CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 32

_id ecaade2022_234
id ecaade2022_234
authors Afsar, Secil, Estévez, Alberto T., Abdallah, Yomna K., Turhan, Gozde Damla, Ozel, Berfin and Doyuran, Aslihan
year 2022
title Activating Co-Creation Methodologies of 3D Printing with Biocomposites Developed from Local Organic Wastes
doi https://doi.org/10.52842/conf.ecaade.2022.1.215
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 215–224
summary Compared to the take-make-waste-oriented linear economy model, the circular model has been studied since the 1980s. Due to consumption-oriented lifestyles along with having a tendency of considering waste materials as trash, studies on sustainable materials management (SMM) have remained at a theoretical level or created temporary and limited impacts. To ensure SMM supports The European Green Deal, there is a necessity of developing top-down and bottom-up strategies simultaneously, which can be metaphorized as digging a tunnel from two different directions to meet in the middle of a mountain. In parallel with the New European Bauhaus concept, this research aims to create a case study for boosting bottom-up and data-driven methodologies to produce short-loop products made of bio-based biocomposite materials from local food & organic wastes. The Architecture departments of two universities from different countries collaborated to practice these design democratization methodologies using data transfer paths. The 3D printable models, firmware code, and detailed explanation of working with a customized 3D printer paste extruder were shared using online tools. Accordingly, the bio-based biocomposite recipe from eggshell, xanthan gum, and citric acid, which can be provided from local shops, food & organic wastes, was investigated concurrently to enhance its printability feature for generating interior design elements such as a vase or vertical gardening unit. While sharing each step from open-source platforms with adding snapshots and videos allows further development between two universities, it also makes room for other researchers/makers/designers to replicate the process/product. By combining modern manufacturing and traditional crafting methods with materials produced with DIY techniques from local resources, and using global data transfer platforms to transfer data instead of products themselves, this research seeks to unlock the value of co-creative design practices for SMM.
keywords Sustainable Materials Management, Co-Creation, Food Waste, 3D Printing, New European Bauhaus
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_001
id acadia22_001
authors Akbarzadeh, Masoud; Aviv, Dorit; Jamelle, Hina; Stuart-Smith, Robert
year 2022
title ACADIA 2022: Hybrids and Haecceities [Projects Catalog]
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 240p.
summary Hybrids & Haecceities seeks novel approaches to design and research that dissolve binary conditions and inherent hierarchies in order to embrace new modes of practice. Haecceities describe the qualities or properties of objects that define them as unique. Concurrently, Hybrids are entities with characteristics enhanced by the process of combining two or more elements with different properties. In concert, these terms offer a provocation toward more inclusive and specific forms of computational design. Hybrids & Haecceities aligns with a fundamental shift away from abstract generalized models of production toward greater degrees of customization at unprecedented scales, made possible by the Fourth Industrial Revolution. With greater reliance on cyber-physical systems, this shift supports more diverse and considered forms of embodiment and participation in the built environment. Conversely, the design and construction industries have profound global effects with significant political, economic, and environmental impacts. The urgent need to decarbonize buildings, and at the same time, provide equitable infrastructure to communities at risk, places responsibility on the design disciplines to form new collaborations in the effort to address today’s social and ecological crises.
series ACADIA
type projects catalog
email
last changed 2024/02/06 14:00

_id acadia22_000
id acadia22_000
authors Akbarzadeh, Masoud; Aviv, Dorit; Jamelle, Hina; Stuart-Smith, Robert
year 2022
title ACADIA 2022: Hybrids and Haecceities [Proceedings]
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 839p.
summary Hybrids & Haecceities seeks novel approaches to design and research that dissolve binary conditions and inherent hierarchies in order to embrace new modes of practice. Haecceities describe the qualities or properties of objects that define them as unique. Concurrently, Hybrids are entities with characteristics enhanced by the process of combining two or more elements with different properties. In concert, these terms offer a provocation toward more inclusive and specific forms of computational design. Hybrids & Haecceities aligns with a fundamental shift away from abstract generalized models of production toward greater degrees of customization at unprecedented scales, made possible by the Fourth Industrial Revolution. With greater reliance on cyber-physical systems, this shift supports more diverse and considered forms of embodiment and participation in the built environment. Conversely, the design and construction industries have profound global effects with significant political, economic, and environmental impacts. The urgent need to decarbonize buildings, and at the same time, provide equitable infrastructure to communities at risk, places responsibility on the design disciplines to form new collaborations in the effort to address today’s social and ecological crises.
series ACADIA
type proceedings
email
last changed 2024/02/06 14:00

_id sigradi2022_187
id sigradi2022_187
authors Andia, Alfredo
year 2022
title SynBio-Design: Building new infrastructures and territories with Synthetic Biology.
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1213–1224
summary Which kind of imagination do we need for the future of our planet? In the past 150 years, we have completely transformed our biosphere. Today we have arrived at points of no return in global warming! The temperature of the Arctic Ocean will increase by 3-5°C by mid-century. This will lead to disastrous ocean acidification, sea-level rise, and worst of all the thawing of the permafrost that will release 1 trillion tons of carbon dioxide into the atmosphere. In this paper, we argue that building with biology will be the most important force to transform our planet. Since 2006, Synthetic Biology (SynBio) has surfaced as the fastest-growing technology in human history. SynBio involves emerging techniques that allow us to design, edit, and engineer all kinds of living organisms. In this paper, we elaborate on its potential development in growing infrastructures and its impacts on architectural thinking.
keywords Bio-Inspired Design, Synthetic Biology, Bio-Architecture, Climate Change, Biotechnology
series SIGraDi
email
last changed 2023/05/16 16:57

_id ecaade2022_16
id ecaade2022_16
authors Bailey, Grayson, Kammler, Olaf, Weiser, Rene, Fuchkina, Ekaterina and Schneider, Sven
year 2022
title Performing Immersive Virtual Environment User Studies with VREVAL
doi https://doi.org/10.52842/conf.ecaade.2022.2.437
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 437–446
summary The new construction that is projected to take place between 2020 and 2040 plays a critical role in embodied carbon emissions. The change in material selection is inversely proportional to the budget as the project progresses. Given the fact that early-stage design processes often do not include environmental performance metrics, there is an opportunity to investigate a toolset that enables early-stage design processes to integrate this type of analysis into the preferred workflow of concept designers. The value here is that early-stage environmental feedback can inform the crucial decisions that are made in the beginning, giving a greater chance for a building with better environmental performance in terms of its life cycle. This paper presents the development of a tool called LearnCarbon, as a plugin of Rhino3d, used to educate architects and engineers in the early stages about the environmental impact of their design. It facilitates two neural networks trained with the Embodied Carbon Benchmark Study by Carbon Leadership Forum, which learns the relationship between building geometry, typology, and construction type with the Global Warming potential (GWP) in tons of C02 equivalent (tCO2e). The first one, a regression model, can predict the GWP based on the massing model of a building, along with information about typology and location. The second one, a classification model, predicts the construction type given a massing model and target GWP. LearnCarbon can help improve the building life cycle impact significantly through early predictions of the structure’s material and can be used as a tool for facilitating sustainable discussions between the architect and the client.
keywords Pre-Occupancy Evaluation, Immersive Virtual Environment, Wayfinding, User Centered Design, Architectural Study Design
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_93
id caadria2022_93
authors Feng, Jiajia, Liang, Yuebing, Hao, Qi, Xu, Ke and Qiu, Waishan
year 2022
title POI Data Versus Land Use Data, Which Are Most Effective in Modelling Theft Crimes?
doi https://doi.org/10.52842/conf.caadria.2022.1.425
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 425-434
summary Alleviating crime and improving urban safety is important for sustainable development of society. Prior studies have used either land use data or point-of-interests (POI) data to represent urban functions and investigate their associations with urban crime. However, inconsistent and even contrary results were yielded between land use and POI data. There is no agreement on which is more effective. To fill this gap, we systematically compare land use and POI data regarding their strength as well as the divergence and coherence in profiling urban functions for crime studies. Three categories of urban function features, namely the density, fraction, and diversity, are extracted from POI and land use data, respectively. Their global and local strength are compared using ordinary least square (OLS) regression and geographically weighted regression (GWR), with a case study of Beijing, China. The OLS results indicate that POI data generally outperforms land use data. The GWR models reveal that POI Density is superior to other indicators, especially in areas with concentrated commercial or public service facilities. Additionally, Land Use Fraction performs better for large-scale functional areas like green space and transportation hubs. This study provides important reference for city planners in selecting urban function indicators and modelling crimes.
keywords POI, Land Use, Urban Functions, Theft crime, Predictive Power, SDG 16
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_272
id sigradi2022_272
authors Fernandez Gonzalez, Alberto; Ng, Provides
year 2022
title Round The Table, Education without the 2d frame constraints: a WebVR experience from a glocal perspective
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1017–1028
summary Round-the-Table, as a researcher-led initiative, was an experimental virtual roundtable in a 3D format that invited twenty-one organisations worldwide from education, research, and technology to open a broad dialogue about a more sustainable, inclusive, interactive, and accessible educational environment, which may help pedagogical communication beyond the 2D frame. This was made possible by the implementation of a Web-VR platform supported by Mozilla, by which each participant had the opportunity to co-create with the organisers, a collaborative immersive sensory experience, together with the simultaneous dialogue between Local and Global. Participants were asked two critical questions: ‘decentralised education’ and ‘phygital exchanges’ : how can we work beyond the 2d frame and how to distribute tasks between physical and digital. The responses were by far diverse, but it was indeed possible to map a cohesive picture from this cloudy but colourful panorama.
keywords Hybrid Education, volumetric roundtable, planetary classroom, virtual reality, phygital exchange
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_82
id caadria2022_82
authors Globa, Anastasia, Reinhardt, Dagmar, Keane, Adrienne and Davies, Peter
year 2022
title Building Resilience - Using Parametric Modelling and Game Engines to Simulate the Impacts of Secondary Structures in Bushfire Events
doi https://doi.org/10.52842/conf.caadria.2022.2.749
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 749-758
summary Bushfires are a global phenomenon, closely connected to climate change and safety, resilience and sustainability of cities and human settlements. Government agencies, architects and researchers across institutions are committed to improving Australia‚s resilience to bushfires yet grappling with ways to further mitigate risks. ‚Build back better‚ is the often-used phrase to support bushfire resilience, yet there remains a limited understanding of how secondary structures, such as storage sheds, garages, and fences contribute to or mitigate fire loss. These secondary structures are integral to properties yet fall, largely, outside land use planning approval processes and other regulations. Computational modelling can be adapted to deliver visualisations that increase awareness. We developed several simulation approaches which addressed distances, relationship to and the construction materials of secondary structures, terrain slopes and environmental forces. We conclude that gaming engines may offer the optimal immersive opportunity for residents and others to visualise fire risks related to secondary structures to increase awareness and improve bushfire readiness behaviours.
keywords bushfire, auxiliary structures, game engine, visualisation modelling, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_140
id caadria2022_140
authors Huang, Shuyi and Zheng, Hao
year 2022
title Morphological Regeneration of the Industrial Waterfront Based on Machine Learning
doi https://doi.org/10.52842/conf.caadria.2022.1.475
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 475-484
summary The regeneration of the industrial waterfront is a global issue, and its significance lies in transforming the waterfront brownfield into an eco-friendly, hospitable, and vibrant urban space. However, the industrial waterfront naturally has comparatively unmanageable morphological features, including linear shape, irregular waterfront boundary, and separation with urban networks. Therefore, how to subdivide the vacant land and determine the land-use type for each subdivision becomes a challenging problem. Accordingly, this study proposes an application of machine learning models. It allows the generation of morphological elements of the vacant industrial waterfront by comparing the before-and-after scenarios of successful regeneration projects. The data collected from New York City is used as a showcase of this method.
keywords machine learning, urban morphology, industrial waterfront regeneration, sustainable cities, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_161
id ecaade2022_161
authors Kharbanda, Kritika, Papadopoulou, Iliana, Pouliou, Panagiota, Daw, Karim, Belwadi, Anirudh and Loganathan, Hariprasath
year 2022
title LearnCarbon - A tool for machine learning prediction of global warming potential from abstract designs
doi https://doi.org/10.52842/conf.ecaade.2022.2.601
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 601–610
summary The new construction that is projected to take place between 2020 and 2040 plays a critical role in embodied carbon emissions. The change in material selection is inversely proportional to the budget, as the project progresses. Given the fact that early-stage design processes often do not include environmental performance metrics, there is an opportunity to investigate a toolset that enables early-stage design processes to integrate this type of analysis into the preferred workflow of concept designers. The value here is that early-stage environmental feedback can inform the crucial decisions that are made in the beginning, giving a greater chance for a building with better environmental performance in terms of its life cycle. This paper presents the development of a tool called LearnCarbon, as a plugin of Rhino3d, used to educate architects and engineers in the early stages about the environmental impact of their design. It facilitates two neural networks trained with the Embodied Carbon Benchmark Study by Carbon Leadership Forum, which learn the relationship between building geometry, typology, and structure with the Global Warming potential in tCO2e. The first one, a regression model, is able to predict the GWP based on the massing model of a building, along with information about typology and location. The second one, a classification model, predicts the construction type given a massing model and target GWP. LearnCarbon can help improve the building life cycle impact significantly, through early predictions of the structure’s material, and can be used as a tool for facilitating sustainable discussions between the architect and the client.
keywords Machine Learning, Carbon Emissions, LCA, Rhino Plug-in
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22pr_184
id acadia22pr_184
authors Koníèek, Jan; Florián, Miloš; Masnicová, Klára; Pokorný, Pavel
year 2022
title Nano.Web.Arch - Nanofibrous Structures Applications in Architecture
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 184-189.
summary The Nano.Web.Arch project describes new possibilities of using polymers and nanofibrous textiles and their application in architecture. The main ambition of the research was to create an architectural form with the added value of the given materials, such as water retention, sorption, and gradual drying. Such structures or façade elements could contribute to the solution of global problems associated with the decrease of usable and potable water on our planet.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id caadria2022_344
id caadria2022_344
authors Krezlik, Adrian
year 2022
title Considering Energy, Materials and Health Factors in Architectural Design, Two Renovation Strategies for the Portuguese Building Stock
doi https://doi.org/10.52842/conf.caadria.2022.2.619
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 619-628
summary According to the Intergovernmental Panel on Climate Change, the built environment has a significant share in global final energy use, greenhouse gases emission, land-system change, and biodiversity loss to list some indicators. In Europe, the biggest challenge is to regenerate existing building stock to create a positive impact on Nature. The Portuguese housing stock is old: 56% is more than 30 years old, and it has a low level of thermal comfort and energy efficiency. The first thermal regulations appeared in 1990 and therefore most of the houses need urgent renovation to meet EU decarbonization goals, and to improve energy efficiency, as well as well-being and comfort of residents. This paper presents a method that aims to verify existing solutions known from vernacular architecture as complementary to existing strategies. It employs digital simulation to verify whether they could be used for renovation, measuring their impact on human and planetary health. The paper shows that there is a wide spectrum of parameters that influence the renovation process and that it is possible to enhance building performance using vernacular knowledge.
keywords Building Energy Modelling, Life Cycle Assessment, Occupant Health, Energy Renovation, Vernacular Mimicry, SDG 3, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_302
id ecaade2022_302
authors Lu, Xin, Meng, Zeyuan, Rodriguez, Alvaro Lopez and Pantic, Igor
year 2022
title Reusable Augmented Concrete Casting System - Accessible method for formwork manufacturing through holographic guidance
doi https://doi.org/10.52842/conf.ecaade.2022.1.371
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 371–380
summary Reinforced concrete has been one of the essential materials for modern architecture for the last hundred years. Its use is entirely global, having been adopted by all cultures and styles since its invention in the late 19th century. Although its value is excellent due to its low cost, durability and adaptability, its environmental impact is significant, being, in fact, one of the most polluting industries in the world (Babor et al. 2009). This experimental project will research a more sustainable use of concrete, exploring a new form of reusable concrete formwork that will ideally reduce the CO2 footprint by removing wood waste in the casting process and replacing it with adaptable metal components. The modular part-based system for the concrete casting also attempts to simplify one of the current complexities for concrete construction, the Skilled-Labour shortage. (Yusoff et al. 2021). To mitigate this problem, the project also proposes using an Augmented Assembly logic for the casting parts to guide the ensemble and dismantle the formwork through an optimised algorithmic logic. The use of Augmented Reality as a replacement for traditional paper instructions will facilitate access to more workers to this construction art and potentially improve access to optimised use of concrete in developing communities with restricted building technological resources.
keywords Mixed Reality, Distributed Manufacturing, Augmented Manufacturing, Sustainability, Computational Design, Concrete Casting
series eCAADe
email
last changed 2024/04/22 07:10

_id cdrf2022_408
id cdrf2022_408
authors Marcus Farr
year 2022
title Bio-digital Sand Logics: Dune Sand Material and Computational Design
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_35
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary This paper discusses the creation of a new sand-based material, performative testing, and the computational logic involved in the design of a prototypical architectural system. Dune sand is known to be an unstable material compared to river or marine sand and as a result it is not normally used for construction. Because of this, desert regions have grown a reliance upon imported materials creating massive sustainability issues due to large scale global shipping, importation and resource extraction. This research indicates there is a viable opportunity to leverage dune sand as an ongoing line of inquiry for material science and design in local desert regions. It establishes that there is very little architectural research being done in this particular area. The methodology begins with experiments in bio-material using dune sand as a compound, and then establishes a construction system based upon a manifold of experiments. Along with material investigations, the process uses a Scientific Testing Method (STM) and Hypothesis in Action (HIA) as part of the testing methodology.
series cdrf
email
last changed 2024/05/29 14:03

_id architectural_intelligence2022_3
id architectural_intelligence2022_3
authors Mario Carpo
year 2022
title Design and automation at the end of modernity: the teachings of the pandemic
doi https://doi.org/https://doi.org/10.1007/s44223-022-00001-0
source Architectural Intelligence Journal
summary Many in the design community have long claimed that digital mass-customization is cheaper, faster, smarter and more environmentally sustainable than the mechanical mass-production of standardized industrial products; and that the electronic transmission of information is cheaper, faster, smarter, and more environmentally sustainable than the mechanical transportation of people and goods. The global pandemic has tragically proven that a computational alternative to the modern, mechanical way of making, working, and living, now exists, and it is viable. When we had to shut down corporate offices, global megafactories, suburban shopping malls, and intercontinental airports, we did. We did because we had to; but also because today's technology already allows us to do so.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id caadria2022_271
id caadria2022_271
authors Napier, Ilaena Mariam
year 2022
title Robotically Printed Seaweed as a Biomaterial within Architecture and Design
doi https://doi.org/10.52842/conf.caadria.2022.2.303
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 303-312
summary This research aims to develop and understand the impact of seaweed as a bio-based material within architecture and design. The research is influenced by current global challenges, outlined by the Sustainable Development Goals (SDG), such as carbon drawdown, the problem of material waste, and the need to create more sustainable manufacturing processes. Seaweed is an organic biomass that does not require land, fresh water or fertilisers to grow, and growing it can reduce the effects of global warming as it sequesters large amounts of carbon dioxide. In turn, it can be harvested and used for a range of products including food, biofuel, fertiliser and bioplastic. The research focuses on the development of an organic, water-based biocomposite material made from sodium alginate, a derivative of brown seaweed, combined with cellulose powder, vegetable glycerine, and kelp powder. A set of methodical experiments were conducted and studied, with the aim of creating a novel material which can adapt to its surrounding environment and can degrade naturally. By creating and fabricating using renewable resources, one can create novel materials that are carbon neutral and contribute to a natural resource cycle. Ultimately, the material decays and returns to the earth, for the purpose of remediating soils and replenishing growth.
keywords Seaweed Biocomposite Material, Paste Extrusion Method, Water-based Robotic Fabrication, Circular Design, SDG 12, SDG 13, SDG 14
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_298
id sigradi2022_298
authors Perry, Isha N.; Xue, Zhouyi; Huang, Hui-Ling; Crispe, Nikita; Vegas, Gonzalo; Swarts, Matthew; Gomez Z., Paula
year 2022
title Human Behavior Simulations to Determine Best Strategies for Reducing COVID-19 Risk in Schools
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 39–50
summary The dynamics of COVID-19 spread have been studied from an epidemiological perspective, at city, country, and global scales (Rabajante, 2020, Ma, 2020, and Giuliani et al., 2020), although after two years of the pandemic we know that viruses spread mostly through built environments. This study is part of the Spatiotemporal Modeling of COVID-19 spread in buildings research (Gomez, Hadi, and Kemenova et al., 2020 and 2021), which proposes a multidimensional model that integrates spatial configurations, temporal use of spaces, and virus characteristics into one multidimensional model. This paper presents a specific branch of this model that analyzes the behavioral parameters, such as vaccination, masking, and mRNA booster rates, and compares them to reducing room occupancy. We focused on human behavior, specifically human interactions within six feet. We utilized the multipurpose simulation software, AnyLogic, to quantify individual exposure to the virus, in the high school building by Perkins and Will. The results show how the most effective solution, reducing the occupancy rates or redesigning layouts, being the most impractical one, is as effective as 80% of the population getting a third boost.
keywords Spatiotemporal Modeling, Behavior Analytics, COVID-19 Spread, Agent-Based Simulation, COVID-19 Prevention
series SIGraDi
email
last changed 2023/05/16 16:55

_id caadria2022_302
id caadria2022_302
authors Raghu, Deepika, Markopoulou, Areti, Marengo, Mathilde, Neri, Iacopo, Chronis, Angelos and De Wolf, Catherine
year 2022
title Enabling Component Reuse from Existing Buildings through Machine Learning, Using Google Street View to Enhance Building Databases
doi https://doi.org/10.52842/conf.caadria.2022.2.577
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 577-586
summary Intense urbanization has led us to rethink construction and demolition practices on a global scale. There is an opportunity to respond to the climate crisis by moving towards a circular built environment. Such a paradigm shift can be achieved by critically examining the possibility of reusing components from existing buildings. This study investigates approaches and tools needed to analyze the existing building stock and methods to enable component reuse. Ocular observations were conducted in Google Street View to analyze two building-specific characteristics: (1) facade material and (2) reusable components (window, doors, and shutters) found on building facades in two cities: Barcelona and Zurich. Not all products are equally suitable for reuse and require an evaluation metric to understand which components can be reused effectively. Consequently, tailored reuse strategies that are defined by a priority order of waste prevention are put forth. Machine learning shows promising potential to visually collect building-specific characteristics that are relevant for component reuse. The data collected is used to create classification maps that can help define protocols and for urban planning. This research can upscale limited information in countries where available data about the existing building stock is insufficient.
keywords machine learning, component reuse, Google Street View, material banks, building databases, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_118
id caadria2022_118
authors Reitberger, Roland, Banihashemi, Farzan and Lang, Werner
year 2022
title Sensitivity and Uncertainty Analysis of Combined Building Energy Simulation and Life Cycle Assessment, Implications for the Early Urban Design Process
doi https://doi.org/10.52842/conf.caadria.2022.2.629
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 629-638
summary Life Cycle Assessment (LCA) is a suitable approach for evaluating environmental impact (e.g. Global Warming Potential (GWP)) related to construction elements and building operation. Since both contribute significantly to the lifecycle based GWP of buildings, combined consideration is necessary. This applies especially for the early design stages when measures for climate change mitigation can be implemented in a cost-efficient manner. In this paper, we describe a sensitivity and uncertainty analysis (SA/UA) for energy simulation and LCA with a total of 8,000 parameter combinations. Thereby, we investigated valuable input for the setup of a collaborative design process with limited information. Standardised Regression Coefficients (SRCs) were used to obtain sensitivity and resulting uncertainties were investigated. The results indicate Primary Energy Source (PES), compactness and energy standard to be the most important information for the robustness of the combined LCA approach. Uncertainty can be reduced by e.g. defining the energy system in an early stage or by designing compact buildings. Related to the early design stages, the application of combined approaches for SA and UA is recommended, as the results differ for embodied and operational emissions.
keywords early design stages, Sensitivity Analysis (SA), Uncertainty Analysis (UA), Life Cycle Assessment (LCA), urban scale, synergy potential, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_164
id sigradi2022_164
authors Rodriguez Cortez, Fernando Hernan; Gatica Laurie, Braulio Alfonso; Garcia-Alvarado, Rodrigo
year 2022
title Hydrological recovery of the landscape through generative design.
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1113–1122
summary The climate crisis confronts us with global scenarios of water deficiency, which leads us to optimize rainwater harvesting (RWH) methods applied to landscapes. These are sophisticated projects with high technical investment per hectare designed and executed. Therefore, to balance the cost of engineering, through advanced digital design tools, it has become an objective to use landscape architecture as a resource for mitigating water deficit and climate change. In order to restore the relationship between the natural and built environment through virtual processing. This work exposes a new geometric analysis methodology, verified in a case study, which applies generative parametric programming to increase the water capacity of a natural landscape. This work demonstrates the potential of digital design for the ecological recovery of the territory.
keywords Smart Cities and Environments, Sustainable Design, Generative Design, Mixed realities, hydrological design
series SIGraDi
email
last changed 2023/05/16 16:57

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_854111 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002