printing, Accessible Technology, Computational Design
series eCAADe
email
last changed 2024/04/22 07:10

_id cdrf2022_488
id cdrf2022_488
authors Tomás Vivanco, Juan Eduardo Ojeda, Philip Yuan
year 2022
title Regression-Based Inductive Reconstruction of Shell Auxetic Structures
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_42
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary This article presents the design process for generating a shell-like structure from an activated bent auxetic surface through an inductive process based on applying deep learning algorithms to predict a numeric value of geometrical features. The process developed under the Material Intelligence Workflow applied to the development of (1) a computational simulation of the mechanical and physical behaviour of an activated auxetic surface, (2) the generation of a geometrical dataset composed of six geometric features with 3,000 values each, (3) the construction and training of a regression Deep Neuronal Network (DNN) model, (4) the prediction of the geometric feature of the auxetic surface's pattern distance, and (5) the reconstruction of a new shell based on the predicted value. This process consistently reduces the computational power and simulation time to produce digital prototypes by integrating AI-based algorithms into material computation design processes.
series cdrf
email
last changed 2024/05/29 14:03

_id ecaade2022_201
id ecaade2022_201
authors Buš, Peter, Sridhar, Nivedita, Zhao, Yige, Yang, Chia-Wei, Chen, Chenrui and Canga, Darwin
year 2022
title Kit-of-Parts Fabrication and Construction Strategy of Timber Roof Structure - Digital design-to-production workflow for self-builders
doi https://doi.org/10.52842/conf.ecaade.2022.1.449
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 449–458
summary This project builds upon a premise that complex double-curved geometries can be built out of simple, planar, and straight elements. As such, it is possible to simplify manufacturing, construction, and assembly processes, as well as decrease the delivery time and cost. When operating with planar and simple components in the form of Kit-of- Parts there is an assumption that such components can be easily used by self-builders, not necessarily building experts. This can empower participatory activities leading to a more sustainable and resilient engaged community. This hypothesis is evaluated through the process of design for manufacture and assembly project of the timber shell, supported by proposed advanced computational design-to-production workflow utilising digital fabrication technologies such as CNC machining and robotic milling. The assembled and erected structure is evaluated in the scope of constructability, deliverability, and operability. Therefore, the focus of this project is to test, observe, experiment with, and learn from those aspects from the perspective of a fabricator, maker, and self-builder of the double-curved timber roof structure, while operating with smaller-scale components and smaller sub-assemblies, convenient for hands-on operations. The paper also discusses the limitations of such an approach.
keywords Design-to-Production Workflow, Robotic Digital Fabrication, Self-Builders, Structural Performance, Advanced Labelling
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_456
id acadia22_456
authors Gupta, Pragya; Cupkova, Dana
year 2022
title Discretizing Low-tech Adaptive Rammed Earth Formwork
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 456-467.
summary Rooted in a hybrid material and climate-based approach to design, this study proposes a computational design framework for low-tech rammed earth adaptable formwork that allows for variable surface figuration, related to thermal and aesthetic design parameters. Built as vertical panel prototypes, as in-situ vertical construction, this study proposes to couple thermal performance with sequenced constructability of varied surface geometries through an adaptable repetitive kit-of-parts formwork that can be constructed with limited advanced manufacturing capabilities.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id ecaade2022_99
id ecaade2022_99
authors Hemmerling, Marco and Salzberger, Max
year 2022
title InterACT – Laboratory for architecture, crafts, technology
doi https://doi.org/10.52842/conf.ecaade.2022.1.557
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 557–566
summary The InterACT research project focuses on the use of computational design and manufacturing methods in the construction of self-build projects based on wooden structures. The goal is the interdisciplinary development and realization of a prototypical laboratory on the university campus in Cologne. At the intersection of craftsmanship and architecture, the project aims to generate, collect and share interdisciplinary knowledge. The InterACT Lab is intended to function as a hybrid learning and research space, uniting theory and practice. Moreover, the project should make the concept of networked learning and research visible beyond the academic boundaries. The entire development of the project has been set-up as a participative and collaborative learning process, involving students in the conceptual design, decision making and the production of the building components as well as in the assembly of the structure, using digital tools as a common base and connector throughout the process. The paper presents the didactic concept and discusses the findings of the various steps from the early design phase to the realization of a first prototype in scale 1:1.
keywords Didactics, Architectural Curriculum, Design Build Projects, Open Educational Resources (OER), Wood Construction, Digital Fabrication
series eCAADe
email
last changed 2024/04/22 07:10

_id cdrf2022_514
id cdrf2022_514
authors Jiaxiang Luo, Tianyi Gao, and Philip F. Yuan
year 2022
title Fabrication of Reinforced 3D Concrete Printing Formwork
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_44
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary In recent years, the emerging 3D printing concrete technology has been proved to be an effective and intelligent strategy compared with conventional casting concrete construction. Due to the principle of additive manufacturing strategy, this concrete extrusion technique creates great opportunities for designing freeform geometries for surface decoration since this material has a promising performance of high compressive strength, low deformation, and excellent durability. However, the structure behavior is usually questioned, defined by the thickness and printing path. At the same time, the experiments for using 3D printing elements for structural and functional parts are still insufficient. Little investigation has been made into developing reinforcement strategies compatible with 3D printing concrete. In fact, conventional formwork and easy-to-install reinforcement support structures have various advantages in terms of labor costs but can hardly be reused. Thus, using 3D concrete printing as formwork for projects in different scales is an effective solution in the mass customized prefabrication era. Considering large-scale projects, the demand to provide concrete formwork with a proper reinforcement strategy for better toughness, flexibility, and strength is necessary. In this paper, we proposed different off-site reinforced 3D printing concrete strategies and evaluated them from time and material cost, deviation, and accessibility of fabrication.
series cdrf
email
last changed 2024/05/29 14:03

_id caadria2022_349
id caadria2022_349
authors Lopez Rodriguez, Alvaro, Jaramillo Pazmino, Pablo Isaac and Pantic, Igor
year 2022
title Augmented Active-Bending Formwork for Concrete, A Manufacturing Technique for Accessible Local Construction of Structural Systems
doi https://doi.org/10.52842/conf.caadria.2022.2.181
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 181-190
summary This research introduces Augmented Reality (AR) for manufacturing concrete structures through an open platform for autonomous construction. The study was developed under the following scopes: computational algorithms for bending simulations, materiality tests, system implementation, and a set of Augmented Reality (AR) tools. AR devices offer a technological tool that allows for a self-built environment through holographic guidance, allowing the untrained workforce to participate in the process. This technology can help users select the system to construct through an Open-Source platform, reducing the gap between complex computational geometries and construction processes. The research aims to investigate a building system that could benefit the UN Objectives SDG 10 by increasing the access to technology in undeveloped communities, SDG 11 and SDG 12 by promoting a self-sustainable method of construction based on local resources and material efficiency. In conjunction with the development of the AR Platform and augmented manufacturing, a 1:1 prototype was built in Quito, Ecuador, with the help of seven people with no previous knowledge of digital tools or construction. Presenting a novel, fast, and affordable concrete formwork connected with AR assisted assembly methods that facilitate access to more efficient and advanced building technology.
keywords Mixed Reality, Distributed Manufacturing, Online Platforms, Affordability, Local Communities, SDG 10, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_302
id ecaade2022_302
authors Lu, Xin, Meng, Zeyuan, Rodriguez, Alvaro Lopez and Pantic, Igor
year 2022
title Reusable Augmented Concrete Casting System - Accessible method for formwork manufacturing through holographic guidance
doi https://doi.org/10.52842/conf.ecaade.2022.1.371
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 371–380
summary Reinforced concrete has been one of the essential materials for modern architecture for the last hundred years. Its use is entirely global, having been adopted by all cultures and styles since its invention in the late 19th century. Although its value is excellent due to its low cost, durability and adaptability, its environmental impact is significant, being, in fact, one of the most polluting industries in the world (Babor et al. 2009). This experimental project will research a more sustainable use of concrete, exploring a new form of reusable concrete formwork that will ideally reduce the CO2 footprint by removing wood waste in the casting process and replacing it with adaptable metal components. The modular part-based system for the concrete casting also attempts to simplify one of the current complexities for concrete construction, the Skilled-Labour shortage. (Yusoff et al. 2021). To mitigate this problem, the project also proposes using an Augmented Assembly logic for the casting parts to guide the ensemble and dismantle the formwork through an optimised algorithmic logic. The use of Augmented Reality as a replacement for traditional paper instructions will facilitate access to more workers to this construction art and potentially improve access to optimised use of concrete in developing communities with restricted building technological resources.
keywords Mixed Reality, Distributed Manufacturing, Augmented Manufacturing, Sustainability, Computational Design, Concrete Casting
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_466881 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002