CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 657

_id acadia22_432
id acadia22_432
authors Lok, Leslie; Bae, Jiyoon
year 2022
title HoloWall
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 432-443.
summary HoloWall is a wall assembly that integrates mixed reality (MR) protocols with nonuniformly sized lumber to develop a customized hollow-core cross-laminated timber (HCCLT). The performance-driven design workflow leverages the MR technology and tiling automation of nonuniform wood boards to guide material processing and fabrication of a customized HCCLT prototype. This paper proposes to expand the usage and the viability of customized HCCLT as a structural component. Upcycling locally salvaged wood elements, the prototype develops a material language of lamination that peels away in calibrated gradients to generate structural and visual porosity. By engaging with the computational environment and the physical making process through the MR workflow, users are able to explore an accessible design streamline.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id sigradi2022_30
id sigradi2022_30
authors Song, Yang; Koeck, Richard; Agkathidis, Asterios
year 2022
title Augmented Bricklayer: an augmented human-robot collaboration method for the robotic assembly of masonry structures
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 713–724
summary The Augmented Bricklayer research project proposes a new augmented human-robot collaboration method for the robotic assembly of masonry structures. It aims to resolve the conventional limitations of the robotic bricklaying process by incorporating object recognition and Augmented Reality (AR) technologies. Towards this aim, we present a human-robot collaboration method consisting of two phases: a) the object recognition phase, in which bricks are recognized by a point cloud scanning sensor and analyzed by our calibration system as a feeding object for the robotic gripper to pick; b) the augmented human-robot collaboration phase, in which the masonry adhesive is being applied manually assisted by AR holographic guidance and gets assembled by an AR-assisted robotic operation method. The validation of our method is achieved with the robotic assembly of two real-scale building elements, a masonry column and a wall. Our findings highlight a more flexible, efficient, and convenient AR-assisted human-robot collaboration bricklaying method capable of dealing with complex on-site construction requirements.
keywords Mixed Realities (Augmented Reality), Object Recognition, Human-robot Collaboration, Robotic Assembly, Masonry Structures
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2022_80
id caadria2022_80
authors Anifowose, Hassan, Yan, Wei and Dixit, Manish
year 2022
title Interactive Virtual Construction ‚ A Case Study of Building Component Assembly towards the adoption of BIM and VR in Business and Training
doi https://doi.org/10.52842/conf.caadria.2022.2.547
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 547-556
summary Present day building product manufacturers face difficulties in scaling businesses. Key decisions surrounding technology adoption are typically measured against feasibility of use and long-term profit. Building Information Modelling (BIM) and Virtual Reality (VR) provide the potential for teaching building product assembly to employees and construction contractors. This eliminates the need for deploying training personnel to job sites, reduces manufacturing carbon footprint and wastes in product samples required for training. VR content development is difficult and performance within VR applications must be near reality in order to improve adoption of such technology through training. This exploratory study investigates important factors that enhance adoption in business cases through training. We developed an innovative BIM+VR prototype for SwiftWall; a temporary wall manufacturing company, highlighting rigorous processes for in-house BIM anatomy and VR development. This paper provides a step-by-step approach to replicate the prototype. The prototype was tested in several demonstration sessions. The approximate time to install 40 linear feet of SwiftWall is 30-minutes at the simplest level. This timing is equivalent to 28 linear feet installation in 21-minutes achieved with the BIM+VR prototype demonstration. The matching timing results show a significant potential for adoption in business, improved sustainability and employee training from a time and cost-efficient standpoint. Concerns and key issues from development to deployment are discussed in detail. The BIM+VR virtual construction prototype provides adoption potential for training remote partners thereby increasing possibilities of SwiftWall scaling to distributors and product carriers across a larger geographic region.
keywords BIM, Virtual Reality, Unity, Training, Game Design, Construction Assemblage, Construction Material, Virtual Construction, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_193
id sigradi2022_193
authors Kunic, Anja; Naboni, Roberto
year 2022
title Collaborative design and construction of reconfigurable wood structures in a Mixed Reality environment
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 651–662
summary Mixed Reality tools offer new possibilities for cyber-physical design and construction and promote novel collaboration protocols. This work tackles a multi-user open-end design and construction of reconfigurable timber structures in Mixed Reality by introducing a computational workflow, physical setup and custom-designed interface. The developed procedures are demonstrated in the design and making of a real-scale architectural mock-up based on a discrete construction kit that allows for numerous assembly combinations. The results show that such a construction system that is characterized by rich design and assembly data is processed faster and with fewer mistakes by the builders using Mixed Reality. This opens the possibility to execute, change and update the construction directly in the physical environment in real-time. Moreover, the projected holographic analytics and construction data allowed for more structured decision-making and understanding of the impacts that each building action had.
keywords Mixed Realities, Reconfigurable Timber Construction, Collaborative Design, Collaborative Assembly, Wood Architecture Automation
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2022_349
id caadria2022_349
authors Lopez Rodriguez, Alvaro, Jaramillo Pazmino, Pablo Isaac and Pantic, Igor
year 2022
title Augmented Active-Bending Formwork for Concrete, A Manufacturing Technique for Accessible Local Construction of Structural Systems
doi https://doi.org/10.52842/conf.caadria.2022.2.181
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 181-190
summary This research introduces Augmented Reality (AR) for manufacturing concrete structures through an open platform for autonomous construction. The study was developed under the following scopes: computational algorithms for bending simulations, materiality tests, system implementation, and a set of Augmented Reality (AR) tools. AR devices offer a technological tool that allows for a self-built environment through holographic guidance, allowing the untrained workforce to participate in the process. This technology can help users select the system to construct through an Open-Source platform, reducing the gap between complex computational geometries and construction processes. The research aims to investigate a building system that could benefit the UN Objectives SDG 10 by increasing the access to technology in undeveloped communities, SDG 11 and SDG 12 by promoting a self-sustainable method of construction based on local resources and material efficiency. In conjunction with the development of the AR Platform and augmented manufacturing, a 1:1 prototype was built in Quito, Ecuador, with the help of seven people with no previous knowledge of digital tools or construction. Presenting a novel, fast, and affordable concrete formwork connected with AR assisted assembly methods that facilitate access to more efficient and advanced building technology.
keywords Mixed Reality, Distributed Manufacturing, Online Platforms, Affordability, Local Communities, SDG 10, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_302
id ecaade2022_302
authors Lu, Xin, Meng, Zeyuan, Rodriguez, Alvaro Lopez and Pantic, Igor
year 2022
title Reusable Augmented Concrete Casting System - Accessible method for formwork manufacturing through holographic guidance
doi https://doi.org/10.52842/conf.ecaade.2022.1.371
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 371–380
summary Reinforced concrete has been one of the essential materials for modern architecture for the last hundred years. Its use is entirely global, having been adopted by all cultures and styles since its invention in the late 19th century. Although its value is excellent due to its low cost, durability and adaptability, its environmental impact is significant, being, in fact, one of the most polluting industries in the world (Babor et al. 2009). This experimental project will research a more sustainable use of concrete, exploring a new form of reusable concrete formwork that will ideally reduce the CO2 footprint by removing wood waste in the casting process and replacing it with adaptable metal components. The modular part-based system for the concrete casting also attempts to simplify one of the current complexities for concrete construction, the Skilled-Labour shortage. (Yusoff et al. 2021). To mitigate this problem, the project also proposes using an Augmented Assembly logic for the casting parts to guide the ensemble and dismantle the formwork through an optimised algorithmic logic. The use of Augmented Reality as a replacement for traditional paper instructions will facilitate access to more workers to this construction art and potentially improve access to optimised use of concrete in developing communities with restricted building technological resources.
keywords Mixed Reality, Distributed Manufacturing, Augmented Manufacturing, Sustainability, Computational Design, Concrete Casting
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22pr_166
id acadia22pr_166
authors Lu, Yao; Seyedahmadian, Alireza; Chhadeh, Philipp Amir; Cregan, Matthew; Bolhassani, Mohammad; Schneider, Jens; Yost, Joseph Robert; Brennan, Gareth; Akbarzadeh, Masoud
year 2022
title Tortuca: An Ultra-Thin Funicular Hollow Glass Bridge
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 166-171.
summary Designed with Polyhedral Graphic Statics (PGS), a geometry-based structural form-finding method, Tortuca presents an efficient and innovative structural system constructed by the dry assembly of thirteen hollow glass units (HGU). It also proposes a new language for glass that is carefully treated, structurally informed, fabrication-aware, and environmentally responsible. 
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id acadia22_346
id acadia22_346
authors Rossi, Gabriella; Chiujdea, Ruxandra-Stefania; Hochegger, Laura; Lharchi, Ayoub; Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette
year 2022
title Integrated Design Strategies for Multi-scalar Biopolymer Robotic 3D Printing
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 346-355.
summary In this paper we present strategies and workflows for cellulose-based biopolymer 3D printing. We propose a digital design framework informed by the fabrication system and guided through human design input. The workflow stabilizes the material at the scale of the toolpath, the component, and the wall assembly, by integrating joinery and cross-bracing together with the component geometry. We showcase the feasibility of a large-scale dry-assembly of 3D printed biopolymer components. The demonstrator wall allows us to evaluate our workflows and discuss the challenges and implication of bringing biomaterials in our built environment.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ecaade2022_360
id ecaade2022_360
authors Azambuja Varela, Pedro, Lacroix, Igor, Güzelci, Orkan Zeynel and Sousa, José Pedro
year 2022
title Democratizing Stereotomic Construction through AR Technologies - A reusable mold methodology to the production of customized voussoirs using HoloLens
doi https://doi.org/10.52842/conf.ecaade.2022.1.225
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 225–232
summary Mass customizing of building components allows new conditions to explore aesthetic and sustainability in architecture. However, such possibilities tend to require the use of expensive and heavy digital fabrication machinery, which is seldomly available in most regions on the planet. In this context, this paper presents a research in progress that explores Augmented Reality (AR) to support craft production of customized stereotomic components. As a portable technology, the work examines the potential of AR to materialize design solutions that are geometrically complex and variable. Considering the current research on augmented fabrication processes, this work contributes to producing variable building components for stereotomic construction with a focus on earth-based materials. Extending the findings of a recently completed PhD thesis, the work replaces the use of a robot with the HoloLens glasses and Fologram application to produce low- cost and reusable molds. This augmented fabrication setup allows the human control of the production of variable molds, ready for casting and assembly of stereotomic components. This work addresses several of the NEB and UN SDGs goals.
keywords Stereotomy, Augmented Reality, Augmented Fabrication, Customized Production, New European Bauhuas
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia22_280
id acadia22_280
authors Bruscia, Nicholas; Kanaoka, Daiki; Asaoka, Hideaki; Iwaoka, Kotaro
year 2022
title Nemagari-no-Takumi Workshop
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 280-283.
summary This project reflects a recent collaborative and international workshop that connected faculty and students based in the USA with craftspeople and consultants that reside and work in Hida, Japan. The team developed mixed-reality (MR) fabrication workflows to utilize large-scale nemagari (bent-root) timber. 
series ACADIA
type field note
email
last changed 2024/02/06 14:00

_id sigradi2022_19
id sigradi2022_19
authors Crossley, Tatjana
year 2022
title Appropriations and Extensions of Cultural Spaces in VR and the Metaverse
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 727–738
summary Digital virtual reality (VR) and the metaverse provide opportunities for the creation of cultural extensions that define our contemporary society. This has been the practice for millennia – using different technologies and media; humans have always attempted to convey experience through representational forms. The paper puts forward an initial theoretical examination of metaverse using theories on perception and subjectivity in psychology and philosophy and the implications of these in architecture and space creation, both physical and digital. It considers historical VR spaces to better understand the influence of culture and applies this to the contemporary social VR spheres. Though they offer novel opportunities, digital virtual realities and immersive spaces of today are no different than the lineage of spaces and representations that strove to do this throughout history (Grau, 2003). Using different mediums, they each provide an extension of culture that reflects society and becomes a record of their times and ideals.
keywords Virtual Reality, Metaverse, Digital Heritage, Mixed Realities, Identity and Subjectivity
series SIGraDi
email
last changed 2023/05/16 16:56

_id ecaade2022_368
id ecaade2022_368
authors Das, Avishek, Brunsgaard, Camilla and Madsen, Claus Brondgaard
year 2022
title Understanding the AR-VR Based Architectural Design Workflow among Selected Danish Architecture Practices
doi https://doi.org/10.52842/conf.ecaade.2022.1.381
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 381–388
summary Virtual reality (VR) and augmented reality (AR) have been proposed to be additional architectural design mediums for at least 25 years (Dagit, 1993). Despite rapid technical and technological development, it has not been adopted into architectural design practices as compared to academia and research. Surveys from the American Institute of Architects (AIA) and Royal Institutes of British Architects (RIBA) demonstrate the state of architectural practices; 72% of architects and 65% of architects respectively are not using any kind of virtual, augmented, or mixed reality in their practices(RIBA and Microsoft, 2018; Hampson, 2020). In this paper, the authors investigate the state of practices, issues, challenges, and opportunities of the utilization of virtual, augmented, and mixed realities in six architectural practices in the Danish context. Three of the practices are large architectural practices, one medium-sized practice specializing in institutional, healthcare and cultural architecture, and one firm designing private family houses, kindergartens, daycares and places for people with disability and, one experimental design studio. All these practices have used VR/AR in their projects to various degrees. In recent years Danish architectural practices have been involved in various VR/AR-based exhibitions, demonstrations, and tool developments to promote the usage of the same in design practice. Through a set of qualitative interviews with personnel from key architectural practices, the authors would like to demonstrate the present state of practices. The investigation explores the usage of VR and AR in Danish architecture practices by identifying challenges and opportunities regarding skill levels, architectural typology, use cases, toolchains, and workflow and shows similarities and differences between traditional and VR-based design processes. The main findings show how VR/AR-based visualization helps architects to perceive spatiality and also ushers creativity through immersion and overlays.
keywords Virtual Reality, Augmented Reality, Architectural Design Practice, Denmark
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_65
id ecaade2022_65
authors Halici, Süheyla Müge and Gül, Leman Figen
year 2022
title Utilizing Generative Adversarial Networks for Augmenting Architectural Massing Studies: AI-assisted Mixed Reality
doi https://doi.org/10.52842/conf.ecaade.2022.1.323
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 323–330
summary A technique for architectural massing studies in Mixed Reality (MR) is described. Generative Adversarial Networks let an object appear to have a different material than it actually has. The benefits during design are twofold. From one side the congruence between shape and material are subject to verification in real-time. From the other side, the designer is liberated from the usual restrictions and biases as to shape that are inevitable due to the mechanical properties of a mock-up. This is referred to as artificial intelligence assisted MR (AI-A MR) in this work. The technique consists of two steps: based on preparing synthetic data in Rhino/Grasshopper to be trained with an image-to- image translation model and implemented to the trained model in MR design environment. Next to the practical merits, a contribution of the work with respect to MR methodology is that it exemplifies the solution of some persistent tracking and registration problems.
keywords Hybrid Design Environment, Dynamic Design Models, Mixed Reality, Generative Adversarial Networks, Image-to-Image Translation, Tracking
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id ascaad2022_057
id ascaad2022_057
authors Isik, Gulbahar; Achten, Henri
year 2022
title Architectural hybrid (Physical-Digital) Prototyping in Design Processes with Digital Twin Technologies
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 43-60
summary A digital twin is a simultaneous digital reflection of object processes and states. Digital twins are usually made of objects that exist in reality or which are very near completion in a design and production process. In our research, we investigate the potential of digital twin technology for early design. Key to the early application of digital twin in design is the role of information and simulation. Since design information is valuable for predicting the future of design, we assume that design will begin to change as digital twin technologies become more and more adaptable, as designers simultaneously have digital twins of the past, present, and future. Digital twin technologies have many capabilities to support the design process at various stages from concept design to the final design. Throughout this process, architects use digital and physical models. Combined with digital twin technology, these models form what we call hybrid prototypes. Estimating that simulation has a vital impact on the design process, we raised the question of what the potential of architectural hybrid prototyping in design processes with digital twin technologies is. Similar to the development of the design through increasingly informed and detailed models, we think that the closest thing to the design process with the digital twin is the so-called foetal, child, and adult digital twin. Based on this classification, we approach the concept of hybrid prototyping and digital twin.
series ASCAAD
email
last changed 2024/02/16 13:29

_id acadia22pr_46
id acadia22pr_46
authors Iyengar, Anirudhan
year 2022
title Disquiet Objects - A Simulated Pensive Domestic Environment
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 46-51.
summary Disquiet Objects is an interactive, Mixed Reality (MR) immersive experience. It follows a hybrid design setup that overlays a physical environment (PE) with a virtual environment (VE) and spatial sound. The project takes place in the setting of a domestic apartment where the PE contains an assemblage of objects, overlaid with a VE that has a completely different visual materiality. It posits an enactive framework—a non-goal- oriented, virtual environment—where the user and the environment constitute the system participants, mediated by a technological artifact.
series ACADIA
type project
email
last changed 2024/02/06 14:04

_id caadria2022_296
id caadria2022_296
authors Jahn, Gwyllim, Newnham, Cameron and van den Berg, Nick
year 2022
title Augmented Reality for Construction From Steam-Bent Timber
doi https://doi.org/10.52842/conf.caadria.2022.2.191
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 191-200
summary Digital models viewed in augmented reality can serve as guides to form and assemble parts during construction and reduce the need to build temporary formwork or sub structures. However, static digital models are often inadequate for describing the behaviour of material that is dynamically formed over time, leading to breakages and difficulty following augmented reality guides during assembly. To address this issue, we propose a method for fast and approximate simulation of material behaviour using a goal-based physics solver, enabling the design and fabrication of steam bent timber parts using an adaptable system of sparse formwork. Through the design and construction of a pavilion from steam bent timber we demonstrate that approximate simulation of material behaviour is adequate for wide tolerance construction by hand and eye in augmented reality, avoiding part breakages and accumulative error.
keywords Augmented Reality, Digital Fabrication, Generative Design, Material Simulation, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_122
id ecaade2022_122
authors Kinoshita, Airi, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2022
title Enhanced Tracking Method with Object Detection for Mixed Reality in Outdoor Large Space
doi https://doi.org/10.52842/conf.ecaade.2022.2.457
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 457–466
summary Mixed-reality landscape simulation is one of the visual methods used in landscape design studies. A markerless tracking method using image processing has been proposed for properly aligning the real and virtual worlds involved with landscape simulations in large spaces. However, this method is challenging because tracking breaks down if a dynamic object is encountered during the mixed-reality execution. In this study, we integrated deep-learning object detection with natural feature-based tracking, which tracks manually defined feature points (tracking reference points), with the aim of reducing the impact of moving objects such as people and cars on mixed-reality tracking. The prototype system was implemented and tracking was performed on pre-recorded video taken outdoors. Performance was verified in terms of the number of errors associated with tracking the reference points and the accuracy of the mixed-reality display results (camera pose estimation results). Compared to the conventional system, our system was able to reduce the influence of moving objects that cause errors when tracking reference points. The accuracy of the camera pose estimation results was also verified to be improved. This research will contribute to developing mixed-reality simulation systems for large-scale spaces that are accessible to everyone, including users in the architectural field.
keywords Landscape Visualization, Mixed Reality, Object Detection, Tracking, Deep Learning
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_392283 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002