CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 682

_id caadria2022_196
id caadria2022_196
authors Grisiute, Ayda, Shi, Zhongming, Chadzynski, Arkadiusz, Silvennoinen, Heidi, von Richthofen, Aurel and Herthogs, Pieter
year 2022
title Automated Semantic SWOT Analysis for City Planning Targets: Data-driven Solar Energy Potential Evaluations for Building Plots in Singapore
doi https://doi.org/10.52842/conf.caadria.2022.1.555
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 555-564
summary Singapore‚s urban planning and management is cross-domain in nature and need to be assessed using multi-domain indicators ‚ such as SDGs. However, urban planning processes are often confronted with data interoperability issues. In this paper, we demonstrate how a Semantic Web Technology-based approach combined with a SWOT analysis framework can be used to develop an architecture for automated multi-domain evaluations of SDG-related planning targets. This paper describes an automated process of storing heterogeneous data in a semantic data store, deriving planning metrics and integrating a SWOT framework for the multi-domain evaluation of on-site solar energy potential across plots in Singapore. Our goal is to form the basis for a more comprehensive planning support tool that is based on a reciprocal relationship between innovations in SWT and a versatile SWOT framework. The presented approach has many potential applications beyond the presented energy potential evaluation.
keywords Semantic Web, Knowledge Graphs, SWOT analysis, energy-driven urban design, SDG 11, SDG 7
series CAADRIA
email
last changed 2022/07/22 07:34

_id architectural_intelligence2022_6
id architectural_intelligence2022_6
authors Achim Menges, Fabian Kannenberg & Christoph Zechmeister
year 2022
title Computational co-design of fibrous architecture
doi https://doi.org/https://doi.org/10.1007/s44223-022-00004-x
source Architectural Intelligence Journal
summary Fibrous architecture constitutes an alternative approach to conventional building systems and established construction methods. It shows the potential to converge architectural concerns such as spatial expression and structural elegance, with urgently required resource effectiveness and material efficiency, in a genuinely computational approach. Fundamental characteristics of fibre composite are shared with fibre structures in the natural world, enabling the transfer of design principles and providing a vast repertoire of inspiration. Robotic fabrication based on coreless filament winding, a technique to deposit resin impregnated fibre filaments with only minimal formwork, as well as integrative computational design methods are imperative to the development of complex fibrous building systems. Two projects, the BUGA Fibre Pavilion as an example for long-span structures, and Maison Fibre as an example of multi-storey architecture, showcase the application of those techniques in an architectural context and highlight areas of further research opportunities. The highly interrelated aesthetic, structural and fabrication characteristics of fibre nets are difficult to understand and go beyond a designer’s comprehension and intuition. An AI powered, self-learning agent system aims to extend and thoroughly explore the design space of fibre structures to unlock the full design potential coreless filament winding offers. In order to ensure feedback between all relevant design and performance criteria and enable interdisciplinary convergence, these novel design methods are embedded in a larger co-design framework. It formalizes the interaction of involved interdisciplinary domains and allows for interactive collaboration based on a central data model, serving as a base for design optimisation and exploration. To further advance research on fibre composites in architecture, bio-based materials are considered, continuing the journey of discovery of fibrous architecture to fundamentally rethinking design and construction towards a novel, computational material culture in architecture.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id caadria2024_365
id caadria2024_365
authors Lahtinen, Aaro, Gardner, Nicole, Ramos Jaime, Cristina and Yu, Kuai
year 2024
title Visualising Sydney's Urban Green: A Web Interface for Monitoring Vegetation Coverage between 1992 and 2022 using Google Earth Engine
doi https://doi.org/10.52842/conf.caadria.2024.2.515
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 515–524
summary With continued population growth and urban expansion, the severity of environmental concerns within cities is likely to increase without proper urban ecosystem monitoring and management. Despite this, limited efforts have been made to effectively communicate the ecological value of urban vegetation to Architecture, Engineering and Construction (AEC) professionals concerned with mitigating these effects and improving urban liveability. In response, this research project proposes a novel framework for identifying and conveying historical changes to vegetation coverage within the Greater Sydney area between 1992 and 2022. The cloud-based geo-spatial analysis platform, Google Earth Engine (GEE), was used to construct an accurate land cover classification of Landsat imagery, allowing the magnitude, spatial configuration, and period of vegetation loss to be promptly identified. The outcomes of this analysis are represented through an intuitive web platform that facilitates a thorough understanding of the complex relationships between anthropogenic activities and vegetation coverage. A key finding indicated that recent developments in the Blacktown area had directly contributed to heightened land surface temperature, suggesting a reformed approach to urban planning is required to address climatic concerns appropriately. The developed web interface provides a unique method for AEC professionals to assess the effectiveness of past planning strategies, encouraging a multi-disciplinary approach to urban ecosystem management.
keywords Urban Vegetation, Web Interface, Landsat Imagery, Land Cover Classification, Google Earth Engine
series CAADRIA
email
last changed 2024/11/17 22:05

_id caadria2022_260
id caadria2022_260
authors Ricafort, Kim, Koch, Ethan and Makki, Mohammed
year 2022
title Addressing Flood Resilience In Jakarta‚s Kampungs Through The Use Of Sequential Evolutionary Simulations
doi https://doi.org/10.52842/conf.caadria.2022.1.655
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 655-664
summary The urban superblock of Kampung Melayu, located in Jakarta, Indonesia, is a typology amalgamated by the environmental and infrastructural challenges caused by Jakarta‚s urban sprawl. Rapid and unregulated urban growth, fluctuating tropical conditions, rising sea levels and unprecedented environmental stresses have led to a city that is sinking, leaving unregulated low-income settlements, such as Kampung Melayu, most vulnerable. To address these issues, the presented research employs the use of a multi-objective evolutionary algorithm for an in-depth analysis of the various relationships within the urban fabric. The simulations present an alternative urban approach to the design of a flood resilient Kampung; addressing environmental and demographic stresses while maintaining the irregularity that has become ingrained in the history of the urban form.
keywords jakarta, kampung melayu, sequential simulations, evolutionary algorithm, computational design, urban growth, flood resilience, SDG 3, SDG 6, SDG 10, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ijac202220106
id ijac202220106
authors Förster, Nick; Ivan Bratoev, Jakob Fellner, Gerhard Schubert, Frank Petzold
year 2022
title Collaborating with the crowd
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 76–95
summary Microscopic agent-based simulations promise the meaningful inclusion of crowd dynamics in planning processes. However, such complex urban issues depend on a multiplicity of criteria. Thus, an isolated model cannot represent the walk of pedestrians meaningfully in planning contexts. This paper reframes crowd simulation as collaborative experimentation and embeds it directly in the design process. Beyond the simulation algorithm, this perspective draws attention to user interactions, interfaces, and visualizations as crucial simulation elements. Through a prototype, we combine an agent-based pedestrian simulation with a hybrid physical–digital interface. Based on this configuration, we explore requirements of the early design stages and accordingly discuss concepts for interaction, simulation, and visualization. The prototype blends user inputs with intuitive design interactions, adapts the simulation process to qualitative and dynamic negotiations, and presents results immediately in the discussed context. Thus, it aligns crowd simulation with contingent collaborations and reveals its potential in the early design stages.
keywords Urban design, architectural design, design decision support, pedestrian simulation, human–computer interaction, collaborative design, early design stages
series journal
last changed 2024/04/17 14:29

_id ecaade2022_303
id ecaade2022_303
authors Papandreou, Marielena, Baseta, Efilena, Mathe, Arpan, Blackburn, Robert Michael and Murugesan, Libish
year 2022
title Programming Twist - Exploring the geometric affordances of aluminum through flexible robotic workflows
doi https://doi.org/10.52842/conf.ecaade.2022.2.399
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 399–408
summary This paper explores the geometric affordances of aluminium through flexible robotic workflows. The geometric abundance of the discussed workflows goes beyond what the state-of-the-art industrial metal forming processes offer, and is achieved with simpler means. Two fabrication methodologies, folding and pressing, were explored in order to convert flat, straight panels into twisted, 3-dimensional shapes. The design method for both fabrication strategies was based on physics simulation, where several geometrical constraints force a real time deformation while maintaining the properties of a developable strip. In the first fabrication approach, directionality of the rulings is first engraved into the material while the folding angle is controlled by the robotic setup with two gripping stations. The second fabrication approach refers to a forming process. This has been achieved by installing a wheel cutter on a small workshop hydraulic press and a robot feeding the material into the forming station. The design-to-production pipelines are automated and designed for a small payload robot that allows for a large variety of geometric possibilities. Fabrication challenges of both processes have been documented and assessed, while workflow optimization scenarios and future improvements are proposed in the outlook.
keywords Developable Strips, Physics Simulation, Design-to-Production Pipelines, Robotic Bending, Metal Forming
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_431
id ecaade2022_431
authors Sieder-Semlitsch, Jakob and Nicholas, Paul
year 2022
title Self-Serveying Multi-Robot System for Remote Deposition Modelling
doi https://doi.org/10.52842/conf.ecaade.2022.1.233
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 233–240
summary The need for increased automation of the AEC sector has been extensively documented within the architectural discipline over recent years. Far beyond economic perspectives, current advances in technology offer an increased and more direct implementation of sustainable materials. Within this research, the potential for the re-use of material with low embodied energy within automated construction will be examined. Herefore, Remote Material Deposition (RDM, firstly described in Dörfler et al., 2014) is utilized as main fabrication method, deploying varying compositions of local building debris, lime mortar, and sand, via a throwing arm. This research explores a method of continuous verification of material deployment and removal of material oversaturation to guarantee accuracy. Herefore, all instances of the robot ecology are in direct communication with one another and the user for verification, adaptation, and information. The proposed framework is examined through experimentation by designing, building, and implementing an inter-communicative network of bespoke semi-autonomous robots with all proposed parts of the system.
keywords Construction Automation, Material Reuse, Onsite Construction, Self Verifying System, Robot Ecology, Additive Manufacturing
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_366
id ecaade2022_366
authors Geropanta, Vasiliki, Karagianni, Anna, Parthenios, Panagiotis, Ampatzoglou, Triantafyllos, Fatouros, Loukas, Simantiraki, Vasiliki, Brokos-Melissaratos, Orestis and Eleftheriadis, Dimitris
year 2022
title Digitalization of Participatory Greening - The case of UnionYouth in Chania
doi https://doi.org/10.52842/conf.ecaade.2022.1.469
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 469–478
summary The contemporary climate crisis pushed communities of actors, cities and citizens to use smart technology, digital platforms, and data-based intelligence to steer creative solutions for greening in their urban ecosystems. This phenomenon brought about an increasing imperative for citizen participation and inclusion, in the co-design of green infrastructures, suggesting alternative ways to deal with the lack or misuse of public space. In this framework, this paper analyzes the case of ''UnionYouth in Chania'', a project that aims a) to build an environmental awareness strategy for Generation Z, b) to promote capacity-building processes related to climate change and environmental protection, c) actually transform the city public space through participatory processes. Specifically, the project describes the creation of a digital platform and a mobile app consisting of several engagement tools that allow interaction between the digital community of youth, the city's decision-makers, and city greening actors. Therefore, the first part of the paper talks about the necessity of promoting today's participatory processes in the city for climate change mitigation through a literature review that emerged in the last decade. The second part of the paper examines a case study, namely UnionYouth in Chania, a digital collaborative platform that promotes methods for greening the city through district-based, activity-based, and network-based redesign solutions. The third part of the paper brings about interesting reflections on the relationship between the analog and digital world, and how bottom-up processes may be an important tool in city planning. The overall scope of the analysis of the specific case study is to bring insights into the architectural world, as a means to create more bridges with citizens and communities and contribute to their greening understanding.
keywords Climate Change, Generation Z, Green Infrastructure, Raise Awareness, Mobile Application, Participatory Design, Smart City
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_199
id caadria2022_199
authors Yang, Qing, Cao, Chufan, Li, Haimiao, Qiu, Waishan, Li, Wenjing and Luo, Dan
year 2022
title Quantifying the Coherence and Divergence of Planned, Visual and Perceived Streets Greening to Inform Ecological Urban Planning
doi https://doi.org/10.52842/conf.caadria.2022.1.565
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 565-574
summary This research attempts to combine the fields of urban planning, urban design and cognitive psychology, and propose three corresponding evaluation indicators for urban ecology, and further explore the coherence and divergence between them. This research defines land vegetation coverage, visibility of street green vegetation, and people's green perception as planned green, visual green and perceived green. Specifically, the three measures (i.e., planned, visual and perceived) refer to objectively extracting park lands and canopy areas from land use data, objectively extracting green pixels from street views, and subjectively collected through visual surveys. This study hypothesizes that there could exist large variation between the three measures, which would provide distinct implications for city planners. To test our hypothesis, this study selects Brisbane as the research area, effectively using computer deep learning, data visualization and mathematical statistics methods to achieve an accurate description of the three sets of data, and proposes a comprehensive evaluation of the urban ecological theory system. The results show the credibility and scope of application of the three types of greening, and quantitatively proposed and tested the relevant theories of urban design.
keywords Urban Green Space, Urban Ecology, Street View Image, Green Perception, Subjective Measure, SDG 3, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_293
id cdrf2022_293
authors Amal Algamdey, Aleksander Mastalski, Angelos Chronis, Amar Gurung, Felipe Romero Vargas, German Bodenbender, and Lea Khairallah
year 2022
title AI Urban Voids: A Data-Driven Approach to Urban Activation
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_26
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary With the development of digital technologies, big urban data is now readily available online. This opens the opportunity to utilize new data and create new relationships within multiple urban features for cities. Moreover, new computational design techniques open a new portal for architects and designers to reinterpret this urban data and provide much better-informed design decisions. The “AI Urban Voids'' project is defined as a data-driven approach to analyze and predict the strategic location for urban uses in the addition of amenities within the city. The location of these urban amenities is evaluated based on predictions and scores followed by a series of urban analyses and simulations using K-Means clustering. Furthermore, these results are then visualized in a web-based platform; likewise, the aim is to create a tool that will work on a feedback loop system that constantly updates the information. This paper explains the use of different datasets from Five cities including Melbourne, Sydney, Berlin, Warsaw, and Sao Paulo. Python, Osmx libraries and K-means clustering open the way to manipulate large data sets by introducing a collection of computational processes that can override traditional urban analysis.
series cdrf
email
last changed 2024/05/29 14:02

_id cdrf2022_150
id cdrf2022_150
authors Ana Zimbarg
year 2022
title Mapping Plant Microclimates on Building Envelope Using Environmental Analysis Tools
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_13
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Can we build our cities not only for humans but also for all living systems? How can we consider other species occupants of the built environment? Planning cities as an element of the natural domain can reshape our relationship with nature and help redefine sustainability in architecture. Although current design strategies of reducing energy use does not rectify past/continuing im-balances in the natural environment. Landscape architect John Tillman Lyle expanded the regenerative design concept based on a range of ecological concepts. The environment's complexity, and the urge to use resources smartly, encouraged him to think about architecture and the environment as a whole system. John Lyle's regenerative design strategies scaffold a conceptual framework of treating the building as part of the landscape. Environmental tools such as Ladybug can map out the different conditions surrounding the building's envelope. This information can assist in selecting and populating a building façade with suitable plant species. The framework presents the building as a feature in the landscape, creating microclimatic conditions for various plant habitats. This conceptual workflow has the potential to become a tool to include regenerative principles in the urban context.
series cdrf
email
last changed 2024/05/29 14:02

_id caadria2022_336
id caadria2022_336
authors Araujo, Goncalo, Santos, Luis, Leitao, Antonioand Gomes, Ricardo
year 2022
title AD-Based Surrogate Models for Simulation and Optimization of Large Urban Areas
doi https://doi.org/10.52842/conf.caadria.2022.2.689
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 689-698
summary Urban Building Energy Model (UBEM) approaches help analyze the energy performance of urban areas and predict the impact of different retrofit strategies. However, UBEM approaches require a high level of expertise and entail time-consuming simulations. These limitations hinder their successful application in designing and planning urban areas and supporting the city policy-making sector. Hence, it is necessary to investigate alternatives that are easy-to-use, automated, and fast. Surrogate models have been recently used to address UBEM limitations; however, they are case-specific and only work properly within specific parameter boundaries. We propose a new surrogate modeling approach to predict the energy performance of urban areas by integrating Algorithmic Design, UBEM, and Machine Learning. Our approach can automatically model and simulate thousands of building archetypes and create a broad surrogate model capable of quickly predicting annual energy profiles of large urban areas. We evaluated our approach by applying it to a case study located in Lisbon, Portugal, where we compare its use in model-based optimization routines against conventional UBEM approaches. Results show that our approach delivers predictions with acceptable accuracy at a much faster rate.
keywords urban building energy modelling, algorithmic design, machine learning in Architecture, optimization of urban areas, SDG 7, SDG 12, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_85
id ecaade2022_85
authors Ataman, Cem, Herthogs, Pieter, Tuncer, Bige and Perrault, Simon
year 2022
title Multi-Criteria Decision Making in Digital Participation - A framework to evaluate participation in urban design processes
doi https://doi.org/10.52842/conf.ecaade.2022.1.401
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 401–410
summary Data-driven urban design processes consist of iterative actions of many stakeholders, which require digital participatory approaches for collecting data from a high number of participants to make informed decisions. It is important to evaluate such processes to justify the necessary costs and efforts while continuously improving digital participation. Nevertheless, such evaluation remains a challenge due to the involvement of different stakeholders including participants, designers, and policymakers in decision-making processes, and the lack of a systematic method to generalize participation outputs that are mostly situated and context based. By addressing this challenge, this paper introduces a Multi-Criteria Decision Analysis (MCDA) based framework to measure the effectiveness and quality of digital participation systematically and quantitatively. To achieve such evaluation, we conducted a digital participation experiment and investigated such processes with the help of participants, designers, and policymakers from Singapore and Hamburg. By formulating this framework, we aim to reveal perspectives of different stakeholders towards digital participation and enable the evaluation and comparison of digital participation processes based on the introduced digital participation criteria.
keywords Data-Driven Urban Design, Digital Participation, Stakeholder Involvement, Multi-Criteria Decision Analysis (MCDA), Participation Quantification
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia23_v3_27
id acadia23_v3_27
authors Bakomichali, Vasiliki; Marengo, Mathilde; Thomas, Julia; Ganatra, Hiranya; Neri, Iacopo
year 2023
title Fostering Symbiosis for Ecosystem Revival
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The impact of human activity on natural landscapes has been so profound that scientists defined a new era to characterize the trajectory shift of the planet’s ecosystem. Interference with the operation of planetary mechanisms that support the life cycles of 8.7 million species (Ritchie 2022), for the sole benefit of one, has inevitably created a crisis. The data-informed approach presented in these field notes helps to integrate ecological needs within the design process, and develop more precise design strategies to mitigate this impact.
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id sigradi2022_102
id sigradi2022_102
authors Barreto, Joao; Becker, Newton; Guedes, Joana; Cidrack, Renata
year 2022
title A Parametric Approach to Efficient Implementation of Green Infrastructure in the Urban Field.
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 249–260
summary Water availability has a key role in their process of occupation. However, accelerated urbanization had several detrimental impacts, increasing the vulnerability of urban communities. Because of the limitations of traditional planning, an alternative approach is emerging to respond to the constant changes in the landscape. Now, green infrastructure (GI), an ecosystem-based approach (EbA), is being used combined with traditional solutions to increase the resilience of the cities. In this paper, we proposed the use of an algorithm to determine the best place to implement GI. The algorithm used the inputs to develop a multi-criteria analysis capable of translating urban complexity. Results show that the GI solution can’t be efficiently implemented without context evaluation. However, the algorithm has the potential to become an informative tool in the decision-making process of urban planning.
keywords Parametric Analysis, Bioretention, Sustainable Design, Green Infrastructure, Water Resources
series SIGraDi
email
last changed 2023/05/16 16:55

_id ecaade2022_211
id ecaade2022_211
authors Bonafede, Andrea and Erioli, Alessio
year 2022
title Versus Habitat - Multi agent spatial negotiation for topology-aware, large scale architectural assemblages
doi https://doi.org/10.52842/conf.ecaade.2022.2.113
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 113–122
summary With the burst of automation in the AEC industry, modular design for collective living is having a reissue; as for industrial construction in the post WW2 era, the economies of a construction system trigger urban models, but an exploration of non-standard spatial models based on computational methods is still lacking. This research proposes a competition-based process for the design of large scale (urban) collective habitats as topology-aware architectural assemblages of spatial (as in including constructive elements + void) components. Two competing multi-agent systems negotiate spatial occupancy, leveraging the morphological computation capabilities of individual and combined components at increasing scales. Localized information stored in the environment by the agents is converted in architectural components, resulting in a multi- level spatial organization that transcends typical typological classification. Space syntax techniques are used to map the assemblage properties and support design inferences on spatial occupation such as potentially implementable functional programmes.
keywords Multi-agent System, Automation, Assemblages, Stigmergy, Space Syntax
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_450
id ecaade2022_450
authors Braumann, Johannes, Gollob, Emanuel and Singline, Karl
year 2022
title Visual Programming for Interactive Robotic Fabrication Processes - Process flow definition in robotic fabrication
doi https://doi.org/10.52842/conf.ecaade.2022.2.427
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 427–434
summary Visual, flow-based programming environments in architecture and design are built to control data flow but not process flow. However, controlling the process flow is essential for interacting with robotic fabrication processes, so that they can react to input such as user interaction or sensor data. In this research, we combine two visual programming environments, utilizing Grasshopper for defining complex, robotic toolpaths, and Unity Visual Scripting for controlling the overall process flow and process interaction. Through that, we want to enable architects and designers to define more complex, interactive production processes, with accessible, bespoke user-interfaces allowing non-experts to operate these processes - a crucial step for the commercialization of innovations. This approach is evaluated in a case study that creates a mobile, urban microfactory that prototypically fabricates location-specific objects through additive manufacturing.
keywords Visual Programming, State Machine, Industrial Robotics, Unity Visual Scripting
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_249
id ecaade2022_249
authors Carrasco Hortal, Jose, Hernandez Carretero, Sergi, Abellan Alarcon, Antonio and Bermejo Pascual, Jorge
year 2022
title Algae, Gobiidae Fish and Insects that inspire Coastal Custodian Entities - Digital models for a real-virtual space using TouchDesigner
doi https://doi.org/10.52842/conf.ecaade.2022.1.361
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 361–370
summary At the beginning of the twenty-first century, a discipline at the intersection of digital art and science explores how natural and artificial species are affected, coexist, and feed back to humans based on multi-scalar hybrid models. They embody types of surveillance entities or non-human custodians, and serve as inspiration for another generation of designs produced ten years later, the case studies that are presented here. This paper explains the design and parametric fundamentals of a digital architecture installation at the University of Alicante (Spain 2021) using CNC models and the TouchDesigner programming environment. The installation contains a clan of technological-virtual hybrid species, non-human custodians, which: (a) strengthen the Proposal’s discourse on the recognition of legal identity of the Mar Menor lagoon (Southeast Spain); (b) incorporate reactive designs; (c) help raise awareness of the effect of human actions on the lagoon’s ecology and nearby streams. The viewpoint is not anthropocentric, because it adopts the perspective of the foraging fish species or the oxygen-seeking algae species, among others, in order to reveal the deterioration processes. In most cases, the result is a sort of synaesthetic conversation that interweaves light, sound, movement and data.
keywords Human-Machine Interaction, TouchDesigner, Non-Human Custodian, Responsive Interface, Ethnography of Things
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_102
id ecaade2022_102
authors Casalnuovo, Gianluca and Erioli, Alessio
year 2022
title Deep Trails - Coupling of structural optimization and self-organization processes for the computational design of composite surface tectonics
doi https://doi.org/10.52842/conf.ecaade.2022.2.085
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 85–94
summary This research explores the constructive and expressive capabilities of stigmergic-based creasing patterns integrating structural and ornamental conditions in fibre-composite surface tectonics, generated by the reciprocal influence of multi-agent systems and Non- Linear Time History (NLHT) dynamic structural simulation. Building upon precedents on the use of agent bodies and behavioural tectonics such as the work of Roland Snooks, our approach employs NLTH simulation for the dynamical assessment of the structural failure modes to provide information for agents behaviour and a comparative assessment of the bodies pattern contribution. Considering the obtained results, insights gained on the structural behaviour of multi-agent composite surface tectonics while attempting to explore its embedded architectural, morphological and expressive qualities are discussed.
keywords Computational Design, Multi-Agent System, Ornament, Structural Optimization, Fibre-Composite Materials, Stigmergy, Non-Linear Time History
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_153
id caadria2022_153
authors Cheng, Cesar, Li, Yuke, Deshpande, Rutvik, Antonio, Rishan, Chavan, Tejas, Nisztuk, Maciej, Subramanian, Ramanathan, Weijenberg, Camiel and Patel, Sayjel Vijay
year 2022
title Realtime Urban Insights for Bottom-up 15-minute City Design
doi https://doi.org/10.52842/conf.caadria.2022.1.435
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 435-444
summary This paper introduces a real-time neighbour scoring system, using data collected from various web-based APIs, to facilitate "15-minute city‚ designs. The system extends on the current state of the art in three ways; first, it incorporates a multi-source urban API, to automate the extraction of location-based information from online sources; second, it provides a quantitative method to calculate and index "15-minute city‚ performance; and third, it provides a web-based application, to allow real-time feedback of neighbourhood design performance complementing the design refinements at a building and tenancy level. In addition to discussing its theoretical basis, and technical implementation, this paper provides a case study to demonstrate how the neighbourhood scoring system is incorporated into the design of a hypothetical mixed-use urban development.
keywords Industry Innovation and Infrastructure, Sustainable Cities and Communities, Urban Walkability, Urban Accessibility, 15-minute City, Spatial Analysis, SDG 9, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 34HOMELOGIN (you are user _anon_908847 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002