CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 676

_id ascaad2022_093
id ascaad2022_093
authors Ozden, Suedanur; Arslanturk, Esra; Senem, Mehmet; As, Imdat
year 2022
title Gamification in Urban Planning: Experiencing the Future City
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 530-547
summary Virtual Reality (VR) systems have been commonly used in the game and entertainment industries and are also increasingly explored in architecture and urban planning. They assist designers to communicate design ideas to a wider public and can engage them in the design processes. In this paper, we explore gaming environments to allow users to learn about smart city applications, such as innovative mobility approaches, urban farming, drone delivery, etc. The project is part of a real-world project for a future city for 50,000 inhabitants in the European side of Istanbul, Turkey. VR technologies can offer a testing ground for testing ideas, simulating performance, crowdsourcing ideas, before building the actual city physically. Gaming incentivizes citizens to participate in the design process, and the data collected provides a significant feedback loop to shape the city of the future. Citizens can immerse themselves in the VR environment, and experience the design via four circulation modes, e.g., walking, biking, driving, and flying. They allow users to explore novel circulatory approaches within new and innovative city arteries. Indeed, the design of the city accommodates a portfolio of mobility options, and the gamification allows testing pioneering designs, e.g., parallel streets for pedestrians, vehicles, etc. Furthermore, the game allows users to collect points when engaging in smart city topics, such as urban farming, solar energy usage, carbon neutrality, etc. Feedback loop that helps to iterate on the design. The project consists of three phases, a. an immersive VR version of the city experienced on head-mounted-displays, b. edutainment and the gamification of the city, and c. the integration of the digital version of the city into Meta’s multi-user space. In the paper, we present early findings of the project, the methods/tools explored, and discuss the utility of VR technologies in the design processes of architecture and urban planning.
series ASCAAD
email
last changed 2024/02/16 13:29

_id caadria2022_194
id caadria2022_194
authors Cheung, Ling Kit, Xu, Zhitao, Chen, Pei and Makki, Mohammed
year 2022
title An Alternative Model for Urban Renewal: A Generative Approach to the (Re)-Development of Xian Village
doi https://doi.org/10.52842/conf.caadria.2022.1.181
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 181-190
summary The impact of urban renewal, specifically in countries experiencing rapid urbanisation due to population growth, has resulted in the erasure of urban culture and heritage in favour of repetitive homogeneity that has been synonymous with 20th century modernist planning models. One such region experiencing this rapid urban renewal is the Guangzhou region in southern China. The presented experiments examine Xian Village in Guangzhou, a culturally rich urban tissue currently experiencing redevelopment, and proposes an alternative model for urban renewal, employing a bottom-up approach to urban growth through the use of a multi-objective evolutionary model; presenting a model that integrates historic and existing urban characteristics adapted to future development plans.
keywords China, Guangzhou, Xian Village, Village in the City, Urban Renewal, Cultural and Heritage Preservation, Multi-Objective Evolutionary Algorithm (MOEA), SDG 10, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_167
id caadria2022_167
authors Aman, Jayedi, Matisziw, Timothy C, Kim, Jong Bum and Luo, Dan
year 2022
title Sensing the City: Leveraging Geotagged Social Media Posts and Street View Imagery to Model Urban Streetscapes Using Deep Neural Networks
doi https://doi.org/10.52842/conf.caadria.2022.1.595
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 595-604
summary Understanding the relationships between individuals and the urban streetscape is an essential component of sustainable city planning. However, analysis of these relationships involves accounting for a complex mix of human behaviour, perception, as well as geospatial context. In this context, a comprehensive framework for predicting preferred streetscape characteristics utilizing deep learning and geospatial techniques is proposed. Geotagged social media posts and street view imagery are employed to account for individual sentiment and geospatial context. Natural Language Processing (NLP) and computer vision (CV) are then used to infer sentiment and model the visual environment within which individuals make posts to social media. An application of the developed framework is provided using Instagram posts and Google Street View imagery of the urban environment. A spatial analysis is conducted to assess the extent to which urban attributes correlate with the sentiment of social media postings. The results shed light on sustainable streetscape planning by focusing on the relationship between users and the built environment in a complex urban setting. Finally, limitations of the developed methodology as well as future directions are discussed.
keywords Urban sustainability, data mining, pedestrian sentiments, transportation behavior, street level imagery, transformers, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_325
id caadria2022_325
authors Cui, Qinyu, Zhang, Shuyu and Huang, Yiting
year 2022
title Retail Commercial Space Clustering Based on Post-carbon Era Context: A Case Study of Shanghai
doi https://doi.org/10.52842/conf.caadria.2022.1.515
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 515-524
summary In the post-carbon era, it has become a development and research trend on adjusting commercial locations to help achieve resource conservation by using big data. This paper uses multi-source urban data and machine learning to make reasonable evaluations and adjustments to commercial district planning. Many relevant factors are affecting urban commercial agglomeration, but how to select the appropriate ones among the many factors is a problem to be considered and studied, while there may be spatial differences in the strength of each influencing factor on commercial agglomeration. Therefore, this paper takes Shanghai, a city with a high economic and commercial development level in China, as an example and identifies the influencing factors through a literature review. Next, this paper uses the machine learning BORUTA algorithm of features selection to screen the influencing factors. It then uses multi-scale geographically weighted regression model (MGWR) to analyse the spatial heterogeneity of factors affecting retail spatial agglomeration. Finally, based on the background of the changing transportation modes and the unchanged social activities in the post-carbon era, the future spatial planning pattern of retail commercial space is discussed to provide particular suggestions for the future location adjustment of urban commerce.
keywords Business District Hierarchy, Agglomeration Effect, Spatial Variability, Multi-scale Geographically Weighted Regression Model, Machine Learning, Big Data Analysis, SDG 8, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_366
id ecaade2022_366
authors Geropanta, Vasiliki, Karagianni, Anna, Parthenios, Panagiotis, Ampatzoglou, Triantafyllos, Fatouros, Loukas, Simantiraki, Vasiliki, Brokos-Melissaratos, Orestis and Eleftheriadis, Dimitris
year 2022
title Digitalization of Participatory Greening - The case of UnionYouth in Chania
doi https://doi.org/10.52842/conf.ecaade.2022.1.469
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 469–478
summary The contemporary climate crisis pushed communities of actors, cities and citizens to use smart technology, digital platforms, and data-based intelligence to steer creative solutions for greening in their urban ecosystems. This phenomenon brought about an increasing imperative for citizen participation and inclusion, in the co-design of green infrastructures, suggesting alternative ways to deal with the lack or misuse of public space. In this framework, this paper analyzes the case of ''UnionYouth in Chania'', a project that aims a) to build an environmental awareness strategy for Generation Z, b) to promote capacity-building processes related to climate change and environmental protection, c) actually transform the city public space through participatory processes. Specifically, the project describes the creation of a digital platform and a mobile app consisting of several engagement tools that allow interaction between the digital community of youth, the city's decision-makers, and city greening actors. Therefore, the first part of the paper talks about the necessity of promoting today's participatory processes in the city for climate change mitigation through a literature review that emerged in the last decade. The second part of the paper examines a case study, namely UnionYouth in Chania, a digital collaborative platform that promotes methods for greening the city through district-based, activity-based, and network-based redesign solutions. The third part of the paper brings about interesting reflections on the relationship between the analog and digital world, and how bottom-up processes may be an important tool in city planning. The overall scope of the analysis of the specific case study is to bring insights into the architectural world, as a means to create more bridges with citizens and communities and contribute to their greening understanding.
keywords Climate Change, Generation Z, Green Infrastructure, Raise Awareness, Mobile Application, Participatory Design, Smart City
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_133
id ecaade2022_133
authors Grisiute, Ayda, Silvennoinen, Heidi, Li, Shiying, Chadzynski, Arkadiusz, von Richthofen, Aurel and Herthogs, Pieter
year 2022
title Unlocking Urban Simulation Data with a Semantic City Planning System - Ontologically representing and integrating MATSim output data in a knowledge graph
doi https://doi.org/10.52842/conf.ecaade.2022.2.257
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 257–266
summary Simulation models generate an abundance of rich raw data that remains difficult to access for non-experts. However, such data could be unlocked and utilised with a Semantic City Planning System that improves data accessibility and transparency. This paper describes a process of ontologically representing mobility simulation output data using Semantic Web technologies and storing it in a dynamic geospatial knowledge graph. Our work presents two benefits: 1) formally representing simulation output data increases the accessibility and transparency of urban simulation models, and 2) access to under-utilised rich data unlocks novel cross-domain knowledge explorations and research possibilities. We demonstrate these benefits by means of cross-domain queries related to typical city planning questions.
keywords Semantic Web Technology, Mobility, Urban Planning, Ontology, MATSim, Knowledge Graph
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_388
id caadria2022_388
authors Leong, Siew Leng and Janssen, Patrick
year 2022
title Participatory Planning: Heritage Conservation Through Co-design and Co-decision
doi https://doi.org/10.52842/conf.caadria.2022.2.505
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 505-514
summary Citizen participation in urban planning and architectural design has been long discussed and experimented with since the 1960s. With existing participatory design approaches, two key challenges can be identified. First, the power of citizens to directly affect the decision-making processes is typically quite limited. Second, the use of traditional face-to-face design workshop results in low levels of participation. This paper proposes an innovative participatory design approach with a focus on co-design and co-decision. The co-design stage provides citizens with a tool that empowers them to think critically of their built environment and to initiate design development in their own city. The co-decision stage gives citizens real power in determining the future changes to their city by embedding the participatory design approach into the planning permission system. This participatory design approach is implemented through a web application that allows participants to view design proposals within the existing site context from a birds-eye views and from multiple immersive views, leading to a better understanding of the design proposal‚s scale and impact. The design proposal viewer has been demonstrated on a heritage site in Singapore, showing its potential to be used as evidence for supporting or rejecting design proposals.
keywords Participatory Planning, Co-design and Co-decision, Citizen Power, Visualisation Method, Bird's-eye View, Immersive View, Web Application, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_293
id ecaade2022_293
authors Sommer, Til, Wurzer, Gabriel and Lorenz, Wolfgang E.
year 2022
title NoMoTown - An agent-based model of transport mode choice
doi https://doi.org/10.52842/conf.ecaade.2022.2.133
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 133–140
summary In most cities, cars remain the dominant mode of transport. This is a huge problem not only because of obvious effects such as congestion and pollution, but also because it causes health issues for commuters themselves which lead to further costs for the community. In our work, we have developed an agent-based simulation which offers mitigation strategies and tries to propose realistic lines of action for transport modes to more sustainable modes. Our approach can import from GIS or (raster) maps, thus acting as a planning tool for urban planners and city administrators; we also included the possibility for generating theoretical / idealized cities, as a testbed and theoretical tool for instructing policy makers. Our goal is to find an equilibrium between individual freedom in transport choice, financial effort required for maintaining the overall transport system and the health of the whole population.
keywords Agent-Based Simulation, Urban Dynamics, Multimodal Transport, Sustainability
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_169
id caadria2022_169
authors Xu, Hang and Wang, Tsung-Hsien
year 2022
title An Integrated Parametric Generation and Computational Workflow to Support Sustainable City Planning
doi https://doi.org/10.52842/conf.caadria.2022.1.535
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 535-544
summary To examine how efforts in the built environment can contribute to global climate change mitigation at the urban scale, urban building energy modelling (UBEM) is one of the research areas gaining increasing interest in recent years. However, limited studies systematically illustrate a comprehensive UBEM workflow for most architects and urban planners considering available public datasets, particularly at the early conceptual design phase. In current UBEM studies, major challenges arise from the lack of fine-grained measured urban data and incompatibility between software. To address these challenges and support future sustainable cities and communities, this paper proposed a streamlined computational workflow of UBEM to facilitate sustainable urban design development. Through a case study of Sheffield in the UK, this paper demonstrated an automated and standardised computational workflow that can test the decarbonisation potential in built environments by evaluating energy demand and supply scenarios at an urban scale. This workflow is envisaged to be applicable at various scales of an urban region given an appropriate geographic information system (GIS) dataset.
keywords Parametric Design Generation, Urban Sustainability, Urban Building Energy Modelling, Building Performance Simulation, Renewable Energy, Decarbonisation, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_33
id caadria2022_33
authors Alva, Pradeep, Mosteiro-Romero, Martin, Miller, Clayton and Stouffs, Rudi
year 2022
title Digital Twin-Based Resilience Evaluation of District-Scale Archetypes
doi https://doi.org/10.52842/conf.caadria.2022.1.525
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 525-534
summary District-scale energy demand models can be powerful tools for understanding interactions in complex urban areas and optimising energy systems in new developments. The process of coupling characteristics of urban environments with simulation software to achieve accurate results is nascent. We developed a digital twin through a web map application for a 170ha district-scale university campus as a pilot. The impact on the built environment is simulated with pandemic (COVID-19) and climate change scenarios. The former can be observed through varying occupancy rates and average cooling loads in the buildings during the lockdown period. The digital twin dashboard was built with visualisations of the 3D campus, real-time data from sensors, energy demand simulation results from the City Energy Analyst (CEA) tool, and occupancy rates from WiFi data. The ongoing work focuses on formulating a resilience assessment metric to measure the robustness of buildings to these disruptions. This district-scale digital twin demonstration can help in facilities management and planning applications. The results show that the digital twin approach can support decarbonising initiatives for cities.
keywords Digital twin, City Information Modelling, Planning Support System, energy demand model, SGD 11, SGD 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_47
id caadria2022_47
authors An, Yudi
year 2022
title Impact of Covid-19 on Associations between Land Use and Bike-Sharing Usage
doi https://doi.org/10.52842/conf.caadria.2022.1.605
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 605-614
summary Bike-sharing as a human-centred, zero-emission, sustainable, alternative, and easily accessible transport mode has been implemented globally and consistently contributing to communities and the environment by alleviating consumption of natural sources, traffic congestion, and air pollution, which is considered a solution for future cities. The appearance of Covid-19 significantly impacts public transportation modes, including the bike-sharing system. The intention of this study was to investigate the spatiotemporal impact of the Covid-19 pandemic on associations between urban factors and bike-sharing usage in Los Angeles, United States, by analysing a sizeable actual trip dataset and employing geographically weighted regression (GWR) models. GWR was conducted for examining the varying spatial association between bike infrastructure, public transport, and urban land use factors, and bike-sharing trip volume. The results indicated that bike-sharing usage significantly decreased during the pandemic and essential service as restaurant was found consistently and positively associated with bike-sharing use. GWR provided clear spatial patterns of bike usage based on urban land use and big user databases. The outcomes of this study could inspire policymakers and shared mobility operators to support these safe, sustainable transport alters (such as rebalancing bike stations), help city resilience, and shape a sustainable future of mobility in the post-Covid-19 era.
keywords Bike-Sharing, Covid-19, Land Use, Geographically Weighted Regression, Big Data, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_336
id caadria2022_336
authors Araujo, Goncalo, Santos, Luis, Leitao, Antonioand Gomes, Ricardo
year 2022
title AD-Based Surrogate Models for Simulation and Optimization of Large Urban Areas
doi https://doi.org/10.52842/conf.caadria.2022.2.689
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 689-698
summary Urban Building Energy Model (UBEM) approaches help analyze the energy performance of urban areas and predict the impact of different retrofit strategies. However, UBEM approaches require a high level of expertise and entail time-consuming simulations. These limitations hinder their successful application in designing and planning urban areas and supporting the city policy-making sector. Hence, it is necessary to investigate alternatives that are easy-to-use, automated, and fast. Surrogate models have been recently used to address UBEM limitations; however, they are case-specific and only work properly within specific parameter boundaries. We propose a new surrogate modeling approach to predict the energy performance of urban areas by integrating Algorithmic Design, UBEM, and Machine Learning. Our approach can automatically model and simulate thousands of building archetypes and create a broad surrogate model capable of quickly predicting annual energy profiles of large urban areas. We evaluated our approach by applying it to a case study located in Lisbon, Portugal, where we compare its use in model-based optimization routines against conventional UBEM approaches. Results show that our approach delivers predictions with acceptable accuracy at a much faster rate.
keywords urban building energy modelling, algorithmic design, machine learning in Architecture, optimization of urban areas, SDG 7, SDG 12, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_210
id sigradi2022_210
authors Cavalcante, Teane; Cardoso, Daniel; Alexandrino, Joao Victor; Fiuza, Rebeca; de Sousa, Eugenio
year 2022
title City information modeling (CIM) applied to urban planning: the urban indicator of reachness
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 297–308
summary This work is part of an extension and investigation project dedicated to studying solutions related to urban, social and economic innovation with the purpose of developing a Health Innovation District (HID). Purposing to define the HID’s intervention area, a group of urban indicators was developed and categorized in four layers: reachness, integrability, use diversity and social validation. This article will explain the first layer: reachness. To achieve this, it aims to appropriate a generic framework that incorporates 1) a Relational Database Management System (PostgreSQL), 2) a Geographic Information System (QGIS) and 3) a CAD software associated to an algorithmic modelator (Rhinoceros3D + Grasshopper3D), associated to computer solutions to assess if the shortest  way possible between the residential lots and the points of interest has an adequate distance.
keywords City Information Model, Urban Planning, Urban Indicators, Parametric Analysis
series SIGraDi
email
last changed 2023/05/16 16:55

_id sigradi2022_244
id sigradi2022_244
authors Costa, Frederico; Lima, Fernando
year 2022
title Parametric evaluation of urban compactness in Brazil
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 271–282
summary This paper presents an application of parametric techniques and tools to assess urban compactness in the city of Juiz de Fora, Brazil. A literature review identifies the objective metrics' role in urban design and how they are associated with the urban compactness paradigm. The case study provided results that characterize aspects of the built urban density and the mix of uses in the samples, exploring how parametric resources can help urban design. This research shed some light on how metrics can assist parametric urban design allowing performance measurement in the early design stages. It also highlights potentials, future studies, and challenges, establishing discussions about developing this field of knowledge in Brazil and even in Latin America.
keywords Urban Design, Parametric Urban Design, Computer-aided Urban Design, CityMetrics, Architectural Design
series SIGraDi
email
last changed 2023/05/16 16:55

_id caadria2022_272
id caadria2022_272
authors Dong, Zhiyong
year 2022
title Perceiving Fabric Immersed in Time, an Exploration of Urban Cognitive Capabilities of Neural Networks
doi https://doi.org/10.52842/conf.caadria.2022.1.263
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 263-272
summary City develops gradually with the lapse of time. Cities, as a ‚container‚, are injected new urban elements along the trajectory of the times and the progress of human civilization, constructing the historical structures involved past, present and future. Thus, the cultural information of each era is preserved in the urban fabric together and urban fabric features are complex and rich, which are difficult to capture in traditional design methods. In this paper, we try to use Generative Adversarial Networks (GAN), one of the neural network algorithms, to explore the inner rules of complex urban morphological features and realize the perception of the urban fabric. Neural networks are innovatively applied to the larger and more complex city generation in this experiment. First, we collect European urban fabric as the dataset, then label data to facilitate machine training, use GAN to learn the feature of the dataset by adjusting parameters, and analyze the effect of the generated results. The automatic feature learning capability of the neural networks is used to summarize the inherent patterns and rules in urban development which is difficult for human to discover.
keywords Deep Learning, Generative Adversarial Networks, Generative Design, Morphology Cognition, Urban Fabric, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_154
id ecaade2022_154
authors Ferretti, Maddalena, Di Leo, Benedetta, Quattrini, Ramona and Vasic, Iva
year 2022
title Creativity and Digital Transition in Central Apennine - Innovative design methods and digital technologies as interactive tools to enable heritage regeneration and community engagement
doi https://doi.org/10.52842/conf.ecaade.2022.2.187
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 187–196
summary This contribution proposes strategies of reactivation of the central Apennine of Marche Region in Italy through creative design methods and virtual technologies. The research activities are connected to two related PhD projects: one focusing on architectural and urban design, the other one on heritage digitalization and new technologies and to other research activities of our interdisciplinary team. Cagli, a small town of 8.000 inhabitants, is currently undergoing socio-economic transformations that need to be addressed strategically with a cultural and spatial perspective. The research explores regenerative solutions and local development strategies to enhance the city and its cultural landscape. Participatory processes aided by digital tools and innovative design methods are tested in Cagli’s living lab. The final output of the overall research is a “Reactive Map” combining a trans-scalar and multidisciplinary territorial analysis with visions to identify “potential spaces”. The map is a design tool to define a shared strategy of enhancement of the city and its heritage. With this paper we present one of the methodological steps of the research, a WEB-APP built upon a point clouds database and assessed through a preliminary user test. The highly descriptive 3D environment is able to collect analysis and to be enriched in a participatory way during planned activities of co-thinking. The 3D environment, improved with interviews, plans, historical pictures and other media contents, is also paired with a virtual tour to offer a different representation of the “potential spaces”. The fully boosting 3D digital technology thus represents a viable and effective solution to involve citizens and an innovative and interdisciplinary tool for knowledge advancement in the fields of architectural and urban design and heritage regeneration.
keywords Tangible and Intangible Heritage, Co-Thinking, Trans-Scalar Approach, Narrative, Point Clouds Exploitation, Interactive Annotation, Virtual Reality
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_278
id ecaade2022_278
authors Gopalakrishnan, Srilalitha, Srikanth, Anjanaa, Hablani, Chirag and Schroepfer, Thomas
year 2022
title Measuring Impacts of Vertically Integrated Pedestrian Network Configurations on Urban Space Use in Dense Built Environments
doi https://doi.org/10.52842/conf.ecaade.2022.2.307
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 307–316
summary Integrated mixed-use developments are increasingly taking the form of vertical extensions of urban spaces on the ground. The spatial networks within the evolving vertical neighbourhoods, their relationships with the larger urban fabric, and the user interactions within these complex multi-layered urban built environments are numerous and varied. This paper presents an analytical framework to map and analyse the pedestrian connectivity within the vertically integrated urban open space network and its interactions with the ground level urban fabric using a Network Science-based approach. The research uses Kampung Admiralty, a first-of-its-kind building site scale 'vertical city' prototype in Singapore, as a case study. A 3d pedestrian network link model mapping the pedestrian connectivity within the development is generated and analysed to understand the flows and accessibility to the vertically distributed urban open spaces. This 3d pedestrian link model is further combined with the 2d urban walking network at the ground level to generate an integrated neighbourhood-level walkability analysis. Analysing the two-dimensional connectivity at the ground level and comparing the influence of linking the three-dimensional vertical connectivity to the ground network generates valuable design insights into the spatial performance of vertically integrated developments in their immediate urban context.
keywords Network Science, sDNA, Urban Pedestrian Network, Vertical Urban Environments, Vertical Connectivity
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_196
id caadria2022_196
authors Grisiute, Ayda, Shi, Zhongming, Chadzynski, Arkadiusz, Silvennoinen, Heidi, von Richthofen, Aurel and Herthogs, Pieter
year 2022
title Automated Semantic SWOT Analysis for City Planning Targets: Data-driven Solar Energy Potential Evaluations for Building Plots in Singapore
doi https://doi.org/10.52842/conf.caadria.2022.1.555
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 555-564
summary Singapore‚s urban planning and management is cross-domain in nature and need to be assessed using multi-domain indicators ‚ such as SDGs. However, urban planning processes are often confronted with data interoperability issues. In this paper, we demonstrate how a Semantic Web Technology-based approach combined with a SWOT analysis framework can be used to develop an architecture for automated multi-domain evaluations of SDG-related planning targets. This paper describes an automated process of storing heterogeneous data in a semantic data store, deriving planning metrics and integrating a SWOT framework for the multi-domain evaluation of on-site solar energy potential across plots in Singapore. Our goal is to form the basis for a more comprehensive planning support tool that is based on a reciprocal relationship between innovations in SWT and a versatile SWOT framework. The presented approach has many potential applications beyond the presented energy potential evaluation.
keywords Semantic Web, Knowledge Graphs, SWOT analysis, energy-driven urban design, SDG 11, SDG 7
series CAADRIA
email
last changed 2022/07/22 07:34

_id ijac202220302
id ijac202220302
authors Kabošová, Lenka; Angelos Chronis; Theodoros Galanos
year 2022
title Fast wind prediction incorporated in urban city planning
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 511–527
summary Digital design and analysis tools are continually progressing, enabling more seamless integration of climatic impacts into the conceptual design stage, which naturally means enhanced environmental performance of the final designs. Planning sustainable urban configurations and, consequently, environment-derived architectural forms becomes more rapid and requires less effort enabling smooth incorporation into day-to-day practice. This research paper presents a wind prediction-based architectural design method for improving outdoor wind comfort through urbanism and architecture. The added value of the environment-driven design loop consisting of parametric design, wind flow analysis, and necessary design modifications lies in leveraging the newly developed wind prediction tool InFraRed. As is demonstrated in the application study in Kosice, Slovakia, iterating through various design options and evaluating their impact on the wind flow is swift and reliable. That enables the designer to explore the best-performing design alternatives for outdoor wind comfort, yet the extra time required for the analysis is negligible
keywords real-time wind predictions, wind comfort, parametric design, computational fluid dynamics analysis, machine learning, infrared
series journal
last changed 2024/04/17 14:29

_id caadria2022_279
id caadria2022_279
authors Kim, Dongyun, Guida, George and Garcia del Castillo y Lopez, Jose Luis
year 2022
title PlacemakingAI : Participatory Urban Design with Generative Adversarial Networks
doi https://doi.org/10.52842/conf.caadria.2022.2.485
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 485-494
summary Machine Learning (ML) is increasingly present within the architectural discipline, expanding the current possibilities of procedural computer-aided design processes. Practical 2D design applications used within concept design stages are however limited by the thresholds of entry, output image fidelity, and designer agency. This research proposes to challenge these limitations within the context of urban planning and make the design processes accessible and collaborative for all urban stakeholders. We present PlacemakingAI, a design tool made to envision sustainable urban spaces. By converging supervised and unsupervised Generative Adversarial Networks (GANs) with a real-time user interface, the decision-making process of planning future urban spaces can be facilitated. Several metrics of walkability can be extracted from curated Google Street View (GSV) datasets when overlayed on existing street images. The contribution of this framework is a shift away from traditional design and visualization processes, towards a model where multiple design solutions can be rapidly visualized as synthetic images and iteratively manipulated by users. In this paper, we discuss the convergence of both a generative image methodology and this real-time urban prototyping and visualization tool, ultimately fostering engagement within the urban design process for citizens, designers, and stakeholders alike.
keywords Machine Learning, Generative Adversarial Networks, user interface, real-time, walkability, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_481126 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002