CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 677

_id ijac202220102
id ijac202220102
authors Giesecke, Rena; Benjamin Dillenburger
year 2022
title Large-scale Robotic Fabrication of Polychromatic Relief Glass
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 18–30
summary This research investigates a new digital fabrication method for large-scale polychromatic glass elements. Glass elements with locally differentiated properties usually require manual labor or are limited to film applications of secondary materials that are incapable of producing material texture and relief in glass. To create mono- material glass elements for buildings with customized color, opacity, and relief present in the same glass element, this research investigates a novel robotic multi-channel printing process for industrial float glass. Mono-material polychromatic glasses do not require any additional material and can be fully recycled. This paper presents a design-to-production workflow for the construction scale within feasible cost. Investigations include kilning and material considerations, multi-channel tool and fabrication setup, tool path generation, process parameter calibration, and large-scale prototyping. The co-occurrence of locally varying opacities, colors, material textures, and relief within one glass element enabled by the presented robotic fabrication method could allow for novel optical and decorative features in facades and windows.
keywords Additive manufacturing, robotic fabrication, multi-color printing, large-scale, glass, float glass
series journal
last changed 2024/04/17 14:29

_id ecaade2022_450
id ecaade2022_450
authors Braumann, Johannes, Gollob, Emanuel and Singline, Karl
year 2022
title Visual Programming for Interactive Robotic Fabrication Processes - Process flow definition in robotic fabrication
doi https://doi.org/10.52842/conf.ecaade.2022.2.427
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 427–434
summary Visual, flow-based programming environments in architecture and design are built to control data flow but not process flow. However, controlling the process flow is essential for interacting with robotic fabrication processes, so that they can react to input such as user interaction or sensor data. In this research, we combine two visual programming environments, utilizing Grasshopper for defining complex, robotic toolpaths, and Unity Visual Scripting for controlling the overall process flow and process interaction. Through that, we want to enable architects and designers to define more complex, interactive production processes, with accessible, bespoke user-interfaces allowing non-experts to operate these processes - a crucial step for the commercialization of innovations. This approach is evaluated in a case study that creates a mobile, urban microfactory that prototypically fabricates location-specific objects through additive manufacturing.
keywords Visual Programming, State Machine, Industrial Robotics, Unity Visual Scripting
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_201
id ecaade2022_201
authors Buš, Peter, Sridhar, Nivedita, Zhao, Yige, Yang, Chia-Wei, Chen, Chenrui and Canga, Darwin
year 2022
title Kit-of-Parts Fabrication and Construction Strategy of Timber Roof Structure - Digital design-to-production workflow for self-builders
doi https://doi.org/10.52842/conf.ecaade.2022.1.449
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 449–458
summary This project builds upon a premise that complex double-curved geometries can be built out of simple, planar, and straight elements. As such, it is possible to simplify manufacturing, construction, and assembly processes, as well as decrease the delivery time and cost. When operating with planar and simple components in the form of Kit-of- Parts there is an assumption that such components can be easily used by self-builders, not necessarily building experts. This can empower participatory activities leading to a more sustainable and resilient engaged community. This hypothesis is evaluated through the process of design for manufacture and assembly project of the timber shell, supported by proposed advanced computational design-to-production workflow utilising digital fabrication technologies such as CNC machining and robotic milling. The assembled and erected structure is evaluated in the scope of constructability, deliverability, and operability. Therefore, the focus of this project is to test, observe, experiment with, and learn from those aspects from the perspective of a fabricator, maker, and self-builder of the double-curved timber roof structure, while operating with smaller-scale components and smaller sub-assemblies, convenient for hands-on operations. The paper also discusses the limitations of such an approach.
keywords Design-to-Production Workflow, Robotic Digital Fabrication, Self-Builders, Structural Performance, Advanced Labelling
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_170
id ecaade2022_170
authors Colonneau, Téva, Chenafi, Sabrina and Mastrorilli, Antonella
year 2022
title Digital Intervention Methodologies and Robotic Manufacturing for the Conservation and the Restoration of 20th-Century Concrete Architecture Damaged by Material Loss
doi https://doi.org/10.52842/conf.ecaade.2022.2.197
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 197–206
summary This article deals with the characterisation of robotic manufacturing systems and digital interventions adapted for the conservation and the restoration of 20th-century concrete buildings. By exploiting the potential for analysis and implementation of robotic manufacturing technologies used in the field of heritage science, two associated non- invasive, non-destructive and integrated intervention solutions are presented here, using two research approaches. Through the use of digital recording tools, digital modelling / simulation and additive manufacturing techniques, the first approach develops a direct repair process by adding material with the help of aerial robots. The second focuses on printing recyclable plastic mouldings in order to reproduce partially degraded or completely destroyed architectural details. The results of these two diverse and complementary researches, as well as their experimental approaches applied to conservation and restoration practices, aim to test the proposed robotic manufacturing- based method, regarding the criteria of transferability and methodological feasibility.
keywords 20th-Century Concrete Built Heritage, Conservation and Restoration Practices, Digital Modelling, Robotic Manufacturing, Democratisation
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_55
id caadria2022_55
authors Dritsas, Stylianos, Hoo, Jian Li and Fernandez, Javier
year 2022
title Sustainable Rapid Prototyping with Fungus-Like Adhesive Materials
doi https://doi.org/10.52842/conf.caadria.2022.2.263
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 263-272
summary The purpose of the research work presented in this paper is to develop a sustainable rapid prototyping technology. Fused filament fabrication using synthetic polymers is today the most popular method of rapid prototyping. This has environmental repercussions because the short-lived artifacts produced using rapid prototyping contribute to the problem of plastic waste. Natural biological materials, namely Fungus-Like Adhesive Materials (FLAM) investigated here, offer a sustainable alternative. FLAM are cellulose and chitin composites with renewable sourcing and naturally biodegradable characteristics. The 3D printing process developed for FLAM in the past, targeted large-scale additive manufacturing applications. Here we assess the feasibility of increasing its resolution such that it can be used for rapid prototyping. Challenges and solutions related to material, mechanical and environmental control parameters are presented as well as experimental prototypes aimed at evaluating the proposed process characteristics.
keywords Rapid Prototyping, Sustainable Manufacturing, Digital Fabrication, Robotic Fabrication, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_432
id cdrf2022_432
authors Felix Raspall and Carlos Banón
year 2022
title Large-Scale 3D Printing Using Recycled PET. The Case of Upcycle Lab @ DB Schenker Singapore
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_37
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Large-scale additive manufacturing for architectural applications is a growing research field. In the recent years, several real-scale projects demonstrated a preliminary viability of this technology for practical applications in architecture. Concurrently, the use of recycled polymers in 3d printing has progressed as a more sustainable feed for small-scale applications. However, there are limited empirical examples on the use of additive manufacturing using recycled polymers in large-scale and real-life architectural applications. This project develops two design and fabrication approaches to large-scale manufacturing using recycled Polyethylene Terephthalate (PET) from single-use bottles into large design elements and tests them in a real-life project. The two designs are discussed in detail: a 4 m diameter dome-like chandelier printed with a robotic extruder using recycled PET pellets, and a 3.5 m diameter chandelier using a Fused Deposition Modeling (FDM) printing farm. The paper covers the state of the art of related printing technologies and their gaps, describes the printing process developed in this research, details the design of the domes, and discusses the empirical evidence on the benefits and drawbacks of large-scale additive manufacturing using recycled polymers. Overall, the research demonstrates the possibilities of large-scale additive manufacturing using recycled polymers, adding findings form a real-life project to the growing body of research on additive manufacturing in architecture.
series cdrf
email
last changed 2024/05/29 14:03

_id ecaade2022_51
id ecaade2022_51
authors Lüling, Claudia and Carl, Timo
year 2022
title Fuzzy 3D Fabrics & Precise 3D Printing - Combining research with design-build investigations
doi https://doi.org/10.52842/conf.ecaade.2022.1.067
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 67–76
summary We present a synergetic combination of two previously separate process technologies to create novel lightweight structures. 3D textiles and 3D printing. We will outline the development of a novel material system that consisted of flexible and foldable 3D textiles that are combined with stiff, linear 3D printed materials. Our aim is to produce material-reduced lightweight elements for building applications with an extended functionality and recyclability. Within an ongoing research project (6dTEX), we explore a mono-material system, which uses the same base materials for both the filament for 3D printing and the yarn of the fabrication of the 3D textiles. Based on preliminary 3D printing tests on flat textiles key process parameters were identified. Expertise has been established for 3D printing on textiles as well as for using printable recycled polyester materials (PES textile and PETG filament. Lastly for 3D printing on non-combustible material (alkali-resistant (AR) glass textiles and for 3D concrete printing (3DCP). The described process- knowledge facilitates textile architectures with an extended vocabulary, ranging from flat to single curved and folded topologies. Whereas the foundations are laid in the research project on a meso scale, we also extended our explorations into an architectural macro scale. For this, we used a more speculative design-build studio that was based on a more loose combination of 3D textiles and 3D printed elements. Lastly, we will discuss, how this first architectural application beneficially informed the research project.
keywords Material-Based Design, Additive Manufacturing, Design-Build, Parametric Modelling, Form-Finding, Co-Creation, Lightweight Structures, Single-Origin Composites, Space Fabrics
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_384
id ecaade2022_384
authors Naboni, Roberto, Breseghello, Luca and Sanin, Sandro
year 2022
title Environment-Aware 3D Concrete Printing through Robot-Vision
doi https://doi.org/10.52842/conf.ecaade.2022.2.409
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 409–418
summary In the 2020s, large scale 3D concrete printing (3DCP) is one of the most important areas of development for research and industry in construction automation. However, the available technology fails to adapt to the complexity of a real construction site and building process, oversimplifying design, production, and products to fit the current state of technology. We hypothesise that by equipping printing machinery with sensing devices and adaptive design algorithms we can radically expand the range of applications and effectiveness of 3DCP. In this paper we prove this concept through a full-scale design-to- fabrication experiment, SENS-ENV, consisting of three main phases: (i) we equip and calibrate an existing robotic setup for 3DCP with a camera which collects geometric data; (ii) building upon the collected information, we use environment-aware generative design algorithms to conceive a toolpath design tailored for the specific environment with a quasi-real-time workflow; (iii) we successfully prove this approach with a number of fabrication test-elements printed on unknown environment configurations and by monitoring the fabrication process to apply printing corrections. The paper describes the implementation and the successful experiments in terms of technology setup, process development, and documenting the outcomes. SENS-ENV opens a new agenda for context-aware autonomous additive construction robots.
keywords 3D Concrete Printing, Robot Vision, Environment Mapping, Adaptive Design
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_472
id caadria2022_472
authors Perry, Gabriella and Garcia del Castillo y Lopez, Jose Luis
year 2022
title Droop ‚ An Iterative Design Tool for Material Draping
doi https://doi.org/10.52842/conf.caadria.2022.2.283
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 283-292
summary Advances in large-scale 3D printing technology have opened up explorations on novel non-solid, non-layered 3D printing techniques such as spatial lattices and material draping. These new printing techniques have potential to reduce the wasted material from printing support structures and optimize overall material use. However, due to the inherent material unpredictability of many of these systems, they are often difficult to approximate with digital tools, often requiring simple trial and error to achieve a specific result, with the consequent waste of time and resources. Droop is a work in progress material-informed simulation environment that serves as an iterative design tool for material draping fabrication processes. Droop explores the material potential of thermoplastics through the fabrication process of robotic draping to achieve complex linked catenary forms. This bespoke simulation environment approximates the spatial form of a material draping process and serves as a useful iterative design tool that allows designers to better understand and predict how a 2D pattern translates into a 3D droop form. The simulation also reduces the amount of wasted material produced by trial-and-error material draping processes. In this paper, we present the digital simulation framework, discuss methods for material-informed calibration, and show a set of experiments produced with this tool.
keywords Material Draping, Physics Simulation, Additive Manufacturing, Robotic Fabrication, Catenary Geometry, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_435
id caadria2022_435
authors Stieler, David, Schwinn, Tobias and Menges, Achim
year 2022
title Additive Formwork in Precast Construction - Agent-based Methods for Fabrication-aware Modularization of Concrete Building Elements
doi https://doi.org/10.52842/conf.caadria.2022.2.081
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 81-90
summary This paper presents the geometric foundations for an agent-based modeling (ABM) approach to modularize concrete building elements for prefabrication via additive formwork. The method presented extends the functionality of existing planning tools for concrete prefabrication to addresses the manufacturing characteristics of additive formwork production using fused deposition modeling (FDM), and negotiates these with the structural requirements of its underlying building geometry. First, a method to classify building components according to fabrication methods using a probabilistic feature-based Naive Bayes classifier is presented. This classification allows to automatically assign the most suitable production method to every individual building element within a given building model. Following this class0864108000ification, elements identified for the production using additive formwork are modularized in an automated, agent-based process. The modularization process utilizing a voxel-representation of the initial building element geometry is described in detail. An agent-based method to simulate multiple modularization variants is presented and the integration of feedback from iterative negotiation processes between fabrication expenditures and structural behaviour outlined. The approach presented fosters material-saving construction and production processes in planning and therefore directly addresses crucial issues of the agenda for global Sustainable Development Goals (SDGs).
keywords agent-based modeling, modularization, prefabrication, ABM, volumetric modeling, additive formwork, SDG 9, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_030
id ascaad2022_030
authors Sun, Yuan; Wang, Zhu
year 2022
title Construction Based on Man-Machine Collaboration: A Case Study of a Bamboo Pavilion
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 503-514
summary With the development of advanced digital design approaches and mechanical facilities, architectural intelligence liberates conventional construction from conventional paradigms. Computational design and digital fabrication have achieved progress in space innovation, construction efficiency, and material effectiveness. However, those high-tech manufacturing techniques are not widely available in developing countries, where the locals used to carry construction experience from age to age in a nonacademic way. This study explored a collaborative workflow of complex structural design and machine-aided construction in Chinese rural areas. First, we designed a bamboo pavilion parametrically in an irregular site on a hill. Second, its primary structure was optimized based on determining critical load and earthquake resistance to meet local building codes. Then, before material processing, every bamboo component was numbered by algorithm, with its location and morphological data of length and radian calculated accurately on the construction drawings. In the transitional process from the conventional paradigm by experience towards man-machine collaboration, local workers' manual techniques helped minimize construction errors and improve details, which were not adequately predicted and considered beforehand. This study case suggested that respective advantages of both traditional and digital modes should be integrated and balanced based on collaboration between local construction workers and professional researchers, especially as a social role for future vernacular architecture practice.
series ASCAAD
email
last changed 2024/02/16 13:24

_id caadria2022_406
id caadria2022_406
authors Wu, Hao, Li, Ziyan, Zhou, Xinjie, Wu, Xinyu, Bao, Dingwen and Yuan, Philip F.
year 2022
title Digital Design and Fabrication of a 3D Concrete Printed Funicular Spatial Structure
doi https://doi.org/10.52842/conf.caadria.2022.2.071
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 71-80
summary In recent years, additive manufacturing (AM) and 3D concrete printing technologies have been increasingly used in the field of construction engineering. Several 3D concrete printing bridges were built with post-tensioning technology. However, the current post-tensioned 3D concrete printing projects are mostly in a single direction of force. There are fewer cases of concrete printing funicular spatial structures, and most funicular spatial structures are currently manufactured by casting-in-place in formwork. This paper presents a case of manufacturing spatial 3D concrete printed structure using post-tensioned technology with multiple force direction. The design of the non-parallel printing path, the joints between single units, and the post-tensioned steel cable system in the design and research process are discussed. A funicular spatial structure is built, and a method of manufacturing 3DCP funicular spatial structure is proposed.
keywords 3D concrete printing, Robotic fabrication, Prestressed concrete, Funicular spatial structure, Structural optimization, SDG 9, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2023_042
id ascaad2023_042
authors Žigmundová, Viktória; Suchánková, Kateøina; Stretavská, Antónia; Míèa, Jakub; Rayne, Taylor; Tsikoliya, Shota ; ,
year 2023
title Additive Manufacturing of Mycelium Composites for Sustainable Landscape Architecture
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 863-877.
summary This study explores the potential of mycelium composites as a sustainable and eco-friendly material for landscape architecture in the context of today's global climate and environmental crisis. Mycelium, the vegetative part of fungi, has shown promising properties such as acoustic and thermal insulation, biodegradability, and environmental performance (Vasatko et al., 2022). The central remit of this research is in proposing bespoke computational and robotic fabrication methods and workflows for investigating the performance of mycelial materials and observing their properties and growth response. Taken together, the topic of this paper is to illustrate the application and composition of such fabrication techniques as an integrated multi-material system, capable of combining the complex, organic relationships between clay, lignocellulosic substrate, and fungi with a focus on the potential of such composite materials for implementation within the built environment. Outlined here are the processes and procedures essential to this multi-material fabrication framework, including a detailed account of a series of substrate material mixtures and printed clay scaffold geometries, both of which exhibit properties informed by the material synthesis and fabrication process. We foremost propose the strategic mixing of different substrate types to be 3D printed with clay as a strategy for probing the optimization of mycelial overgrowth and binding to the 3D printed geometries. Subsequently, we proceed in detailing the study’s approach and process of 3D printing the mixtures of recycled material, drying the geometry, and sterilizing the final design once inoculated with the mycelium. Ultimately, we motivate this research in pursuit of further understanding of mycelium's material and mycoremediation capacities in service of more environmentally responsive and responsible architectural applications.
series ASCAAD
email
last changed 2024/02/13 14:34

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia22_224
id acadia22_224
authors Coersmeier, Jonas; Nanasca, James; Man Hin, Ivan Yan; Blasetti, Ezio
year 2022
title Nanotectonica SEM-GAN
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 224-243.
summary The present study, Nanotectonica SEM-GAN, focuses on two processes for image production, one based in the field of nanotechnology and the other in machine learning: Scanning Electron Microscopy (SEM) and Generative Adversarial Networks (GAN). It establishes commonalities of these routines as they pertain to aesthetics and design methodology, and it explores methods of spatializing and materializing images produced in their interaction. The study of transposing rich image material to three-dimensional geometry and material artifact is considered relevant not only to the particular study at hand, but also to the general problem of image-based machine learning techniques when applied in the spatial design disciplines. A third process, Robotic Incremental Metal Forming (RIMF), advances the aesthetic language of SEM-GAN through the sculptural method of the relief. 
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ascaad2022_087
id ascaad2022_087
authors Mallasi, Zaki
year 2022
title A Pixels-Based Design Approach for Parametric Thinking in Patterning Dynamic Facades
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 654-673
summary In today’s Architectural design process, there has been considerable advancements in design computation tools that empowers designer to explore and configure the building façades schemes. However, one could formally argue that some processes are prescribed, lacks automation and are only for the purpose of visualizing the aesthetic design concepts. As a result, these design concept explorations are driven manually to exhibit variations between schemes. To overcome such limitations, the development presented here describes a proactive approach to incorporate parametric design thinking process and Building Information Modeling (BIM). This paper reports on an ongoing development in computational design and its potential application in exploring an interactive façade pattern. The objective is to present the developed approach for exploring façade patterns that responds parametrically to design-performance attractors. Examples of these attractors are solar exposure, interior privacy importance, and aesthetics. It introduces a paradigm-shift in the development of design tools and theory of parameterization in architecture. This work utilizes programming script to manipulate the logic behind placement of faced panels. The placement and sizes for the building facade 3D parametric panels react to variety of Analytical Image Data (AID) as a source for the design-performance data (e.g.: solar exposure, interior privacy importance, and aesthetics). Accordingly, this research developed the PatternGen(c) add-on in Autodesk ® Revit that utilizes a merge (or an overlay) of AID images as a source to dynamically pattern the building façade and generate the facade panels arrangement rules panels on the building exterior. This work concludes by a project case study assessment, that the methodology of applying AID would be an effective dynamic approach to patterning façades. A case-study design project is presented to show the use of the AID pixel-gradient range from Red, Green and Blue as information source value. In light of the general objectives in this study, this work highlights how future designers may shift to a hybrid design process.
series ASCAAD
email
last changed 2024/02/16 13:29

_id sigradi2022_112
id sigradi2022_112
authors Toledo, Jimena
year 2022
title The Role of Visual Platforms -visual Social Media- in the Creative Design Process
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 639–650
summary In the current design practice, new digital tools have emerged -visual- also called Infrastructures (Perkel, 2011) such as; Behance 2003, Pinterest 2009, Archdaily 2008, Instagram (2010) -to cite the most recognized in the creative field in Argentina-, which promote different opportunities and support the creative process and problem solving, making it easier for designers to find inspiring material through the Internet. However, very little is known about how these new practices affect professional work, how they themselves see it and the tensions they generate.This article will present the results of a general survey applied to expert designers as part of the first stage of the Doctoral Research project. Which investigates the behavior referred specifically to the use of visual platforms -visual social media- in order to understand, characterize, describe the use and involvement of them within the design process.
keywords Project processes - Creativity - Design process - Visual Social Media -Curatorial Practice
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2022_54
id caadria2022_54
authors Zhuang, Dian and Shi, Xing
year 2022
title Building Information Modelling based Transparent Envelope Optimization Considering Environmental Quality, Energy and Cost
doi https://doi.org/10.52842/conf.caadria.2022.2.537
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 537-546
summary The balance of energy consumption, indoor environmental satisfaction and cost is a continuing challenge in the field of building energy efficiency research. Building transparent envelope play a key role in building energy-saving design. While in existing BIM system, the separation of component family and local supply chain hinders the integrated performance evaluation and design. This paper proposes a general sustainable performance optimization model for transparent envelope design from the product perspective. A performance data integrated BIM technique framework, linking BIM with multi-dimension performance data stored in external database, is introduced as the foundation of local supply chain based optimization process. A multi-objective optimization model for window components is constructed for the early design stage. Three comprehensive design targets in the engineering practice, energy consumption, life cycle cost and IEQ are evaluated and optimized, representing the concern from government, developer and occupant, respectively. Autodesk Revit as the technique platform, its internal material library and adaptive component system are directly integrated for model control and feedback. An optimization tool is developed as an individual plug-in for user interaction and performance visualization. As a case study, the multi-objective optimization process is applied to design a school building in China.
keywords BIM, multi-objective optimization, transparent envelope, sustainable performance, SDG 3, SDG 7, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_604
id acadia22_604
authors Adel, Arash
year 2022
title Co-Robotic Assembly of Nonstandard Timber Structures
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 604-613.
summary This paper presents a novel approach for the construction of nonstandard timber structures made from regionally sourced short dimensional lumber, which is enabled through human-robot collaborative assembly (HRCA). To address the research question, three main research objectives are identified and experimentally explored: 1) Characterization of a comprehensive construction process, which consists of off-site HRCA of bespoke timber sub-assemblies, 2) Development of a suitable constructive system for robotic assembly, making feasible the realization of articulated structures out of short timber elements, and 3) Incorporation of these techniques and their constraints into an integrative digital design and fabrication method and implementation of a continuous digital design-to-fabrication workflow. 
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id ecaade2022_234
id ecaade2022_234
authors Afsar, Secil, Estévez, Alberto T., Abdallah, Yomna K., Turhan, Gozde Damla, Ozel, Berfin and Doyuran, Aslihan
year 2022
title Activating Co-Creation Methodologies of 3D Printing with Biocomposites Developed from Local Organic Wastes
doi https://doi.org/10.52842/conf.ecaade.2022.1.215
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 215–224
summary Compared to the take-make-waste-oriented linear economy model, the circular model has been studied since the 1980s. Due to consumption-oriented lifestyles along with having a tendency of considering waste materials as trash, studies on sustainable materials management (SMM) have remained at a theoretical level or created temporary and limited impacts. To ensure SMM supports The European Green Deal, there is a necessity of developing top-down and bottom-up strategies simultaneously, which can be metaphorized as digging a tunnel from two different directions to meet in the middle of a mountain. In parallel with the New European Bauhaus concept, this research aims to create a case study for boosting bottom-up and data-driven methodologies to produce short-loop products made of bio-based biocomposite materials from local food & organic wastes. The Architecture departments of two universities from different countries collaborated to practice these design democratization methodologies using data transfer paths. The 3D printable models, firmware code, and detailed explanation of working with a customized 3D printer paste extruder were shared using online tools. Accordingly, the bio-based biocomposite recipe from eggshell, xanthan gum, and citric acid, which can be provided from local shops, food & organic wastes, was investigated concurrently to enhance its printability feature for generating interior design elements such as a vase or vertical gardening unit. While sharing each step from open-source platforms with adding snapshots and videos allows further development between two universities, it also makes room for other researchers/makers/designers to replicate the process/product. By combining modern manufacturing and traditional crafting methods with materials produced with DIY techniques from local resources, and using global data transfer platforms to transfer data instead of products themselves, this research seeks to unlock the value of co-creative design practices for SMM.
keywords Sustainable Materials Management, Co-Creation, Food Waste, 3D Printing, New European Bauhaus
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_199772 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002