CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 20

_id ecaade2022_175
id ecaade2022_175
authors Di Carlo, Raffaele, Mittal, Divyae and Vesely, Ondrej
year 2022
title Generating 3D Building Volumes for a Given Urban Context using Pix2Pix GAN
doi https://doi.org/10.52842/conf.ecaade.2022.2.287
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 287–295
summary Our ability to delegate the most intellectually demanding tasks to machines improves with each passing day. Even in the fields of architecture and design, which were previously thought to be exclusive domain of human creativity and flare, we are moving the first steps towards developing models that can capture the patterns, invisible to the naked eye, embedded in the creative process. These patterns reflect ideas and traditions, imprinted in the collective mind over the course of history, that can be improved upon or serve as a cautionary tale for the new generation of designers in their work of designing an equitable, more inclusive future. Generative Adversarial Networks (GANs) give us the opportunity to turn style and design into learnable features that can be used to automatically generate blueprints and layouts. In this study, we attempt to apply this technology to urban design and to the task of generating a building footprint and volume that fits within the surrounding built environment. We do so by developing a Pix2Pix model composed of a ResNet-6 generator and a Patch discriminator, applying it to satellite views of neighborhoods from across the Netherlands, and then turning the resulting 2D generated building footprint into a reusable 3D model. The model is trained using the national cadastral data and TU Delft 3D BAG dataset. The results show that it is possible to predict a building shape compatible in style and height with the surroundings. Although the model can be used for different applications, we use it as an evaluation tool to compare the design alternatives fitting the desired contextual patterns.
keywords Generative Adversarial Networks, Urban Design, Pix2Pix, Raster Vectorization, 3D Rendering
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_89
id ecaade2022_89
authors Di Mascio, Danilo
year 2022
title An Untold Story of a Creative Community of Level Designers - Designing and sharing imaginary navigable virtual environments with game technologies
doi https://doi.org/10.52842/conf.ecaade.2022.1.481
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 481–490
summary The following paper describes and critically reflects on the remarkable production of a creative community of level designers who designed and published 3D game levels (3D real-time virtual navigable environments) during the end of the 1990s and the first decade of the 2000s. During those years, many level designers from several countries created an impressive number and variety of custom levels (user-created content), characterised by imaginary architectures and places informed by narrative elements. This international community was supported by various websites that are no longer available. However, an open-source website, Unreal Archive, constitutes “an initiative to preserve and maintain availability of the rich and vast history of user-created content for the Unreal and Unreal Tournament series of games” (Unreal Archive, 2022). The number of levels available on Unreal Archive exceeds 34,000. For the first time in the architectural research community, this paper aims to shed light on the creative production of that period, and to identify and critically reflect on aspects that could have cultural, creative and educational value for architecture and architectural education. The author directly experienced the achievements of that historical period, and created and published a number of virtual environments using early versions of the Unreal Editor/Engine and 3D modelling software. This research is part of a larger project that investigates transdisciplinary expressions of spaces and architectures, as well as concepts, methodologies and tools in the video games field that can inspire or be transferred to the architecture field.
keywords Virtual Environments, Imaginary Architectures and Places, Narrative, 3D Navigable Environments, Digital Heritage, User-Created Content, Unreal Editor, Unreal Series, Video Games, Level Design, Environmnetal Storytelling
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_154
id ecaade2022_154
authors Ferretti, Maddalena, Di Leo, Benedetta, Quattrini, Ramona and Vasic, Iva
year 2022
title Creativity and Digital Transition in Central Apennine - Innovative design methods and digital technologies as interactive tools to enable heritage regeneration and community engagement
doi https://doi.org/10.52842/conf.ecaade.2022.2.187
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 187–196
summary This contribution proposes strategies of reactivation of the central Apennine of Marche Region in Italy through creative design methods and virtual technologies. The research activities are connected to two related PhD projects: one focusing on architectural and urban design, the other one on heritage digitalization and new technologies and to other research activities of our interdisciplinary team. Cagli, a small town of 8.000 inhabitants, is currently undergoing socio-economic transformations that need to be addressed strategically with a cultural and spatial perspective. The research explores regenerative solutions and local development strategies to enhance the city and its cultural landscape. Participatory processes aided by digital tools and innovative design methods are tested in Cagli’s living lab. The final output of the overall research is a “Reactive Map” combining a trans-scalar and multidisciplinary territorial analysis with visions to identify “potential spaces”. The map is a design tool to define a shared strategy of enhancement of the city and its heritage. With this paper we present one of the methodological steps of the research, a WEB-APP built upon a point clouds database and assessed through a preliminary user test. The highly descriptive 3D environment is able to collect analysis and to be enriched in a participatory way during planned activities of co-thinking. The 3D environment, improved with interviews, plans, historical pictures and other media contents, is also paired with a virtual tour to offer a different representation of the “potential spaces”. The fully boosting 3D digital technology thus represents a viable and effective solution to involve citizens and an innovative and interdisciplinary tool for knowledge advancement in the fields of architectural and urban design and heritage regeneration.
keywords Tangible and Intangible Heritage, Co-Thinking, Trans-Scalar Approach, Narrative, Point Clouds Exploitation, Interactive Annotation, Virtual Reality
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_260
id caadria2022_260
authors Ricafort, Kim, Koch, Ethan and Makki, Mohammed
year 2022
title Addressing Flood Resilience In Jakarta‚s Kampungs Through The Use Of Sequential Evolutionary Simulations
doi https://doi.org/10.52842/conf.caadria.2022.1.655
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 655-664
summary The urban superblock of Kampung Melayu, located in Jakarta, Indonesia, is a typology amalgamated by the environmental and infrastructural challenges caused by Jakarta‚s urban sprawl. Rapid and unregulated urban growth, fluctuating tropical conditions, rising sea levels and unprecedented environmental stresses have led to a city that is sinking, leaving unregulated low-income settlements, such as Kampung Melayu, most vulnerable. To address these issues, the presented research employs the use of a multi-objective evolutionary algorithm for an in-depth analysis of the various relationships within the urban fabric. The simulations present an alternative urban approach to the design of a flood resilient Kampung; addressing environmental and demographic stresses while maintaining the irregularity that has become ingrained in the history of the urban form.
keywords jakarta, kampung melayu, sequential simulations, evolutionary algorithm, computational design, urban growth, flood resilience, SDG 3, SDG 6, SDG 10, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_201
id ecaade2022_201
authors Buš, Peter, Sridhar, Nivedita, Zhao, Yige, Yang, Chia-Wei, Chen, Chenrui and Canga, Darwin
year 2022
title Kit-of-Parts Fabrication and Construction Strategy of Timber Roof Structure - Digital design-to-production workflow for self-builders
doi https://doi.org/10.52842/conf.ecaade.2022.1.449
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 449–458
summary This project builds upon a premise that complex double-curved geometries can be built out of simple, planar, and straight elements. As such, it is possible to simplify manufacturing, construction, and assembly processes, as well as decrease the delivery time and cost. When operating with planar and simple components in the form of Kit-of- Parts there is an assumption that such components can be easily used by self-builders, not necessarily building experts. This can empower participatory activities leading to a more sustainable and resilient engaged community. This hypothesis is evaluated through the process of design for manufacture and assembly project of the timber shell, supported by proposed advanced computational design-to-production workflow utilising digital fabrication technologies such as CNC machining and robotic milling. The assembled and erected structure is evaluated in the scope of constructability, deliverability, and operability. Therefore, the focus of this project is to test, observe, experiment with, and learn from those aspects from the perspective of a fabricator, maker, and self-builder of the double-curved timber roof structure, while operating with smaller-scale components and smaller sub-assemblies, convenient for hands-on operations. The paper also discusses the limitations of such an approach.
keywords Design-to-Production Workflow, Robotic Digital Fabrication, Self-Builders, Structural Performance, Advanced Labelling
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_271
id sigradi2022_271
authors Dong, Siyu; Yan, Jingjing; Yang, Shunyi; Cui, Xiangguo
year 2022
title Light Transmittance Ceramic Design-Computation with Robotics
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 515–526
summary Building envelope design incorporates a range of light-related analyses, often providing an essential feedback loop for shaping an envelope’s performance, geometry, or components. This is true for solar radiation studies of envelopes, calculated irrespective of building material or assembly. Extending our light-related analysis to include diffuse lighting effects on a building interior presents an opportunity to explore the translucency, porosity, and forms of materials. Glazed architectural ceramic components fabricated using adaptive robotic manufacturing provide an opportunity to exploit material dynamics within the design and alleviate fabrication waste from molds, ultimately accelerating the production manufacturing system. In addition to analyzing the solar radiation on the building facade design, lighting effects can be engaged in profoundly different ways depending on the degree of design-production agency. The production process can be extended beyond automatic routines using robotic fabrication with levels of autonomous involvement that allow for alternative form expressions of the dynamic clay material. In addition to negotiating several design criteria, the design research will develop an aesthetic character originating from customized clay materials and robotic manufacturing processes for lighting transmittance architectural ceramics.
keywords Digital Fabrication, Light Transmittance, Data-Driven Fabrication, Computer Vision
series SIGraDi
email
last changed 2023/05/16 16:56

_id cdrf2022_165
id cdrf2022_165
authors DongLai Yang, Likai Wang, and Ji Guohua
year 2022
title Embedding Design Intent into Performance-Based Architectural Design—Case Study of Applying Soft Constraints to Design Optimization
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_14
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The lack of consideration of subjective design intents hinders the application of performance-based design optimization to architectural design because building performance is not the only aspect that designers need to solve. In response, this study proposes a method integrating subjective design intents into performance-based design optimization using soft constraints. To demonstrate the method, a case study is presented, where the design optimization continuously provides feedback to the designer and helps them reformulate and redefine the design problem. The case study shows how the application of design optimization and soft constraints is able to assist designers in identifying implicit and hidden design problems and stimulate design exploration at the early design stage.
series cdrf
email
last changed 2024/05/29 14:02

_id caadria2022_112
id caadria2022_112
authors Guo, Yiyao, Luo, Yang, Wang, Sihan, Tan, Ying Yi and Tracy, Kenneth
year 2022
title Robotic Fabrication of Topology Optimized Concrete Components With Reusable Formwork
doi https://doi.org/10.52842/conf.caadria.2022.2.091
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 91-100
summary In this paper, we introduce a design-to-fabrication workflow to create topology optimised concrete components by clay printing a temporary mould and simultaneously casting concrete into it. Our fabrication approach addresses the United Nation's Sustainability Development Goal (SDG) 12 of reducing waste in construction by employing the phase changing properties of clay, allowing this natural resource to be broken down and reused for subsequent projects. We implemented our workflow in the design and fabrication of a resilient infrastructure that responds to SDG 9 - an urban furniture that braces large trees during high-speed typhoon winds and serving as a bench for locals to rest under the tree. This paper documents our workflow with considerations of its overall workability, material properties and fabrication efficiency. We showcase our final prototype and discuss the feasibility and challenges of this approach in fabricating complex freeform components on a large scale.
keywords Robotic Fabrication, Topology Optimisation, Freeform Concrete, Reusable Formwork, SDG 9, SDG 12.
series CAADRIA
email
last changed 2022/07/22 07:34

_id architectural_intelligence2022_14
id architectural_intelligence2022_14
authors Philip F. Yuan, Xinjie Zhou, Hao Wu, Liming Zhang, Lijie Guo, Yun Shi, Zhe Lin, Jinyu Bai, Youhai Yu & Shanglu Yang
year 2022
title Robotic 3D printed lunar bionic architecture based on lunar regolith selective laser sintering technology
doi https://doi.org/https://doi.org/10.1007/s44223-022-00014-9
source Architectural Intelligence Journal
summary The lunar base is not only an experimental station for extraterrestrial space exploration but also a dwelling for humans performing this exploration. Building a lunar base presents numerous obstacles and requires environmental perception, feedback design, and construction methods. An integrated fabrication process that incorporates design, 3D printing workflow, and construction details to build a bionic, reconfigurable and high-performance lunar base prototype is presented in this paper. The research comprises the study of the lunar regolith 3D printing mechanism, the real-time control of powder laying and compaction procedure, and the development of a 3D printing tool end system. In this paper, many scientific questions regarding in situ fabrication on the lunar surface are raised and addressed with the proposal of a progressive optimization design method, the molding principle, and gradation strategy of lunar soil-polyaryletherketone (PAEK) hybrid powder, and the principle of dual-light field 3D laser printing. The feasibility of the technical strategy proposed in this paper is verified by the presented empirical samples.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id acadia22_598
id acadia22_598
authors Shen, Yang-Ting; Wang, Mi-Chi; Huang, Lien-Kai; Gao, You-Min; Yen, Chia-Chin
year 2022
title The Reproduction of Chinese Traditional Timber Structure
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 598-603.
summary In Chinese traditional timber building, “Dou-gong” stands as one of the most distinctive features to present the Chinese structure style. However, the preservation and reproduction of Dou-gong face difficulties due to the withering craftsman issue. This paper proposes a method to digitize the structure into BIM (building information modeling) and reproduce it via robot-based fabrication. By modeling these Dou-gong components with BIM technologies, we can establish a geometrical and non-geometrical 3D database. Then we use Autodesk Fusion and Grasshopper to design the robotic fabrication information whose information is transferred from 3D database models. Based on the fabrication information, including work paths and tool parameters, the KUKA robotic arm with six axes can precisely mill the wood materials into Dou-gong components without any traditional craftsman’s processing. 
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id ascaad2022_018
id ascaad2022_018
authors Song, Yang; Agkathidis, Asterios; Koeck, Richard
year 2022
title Augmented Masonry Design: A Design Method using Augmented Reality (AR) for Customized Bricklaying Design Algorithms
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 703-712
summary The Augmented Masonry Design project presents experimental research about developing and applying Augmented Reality (AR) technology for customized design algorithms, exploring a real-time, interactive, and spatial-free design method for the early architectural design stage. We aim to resolve the current 2D-based design limitations and provide architects with a 3D-4D immersive perception in AR for a practical and easy-to-use design method. Furthermore, with reference to the Covid-19 pandemic, we propose that this method could break through site accessibility and constraints by breaking the barriers of physical space. Towards this aim, we apply the Augmented Masonry Design into two prototypes: a) user interface (UI) immersive design, in which interactive inputs will communicate with design algorithms in AR through the inputs from the screen-based UI on mobile devices (e.g., smartphones and tablets); b) intuitive interaction immersive design, in which interactive inputs will be translated to design algorithms directly in AR through hand gestures on head-mounted devices (HMD) (e.g., Microsoft HoloLens). Our Findings highlight the advantages of immersive design in the initial stage of architectural drafts, which gives designers better spatial understanding and design creativity, as well as the challenges arising from the limitations of current AR devices and the lack of real physical simulation in the design system.
series ASCAAD
email
last changed 2024/02/16 13:24

_id sigradi2022_30
id sigradi2022_30
authors Song, Yang; Koeck, Richard; Agkathidis, Asterios
year 2022
title Augmented Bricklayer: an augmented human-robot collaboration method for the robotic assembly of masonry structures
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 713–724
summary The Augmented Bricklayer research project proposes a new augmented human-robot collaboration method for the robotic assembly of masonry structures. It aims to resolve the conventional limitations of the robotic bricklaying process by incorporating object recognition and Augmented Reality (AR) technologies. Towards this aim, we present a human-robot collaboration method consisting of two phases: a) the object recognition phase, in which bricks are recognized by a point cloud scanning sensor and analyzed by our calibration system as a feeding object for the robotic gripper to pick; b) the augmented human-robot collaboration phase, in which the masonry adhesive is being applied manually assisted by AR holographic guidance and gets assembled by an AR-assisted robotic operation method. The validation of our method is achieved with the robotic assembly of two real-scale building elements, a masonry column and a wall. Our findings highlight a more flexible, efficient, and convenient AR-assisted human-robot collaboration bricklaying method capable of dealing with complex on-site construction requirements.
keywords Mixed Realities (Augmented Reality), Object Recognition, Human-robot Collaboration, Robotic Assembly, Masonry Structures
series SIGraDi
email
last changed 2023/05/16 16:56

_id ascaad2022_047
id ascaad2022_047
authors Tu, Han; Yang, Chunfeng
year 2022
title Mindful Space in Sentences: A Dataset of Virtual Emotions for Natural Language Classification
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 713-730
summary Spatial emotions have played a critical role in visual-spatial environmental assessment, which can be assessed using bio-sensors and language description. However, information on virtual spatial emotion assessment with objective emotion labels and natural language processing (NLP) is insufficient in literature. Thus, designers’ ability to assess spatial design quantitatively and cost effectively is limited before the design is finalized. This research measures the emotions expressed using electroencephalograms (EEGs) and descriptions in virtual reality (VR) spaces with different parameters. First, 26 subjects experienced 10 designed virtual spaces with a VR headset (Quest 2 device) corresponding to the different space parameters of shape, height, width, and length. Simultaneously, the EEG measured the emotions of the subjects using four electrodes and the five brain waves. Second, two labels – calm and active – were produced using EEGs to describe these virtual reality spaces. Last, this labeled emotion dataset compared the differences among the virtual spaces, human feelings, and the language description of the participants in the VR spatial experience. Experimental results show that the parameter changes of VR spaces can arouse significant fluctuations in the five brain waves. The EEG brain wave signals, in turn, can label the virtual rooms with calm and active emotions. Specifically, in terms of VR spaces and emotions, the experiments find that more relative spatial height results in less active emotions, while round spaces arouse calmness in the human brain waves. Moreover, the precise connection among VR spaces, brain waves in emotion, and languages still needs further research. This research attempts to offer a useful emotion measurement tool in virtual architectural design and description using EEGs. This research identifies potentials for future applications combining physiological metrics and AI methods, i.e., machine learning for synthetic design generation and evaluation.
series ASCAAD
email
last changed 2024/02/16 13:29

_id cdrf2022_527
id cdrf2022_527
authors Xiang Wang, Yang Li, Ziqi Zhou, Xueyuan Lv, Philip F. Yuan, Lei Chen
year 2022
title Levelling Calibration and Intelligent Real-Time Monitoring of the Assembly Process of a DfD-Based Prefabricated Structure Using a Motion Capture System
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_45
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Conventional measuring techniques and equipment such as the level and total-station are commonly used in on-site construction to measure the position of building elements. However, a motion capture system can measure the dynamic 3D movements of markers attached to any target structure with high accuracy and high sampling rate. Considering the characteristics of prefabricated structures that is composed by lot of discrete building elements, advanced requirements for the on-site assembly monitoring is required. This paper introduces an innovative real-time monitoring technique for the DfD-based (Design for Disassembly) structure with the application of motion capture system and other hardware in an IoT-based BIM system. The design and construction method of the structure system, on-site setup of monitoring system and hardware, data acquisition and analysis method, calibration algorithm as well as the BIM system are further illustrated in the paper. The proposed method is finally applied in a real building project that is composed by thousand discrete building elements and covers a large area of 50*25 m. As demonstrator, such monitoring system is applied in the real construction of a DfD-based prefabricated steel structure in the “Water Cube” (Chinese National Aquatics Centre) in Beijing. The building process is successfully recorded and displayed on-site with the digital twin model in the BIM system. The construction states of the building elements are gathered with different kind of IoT techniques such as the RfID chips and QR-Codes. With the demand to control the flatness tolerance within 6 mm (within a 25*50 m area), a large area monitoring system was applied in the project and finally reduced the construction time within 20 days. The final tolerance is verified and further discussed2.
series cdrf
email
last changed 2024/05/29 14:03

_id cdrf2022_175
id cdrf2022_175
authors Xingzhao Zhang, Xinyu Wu, Luqiao Yang, Jiaqi Xu, Ruizhe Luo, and Jiawei Yao
year 2022
title Effect of Morphological Indicators on the Pedestrian Level Wind of the Existing Workers Villages in Shanghai
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_15
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The workers villages are typical residential type during Shanghai’s urbanization built from the 1950s to the 1980s. Due to changes in the urban environment and climatic circumstances, the workers villages have inadequate natural ventilation and difficulty in dispersing pollutants, putting residents’ health at risk. In the context of urban renewal, it is necessary to clarify the effect of building morphological indicators on pedestrian level wind, especially in such old residential communities. In this paper, 100 workers villages representatives were gathered by GIS. Their summer ventilation conditions were simulated using the CFD solving the LES turbulence equation. The correlation between 9 morphological indicators and 2 pedestrian level wind indicators was obtained quantitatively by Pearson analysis and regression analysis. The result shows increasing the building coverage of 0.94% in the workers villages, the ratio of the area of the static wind in summer will increase subsequently by 10%. The results highlight the importance of considering morphological indicators to enhance the wind environment, and provide suggestions for the environmental transformation of communities with similar characteristic in the high-density city.
series cdrf
email
last changed 2024/05/29 14:02

_id cdrf2022_385
id cdrf2022_385
authors Yang Song, Asterios Agkathidis, and Richard Koeck
year 2022
title Augmented Bricks an Onsite AR Immersive Design to Fabrication Framework for Masonry Structures
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_33
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The Augmented Bricks research project aims to develop an immersive design to fabrication framework for the assembly of masonry building components by incorporating robotic fabrication and augmented reality (AR) technologies. Our method incorporates two main phases: firstly, the design phase in which users’ gestures and interactions are being identified in AR for the immersive design and simulation process; secondly, an innovative robotic assembly phase in which users can control a robotic arm for assembly by interacting with the AR user interface (UI). Our framework is validated by the design and assembly of four brick-based columns. Our findings highlight that the proposed design to fabrication framework offers a novel, intuitive design inspiration and experience beyond the traditional design methods. It returns the task of assembling parametric structures with high-tech equipment back to the designers, allowing them to master and participate in the entire design to the fabrication process. The impact of this practice-based research will allow architects and designers to modify and construct their designs more simply and intuitively through the AR environment.
series cdrf
email
last changed 2024/05/29 14:03

_id ecaade2022_127
id ecaade2022_127
authors Yang, Donglai, Wang, Likai and Ji, Guohua
year 2022
title Optimization-Assisted Building Design - Cases study of design optimization based on real-world projects
doi https://doi.org/10.52842/conf.ecaade.2022.1.609
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 609–618
summary Computational design optimization has been widely considered a promising technique to help designers address complex design challenges regarding building performance. However, a barrier to applying it to real-world projects is the difficulty in incorporating functional requirements and constraints into the design optimization process. In response, this study presents an optimization-assisted design approach for early-stage architectural design. The approach combines the application of EvoMass, an integrated building mass design generation and optimization tool, and the soft constraint strategy. The combination allows designers to integrate various design requirements and constraints into the optimization, which makes it produce results with higher practical values. To demonstrate the efficacy of the approach, two case studies are presented, which show that the application of optimization facilitates designers to better formulate the design problem and rapidly investigate different design directions for exploration and information extraction.
keywords Generative Design, Optimization, Design Exploration, Design Process, EvoMass, Computational Design, Building Performance
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_199
id caadria2022_199
authors Yang, Qing, Cao, Chufan, Li, Haimiao, Qiu, Waishan, Li, Wenjing and Luo, Dan
year 2022
title Quantifying the Coherence and Divergence of Planned, Visual and Perceived Streets Greening to Inform Ecological Urban Planning
doi https://doi.org/10.52842/conf.caadria.2022.1.565
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 565-574
summary This research attempts to combine the fields of urban planning, urban design and cognitive psychology, and propose three corresponding evaluation indicators for urban ecology, and further explore the coherence and divergence between them. This research defines land vegetation coverage, visibility of street green vegetation, and people's green perception as planned green, visual green and perceived green. Specifically, the three measures (i.e., planned, visual and perceived) refer to objectively extracting park lands and canopy areas from land use data, objectively extracting green pixels from street views, and subjectively collected through visual surveys. This study hypothesizes that there could exist large variation between the three measures, which would provide distinct implications for city planners. To test our hypothesis, this study selects Brisbane as the research area, effectively using computer deep learning, data visualization and mathematical statistics methods to achieve an accurate description of the three sets of data, and proposes a comprehensive evaluation of the urban ecological theory system. The results show the credibility and scope of application of the three types of greening, and quantitatively proposed and tested the relevant theories of urban design.
keywords Urban Green Space, Urban Ecology, Street View Image, Green Perception, Subjective Measure, SDG 3, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_453
id caadria2022_453
authors Yang, Xiliu, Amtsberg, Felix, Skoury, Lior, Wagner, Hans Jakob and Menges, Achim
year 2022
title Vizor, Facilitating Cyber-physical Workflows in Prefabrication through Augmented Reality
doi https://doi.org/10.52842/conf.caadria.2022.2.141
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 141-150
summary This research presents Vizor, a software framework to facilitate Human Robot Collaboration (HRC) in fabrication using Augmented Reality (AR), specifically within the environment of high Level of Automation (LoA) prefabrication for the AEC industry. The framework supports skill set extensions of fabrication setups via the integration of human craft and automation through AR and improves the accessibility and adaptability of these fabrication setups. It features a Grasshopper plugin for low-barrier-to-entry prototyping and an integrated HoloLens application for operation. The tool is demonstrated through three use case examples and validated in a proof-of-concept case study involving a craftsperson and a 14-Axis robotic setup, which demonstrates a novel interactive task-sharing process. Vizor opens new opportunities to extend robotic prefabrication with craftspeople who are skilled yet untrained in robotic control and provides greater access to tools for prototyping HRC workflows.
keywords augmented reality, human robot collaboration, cyber-physical fabrication, SDG 8, SDG 9, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_411
id caadria2022_411
authors Yang, Xuyou, Bao, Ding Wen, Yan, Xin and Zhao, Yucheng
year 2022
title OptiGAN: Topological Optimization in Design Form-Finding With Conditional GANs
doi https://doi.org/10.52842/conf.caadria.2022.1.121
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 121-130
summary With the rapid development of computers and technology in the 20th century, the topological optimisation (TO) method has spread worldwide in various fields. This novel structural optimisation approach has been applied in many disciplines, including architectural form-finding. Especially Bi-directional Evolutionary Structural Optimisation (BESO), which was proposed in the 1990s, is widely used by thousands of engineers and architects worldwide to design innovative and iconic buildings. To integrate topological optimisation with artificial intelligence (AI) algorithms and to leverage its power to improve the diversity and efficiency of the BESO topological optimisation method, this research explores a non-iterative approach to accelerate the topology optimisation process of structures in architectural form-finding via conditional generative adversarial networks (GANs), which is named as OptiGAN. Trained with topological optimisation results generated through Ameba software, OptiGAN is able to predict a wide range of optimised architectural and structural designs under defined conditions.
keywords BESO (bi-directional evolutionary structural optimisation), Artificial Intelligence, Deep Learning, Topological Optimisation, Form-Finding, GAN (Generative Adversarial Networks), SDG 12, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

No more hits.

HOMELOGIN (you are user _anon_9729 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002