CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 676

_id ecaade2022_96
id ecaade2022_96
authors Nguyen, Binh Vinh Duc, Demolder, Stijn and Vande Moere, Andrew
year 2022
title How Lay People Design Interior Architecture Layouts in Virtual, Augmented, Drawn and Physical Reality
doi https://doi.org/10.52842/conf.ecaade.2022.1.411
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 411–420
summary Simulated reality, such as virtual reality (VR) and augmented reality (AR), is particularly helpful for lay people such as clients or prospective occupants, as it allows them to first- hand experience an unbuilt architectural space to provide design input without the requirement of spatial expertise. However, as the experience of space depends on the holistic interplay of a wide variety of atmospheric aspects that cannot be easily simulated, it is still unclear how simulated reality influences lay people when making design decisions. Our study therefore captured how eight lay people designed the interior layout of the same room within five different simulated realities, including drawing reality, tabletop AR, mobile AR, VR and physical reality. By comparing the design process of two design tasks, we assert how each reality promoted or inhibited particular spatial qualities. Consequently, we propose that the realism of a reality influenced how people make design decisions based on atmospheric or functional considerations, the co-location of a reality provokes design decisions that neglect or include contextual factors, the accuracy of distance estimation in a reality depends on the availability of bodily references and the viewing frustum, the ability of a reality to compare design solutions instantaneously trumps the ability to interact with it more intuitively, and each reality comes with particular implementation costs against which the benefits should be estimated and offset. Our study thus provides actionable insights to choose the most appropriate simulated reality depending on the design goals, helps simulated reality developers to consider additional interactive features, and empowers lay people in taking an active part in architectural design.
keywords Architectural Design, Immersive Design, Participatory Design, Virtual Reality, Augmented Reality, Human-Building Interaction, Spatial Qualities, Architectural Experience, Simulated Reality, Immersive Environment
series eCAADe
email
last changed 2024/04/22 07:10

_id ascaad2022_103
id ascaad2022_103
authors Farrag, Fatma; Khalil, Heba Allah
year 2022
title The Virtuality of Intelligent Cities: The Road to Hybridizing our New Cities
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 562-576
summary The incorporation IoT into our social systems and the digitization of our everyday life has become the new norm for societies worldwide. This study posits that digitization should apply to our cities as well. The digital aspect of technology is not always tangible – even in the figurative sense of grasping a concept – and its allure lies in this virtual aspect. That is the starting point of discussion in this paper – the virtuality of intelligent cities, the intangible forces that make these new cities smart, and how said forces can be incorporated to create new smart hybrid cities that also aim to be intelligent, connected, and efficient. This research paper was designed to first set a strong theoretical base, which includes how the Circular City Actions CCA assessment framework works. This framework is applied to the three virtual methods, Sharing Economy, Smart Parking, and Virtual Power Plants VPP, as well as an international case study, the VPP in South Australia. The CCA framework was then applied to the data gathered for the local case study, the New Administrative Capital NAC in Egypt, which was chosen because it is the largest smart city being constructed currently in Egypt right now. Since it is still not fully operational, the data collected was based on governmental plans, proposals, and published papers about the city released within the last 5 years. After theoretically incorporating the proposed virtual methods into the NAC’s plans and reapplying the assessment framework, the results were greatly improved in different aspects. This study made it clear that the NAC has a strong hypothetical foundation to become an intelligent connected city, but there were some missed opportunities of incorporating virtual intelligent solutions to be implemented at different levels as the three proposed in this paper to reach its goal.
series ASCAAD
email
last changed 2024/02/16 13:38

_id cdrf2022_478
id cdrf2022_478
authors Andrea Macruz, Mirko Daneluzzo, and Hind Tawaku
year 2022
title Performative Ornament: Enhancing Humidity and Light Levels for Plants in Multispecies Design
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_41
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The paper shifts the design conversation from a human-centered design methodology to a posthuman design, considering human and nonhuman actors. It asks how designers can incorporate a multispecies approach to creating greater intelligence and performance projects. To illustrate this, we describe a project of “ornaments” for plants, culminating from a course in an academic setting. The project methodology starts with “Thing Ethnography” analyzing the movement of a water bottle inside a house and its interaction with different objects. The relationship between water and plant was chosen to be further developed, considering water as a material to increase environmental humidity for the plant and brightness through light reflectance and refraction. 3D printed biomimetic structures as supports for water droplets were designed according to their performance and placed in different arrangements around the plant itself. Humidity levels and illuminance of the structures were measured. Ultimately, this created a new approach for working with plants and mass customization. The paper discusses the resultant evidence-based design and environmental values.
series cdrf
email
last changed 2024/05/29 14:03

_id sigradi2022_54
id sigradi2022_54
authors Balci, Ozan; Alaçam, Sema
year 2022
title Zone-sensitive RIZOBots in Action: Examining the Behavior of Mobile Robots In a Heterogeneous Environment
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 397–408
summary This study proposes a framework for the use of mobile robots namely RIZOBots in form studies in the early phases of design. The proposed framework was tested in two experiments. An agent-based model was utilized for the movement of mobile robots, a drawing task was defined as the task. In particular, rule sets for agent-agent and agent-environment interaction were used. Light-sensitivity rules were utilized to achieve agent-environment interaction, apart from obstacle detection. This study focuses on the effects of two different zone-related states on the behavior of RIZOBot which is a configurable differential-drive wheeled robot developed by authors using off-the-shelf products and 3D printed body parts. Two zone types with very basic features are used to define environmental conditions. The traces left on the canvas, the irregularities in the movement of the robots, and the robot-environment interaction will be evaluated in the study. The results and analysis of the two selected experiments are presented and the potential of the proposed framework is discussed.
keywords Robotics, Swarm robotics, Swarm behaviour, Mobile agents, Zone-sensitivity
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2022_258
id caadria2022_258
authors Chen, Hao, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2022
title Developing an Augmented Reality System with Real-Time Reflection for Landscape Design Visualization, Using Real-Time Ray Tracing Technique
doi https://doi.org/10.52842/conf.caadria.2022.1.089
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 89-98
summary In landscape design, visualization of a new design on the site with clients can greatly improve communication efficiency and reduce communication costs. The use of augmented reality (AR) allows the projection of design models into the real environment, but the relationship between the models and the physical environment, such as reflections, which are often thoughtfully considered in waterfront landscape design, is difficult to express in existing AR systems. The aim of this study is to accurately render and express the reflections of virtual models in the physical environment in an AR system. Different from traditional rasterized rendering, this study used physically correct ray-tracing algorithms for reflection rendering calculations. Using a smartphone and a computer, we first constructed a basic AR system using a game engine and then performed ray-tracing computations using a shader kernel in the game engine. Finally, we combined the rendering results of reflections with the video stream from a smartphone camera to achieve the reflection effect of a virtual model in a physical environment. Both designers and clients could review the design with a realistic reflection on an actual water surface and discuss design decisions through this system.
keywords Augmented reality (AR), reflection, landscape design, interactive visualization, real-time rendering, planar reflection, real-time ray tracing, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_171
id ecaade2022_171
authors Daher, Elie, Kubicki, Sylvain and Pak, Burak
year 2022
title Propositions for Enabling Participation in Performance-Driven Design
doi https://doi.org/10.52842/conf.ecaade.2022.1.421
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 421–430
summary In Performance-Driven Design, it is challenging for different stakeholders such as the end-users to participate in the co-designing process. Performance-driven design requires complex algorithmic calculations, simulations, and optimizations. These computational functionalities enabled for this design process lack of transparency and can be sometimes complicated to understand. Therefore, the current applications of Performance-Driven Design contradict the participatory design where social interactions are considered as important steps to produce desirable and accepted design outcomes. In this context, the main aim of this study reported in this paper based on a 4-years PhD thesis at Luxembourg Institute of Science and Technology and KU Leuven, is to address research methods suitable for enabling higher levels of participation in Performance-Driven Design and thus to provide recommendations and guidelines.
keywords Performance-Driven Design, Participation Design Process, Architectural Design, Performance and Requirements Modeling
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_175
id ecaade2022_175
authors Di Carlo, Raffaele, Mittal, Divyae and Vesely, Ondrej
year 2022
title Generating 3D Building Volumes for a Given Urban Context using Pix2Pix GAN
doi https://doi.org/10.52842/conf.ecaade.2022.2.287
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 287–295
summary Our ability to delegate the most intellectually demanding tasks to machines improves with each passing day. Even in the fields of architecture and design, which were previously thought to be exclusive domain of human creativity and flare, we are moving the first steps towards developing models that can capture the patterns, invisible to the naked eye, embedded in the creative process. These patterns reflect ideas and traditions, imprinted in the collective mind over the course of history, that can be improved upon or serve as a cautionary tale for the new generation of designers in their work of designing an equitable, more inclusive future. Generative Adversarial Networks (GANs) give us the opportunity to turn style and design into learnable features that can be used to automatically generate blueprints and layouts. In this study, we attempt to apply this technology to urban design and to the task of generating a building footprint and volume that fits within the surrounding built environment. We do so by developing a Pix2Pix model composed of a ResNet-6 generator and a Patch discriminator, applying it to satellite views of neighborhoods from across the Netherlands, and then turning the resulting 2D generated building footprint into a reusable 3D model. The model is trained using the national cadastral data and TU Delft 3D BAG dataset. The results show that it is possible to predict a building shape compatible in style and height with the surroundings. Although the model can be used for different applications, we use it as an evaluation tool to compare the design alternatives fitting the desired contextual patterns.
keywords Generative Adversarial Networks, Urban Design, Pix2Pix, Raster Vectorization, 3D Rendering
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_427
id caadria2022_427
authors Ding, Xinyue, Guo, Xiangmin, Lo, Tian Tian and Wang, Ke
year 2022
title The Spatial Environment Affects Human Emotion Perception-Using Physiological Signal Modes
doi https://doi.org/10.52842/conf.caadria.2022.2.425
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 425-434
summary In the past, spatial design was mainly from the perspective of designers. With the increasing demand for quality spaces, contemporary architecture has gradually shifted from focusing on form creation to human well-being, once again advocating the concept of "human-centered" spatial design. Exploring how the spatial environment affects human emotions and health is conducive to quantifying the emotional perception characteristics of space and promoting the improvement of human quality of life and sustainable survival. At the same time, the development of contemporary technology and neuroscience has promoted the study of the impact of spatial environment on human emotion perception. This paper summarizes the research on the impact of the spatial environment on human emotion perception in recent years. First, 28 relevant studies were screened using the PRISMA framework. Then a set of research processes applicable to this study is proposed. Next, the physiological signals currently used to study the effects of the spatial environment on human emotions are summarized and analyzed, including electroencephalography (EEG), skin response (GSR), pulse (PR), and four other signals. The architectural features studied in the related literature are mainly building structural features, building spatial geometric features, and building spatial functional attributes. The study of urban space is divided into different parts, such as urban environment characteristics and urban wayfinding behavior. Finally, we point out the shortcomings and perspectives of studies related to the influence of spatial environment on human emotion perception.
keywords Architectural space environment, urban space, human emotional feelings, Physiological signals, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_145
id caadria2022_145
authors Duering, Serjoscha, Fink, Theresa, Chronis, Angelos and Konig, Reinhard
year 2022
title Environmental Performance Assessment - The Optimisation of High-Rises in Vienna
doi https://doi.org/10.52842/conf.caadria.2022.1.545
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 545-554
summary Our cities are facing different kinds of challenges - in parallel to the urban transformation and densification, climate targets and objectives of decision-makers are on the daily agenda of planning. Therefore, the planning of new neighbourhoods and buildings in high-density areas is complex in many ways. It requires intelligent processes that automate specific aspects of planning and thus enable impact-oriented planning in the early phases. The impacts on environment, economy and society have to be considered for a sustainable planning result in order to make responsible decisions. The objective of this paper is to explore pathways towards a framework for the environmental performance assessment and the optimisation of high-rise buildings with a particular focus on processing large amounts of data in order to derive actionable insights. A development area in the urban centre of Vienna serves as case study to exemplify the potential of automated model generation and applying ML algorithm to accelerate simulation time and extend the design space of possible solutions. As a result, the generated designs are screened on the basis of their performance using a Design Space Exploration approach. The potential for optimisation is evaluated in terms of their environmental impact on the immediate environment.
keywords simulation, prediction and evaluation, machine learning, computational modelling, digital design, high-rises, SGD 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_184
id ecaade2022_184
authors Grasser, Alexander and Parger, Alexandra
year 2022
title Blockchain Architectures, the Potential of Web3 for Decentralized Participatory Architecture - Collaborative objects on the Blockchain
doi https://doi.org/10.52842/conf.ecaade.2022.1.431
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 431–440
summary This paper explores the potential of blockchain technology and the Web3 for a decentralized participatory architecture. In this context, the polyvalent capacity of a block in a blockchain is at the center of this investigation. Blockchain innovations in cryptography and efficient block validation and creation systems have led to autonomous blocks that act as decentralized, transparent, and secure Web3 assets. Following our previous research on collaborative objects that enable real-time participatory design activities, a case study project H=N BLOCK+A is developed that implements blockchain principles at both the conceptual and infrastructural levels. At the conceptual level, architectural blocks are speculated and applied as autonomous and decentralized Web3 assets, i.e., a decentralized kit of parts/blocks/NFTs/applications that can form a crazy patchwork of heterogeneous compatible blocks. At the infrastructural level, an existing sustainable blockchain is facilitated to embed a decentralized design methodology that enables real-time participatory co-creation of a collective architectural form.
keywords Collaborative Objects, Participation, Open Architecture, Blockchain, Web3
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_145
id sigradi2022_145
authors Gulec Ozer, Derya; Erdil, Fatih; Kidis, Koray
year 2022
title A Pre-Evaluation Tool for Interior Designs of High-Rise Office Buildings by User Movement Simulation after Covid’19
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 27–38
summary User movement optimization has become a more crucial design parameter in high-rise office interior design after the Covid’19 pandemic. This study aims to develop a pre-evaluation tool using vertical and horizontal user movement simulation in a high-rise building; to guide the pre-design phase of an office interior. Agent-based simulation software (AnyLogic v8.7.10) analyzes the relationship between circulation, design elements, and space. First, initial design which is created by the interior design team is evaluated by this simuation; later different interior design alternatives are simulated and tested to compare the results. Therefore, early design decisions taken by the design team are subject to change, reducing user intensity in specific locations throughout the day. This study concluded that the simulations' results can be integrated into the design decisions by the design team to develop effective interior designs led by new office design parameters after Covid’19.
keywords Agent-Based Systems, Multi-Level Wayfinding, Occupancy Schedule, Path Planning, Building Traffic Simulation
series SIGraDi
email
last changed 2023/05/16 16:55

_id caadria2022_179
id caadria2022_179
authors Kikuchi, Naoki, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2022
title How a Flooded City Can Be Visualized from Both the Air and the Ground with the City Digital Twin Approach, System Integration of Flood Simulation and Augmented Reality with Drones
doi https://doi.org/10.52842/conf.caadria.2022.2.607
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 607-616
summary City digital twins are becoming increasingly important for the sustainable development of cities, and augmented reality (AR) has been attracting attention as a tool for visualizing city digital twins. In addition, from the perspective of SDG 11, it is essential to manage flood risk in urban spaces. However, there are no case studies that present a bird‚s-eye view of a simulated city. Visualizing the state of a flooded city during a disaster is one potential use case. From the perspective of information graphics, people want to understand urban data at the micro and macro levels. This study proposes a city-digital-twin approach for visualizing a simulated city using a large-scale AR and drone integration method that does not require a specific software development kit (SDK). This system can visualize the state of a city flooded by a disaster from both a bird‚s-eye view of the city at several tens of metres above it and from a first-person perspective of the user‚s area of activity. The applicability of the system is demonstrated through verification and case studies.
keywords virtual and augmented realities, city digital twin, occlusion handling, flood visualization, web-based augmented reality (web AR), SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_228
id ecaade2022_228
authors Körner, Andreas
year 2022
title Chromogenic Composites - A case study combining thermochromics with heat transfer simulations and digital fabrication in architectural education
doi https://doi.org/10.52842/conf.ecaade.2022.1.291
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 291–300
summary Over the last few decades, environmental considerations have become increasingly important in architecture. To predict and simulate material changes and environmental forces can help architects to articulate surfaces. In architectural education, an increasing amount of the curricula are engaging with aspects of energy design, sustainability, and environmental simulations. The successful integration of related novel technologies in education has been demonstrated in the past. This paper documents a technical seminar that focused on the combination of digital environmental simulations and smart materials to create chromogenic prototypes for environmentally responsive architectural composites. Thermochromic chromogenics are substances that reversibly change colour depending on temperature. Specifically, the task was to come up with novel techniques to combine such materials with varying substrates to achieve dynamic panels. The course design was informed by a variety of design research and learning concepts. Students were asked to use digital heat transfer simulations to predict the smart material changes of computationally designed panels. Each of the eight idiosyncratic prototypes was modified with a variety of techniques and coated with thermochromic ink to achieve complex heat signature patterns. The resulting chromogenic composites were documented and analyzed using photos and infrared thermography. The seminar’s results showed that the three aspects (simulation, material, fabrication) can help to introduce eco-relevant technologies to design education. For this paper, both the outcomes and the course design itself were reviewed to better understand the co-creation process of the three aspects. This evaluation provided a rich repertoire of possibilities to combine different technologies for creative environmental design in architecture; all while maintaining an engaging teaching environment.
keywords Education, Smart Materials, Simulation, Prototyping, Heat Transfer
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_167
id ecaade2022_167
authors Lin, Han, Tsai, Tsung-Han, Chen, Ting-Chia, Sheng, Yu-Ting and Wang, Shih-Yuan
year 2022
title Robotic Additive Manufacturing of Glass Structures
doi https://doi.org/10.52842/conf.ecaade.2022.2.379
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 379–388
summary This paper proposes a glass 3D printing system that can be used at room temperature. The system employs high-frequency electromagnetic induction heaters and stone-ground carbon tubes to heat glass raw materials. In this study, a digital control system was fully utilised to control the extrusion of borosilicate glass materials. Through a calculated design and communication between a six-axis robot arm and an external computer, the robot’s printing path and speed and the feeding state of the glass printing machine can be automatically controlled for different geometric shapes and velocities. This study examines digital manufacturing processes and material properties to investigate the novel glass printing of textures and free-form surface modelling.
keywords Glass, Induction Heating, Rapid Prototype, 3D Printing, Robotic Fabrication
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_147
id sigradi2022_147
authors Macruz, Andrea; Daneluzzo, Mirko; Tawakul, Hind; Al Hashimi, Mona
year 2022
title Performative Accessories in Multispecies Design: Enhancing Humidity Levels for Plants with 3D-printed Biomimetic Structures
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1201–1212
summary The paper moves the design debate from human-centered toward posthuman design, discussing how designers can use a strategy based on Multispecies Ethnography and Participatory Design, considering nonhuman agents to create efficient designs. To illustrate this, it describes a project of 3D-printed biomimetic structures for plants that enhances humidity levels in internal environments. The project methodology started by analyzing the ideal humidity for indoor plants and humans, which is between 40% to 50%. Subsequently, a biomimicry study was done to understand how to generate a cooler indoor microclimate using passive strategies and how to create an effective interlocking system to connect structures. 3D-printed structures as supports for water droplets were designed according to their performance and placed in different arrangements around the plant itself. The structures were tested, and humidity levels increased by approximately 13%. The paper discusses the resultant evidence-based design and a new approach to mass customization.
keywords Bio-Inspired Design, Multispecies Design, Biomimicry, 3D printing, Humidity Control
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_77
id caadria2022_77
authors Marschall, Max and Sepulveda, Pablo
year 2022
title How to Prevent a Passive House from Overheating: An Industry Case Study Using Parametric Design to Propose Compliance Strategies
doi https://doi.org/10.52842/conf.caadria.2022.2.639
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 639-648
summary The airtight, well-insulated building fabric of a Passive House can reduce operational energy consumption but can also present a risk of overheating during summer. PHPP, the Excel tool used to model Passive Houses, considers the whole building as a single thermal zone; a simplification that might be partly responsible for the tool‚s limited ability to predict overheating risk. The current study on a real-world project provides insights on two topics. First, we compare PHPP‚s overheating assessment with that of CIBSE‚s TM59 standard that requires dynamic energy modelling at a room level. Our results support the claim that PHPP underestimates overheating; in our case, glazing SHGC and air change rate were some of the most important parameters affecting compliance, as were some other, rarely analysed factors like ratio of external wall to room volume. Second, we report on the effectiveness of using parametric design for compliance modelling of this kind, and found that parameter studies, coupled with appropriate data visualisation, are an effective way to build intuition on a design problem of this kind.
keywords Passive House, social housing, EnergyPlus modelling, PHPP modelling, overheating risk, parametric data visualisation, SDG 3, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_068
id ascaad2022_068
authors Moustafa, Mohab; Ashour, Shaimaa; Bakir, Ramy
year 2022
title Augmenting Landmarks: Extending "Places" in the Hybrid City
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 731-742
summary Several recent technological advancements are substantially altering how we interact with urban spaces. The existing physical space as we know it now encompasses a plethora of emerging realities into which we shift in and out, resulting in what is called Hybrid Spaces. Augmented Reality (AR) today gives way to forms of hybrid realities that are accessible through our handheld devices, and which allow us to engage with our physical reality in a new way. These devices allow us to access and view digital information that is saturating our urban spaces, and yet appear invisible to the naked eye. When this information is localized, it can be used to augment physical space with virtual overlays. These augmentations may become physically linked to the environment, establishing virtual landmarks that could only be accessed via these handheld or wearable digital portals through digital applications. This gives way to new forms of engaging in real-time with our socio-cultural daily activities. The literature shows that urban space is reimagined through augmented reality (AR) which plays a significant role in introducing new augmented “places” supporting our physical ones as hybrid realities. This paper, accordingly, investigates the notion of location-based AR experiences on landmarks in the urban space in accordance with our spatial memory, and how augmented reality through mobile devices, plays an important role as a gateway between our physical space and the virtual one. It also seeks to understand how these augmentations might insert and employ symbolic or personal meanings to the space, based on our different interpretations. In doing so, we conducted an integrative analytical review of the most recent literature, to study the forms of augmentations in multiple cities, and how they are used as agents in our spatial experience. The paper then introduced a framework that could be used to assess users’ satisfaction and the design considerations of the AR spatial experience. Finally, the paper adopts a few recent AR practices to be assessed by the proposed framework.
series ASCAAD
email
last changed 2024/02/16 13:29

_id caadria2022_177
id caadria2022_177
authors Pan, Yongjie and Zhang, Tong
year 2022
title Outdoor Thermal Environment Assessment of Existing Residential Areas Supported by UAV Thermal Infrared and 3D Reconstruction Technology
doi https://doi.org/10.52842/conf.caadria.2022.2.729
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 729-738
summary The underlying surface temperature is an effective evaluation index to study the urban micro-scale thermal environment. For surface temperature acquisition, the thermal infrared camera mounted on a unmanned aerial vehicle (UAV) can reduce field work intensity, improve data collection efficiency, and ensure high accuracy at low cost. In order to convert the 2D thermal image into a more intuitive 3D thermal model, the UAV-based thermal infrared 3D reconstruction is adopted. The key element of thermal infrared 3D model reconstruction lies in the processing of thermal infrared images with low resolution and different temperature scales. In order to improve the quality of the final thermal 3D model, this paper proposes the reconstruction of the detailed 3D mesh using visible images (higher resolution), and map then mapping thermal textures onto the mesh using thermal images (low resolution). In addition, absolute temperature values are extracted from thermal images with different temperature ranges to ensure consistence between color and temperature values in the reconstructed thermal 3D model. The thermal 3D model generated for an existing residential area in Nanjing successfully displays the temperature distribution of the underlying surface and provides a valuable basis for outdoor thermal environment assessment.
keywords Thermal image, UAV, 3D reconstruction, Residential outdoor space, Underlying surface temperature, SDG 3, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_298
id sigradi2022_298
authors Perry, Isha N.; Xue, Zhouyi; Huang, Hui-Ling; Crispe, Nikita; Vegas, Gonzalo; Swarts, Matthew; Gomez Z., Paula
year 2022
title Human Behavior Simulations to Determine Best Strategies for Reducing COVID-19 Risk in Schools
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 39–50
summary The dynamics of COVID-19 spread have been studied from an epidemiological perspective, at city, country, and global scales (Rabajante, 2020, Ma, 2020, and Giuliani et al., 2020), although after two years of the pandemic we know that viruses spread mostly through built environments. This study is part of the Spatiotemporal Modeling of COVID-19 spread in buildings research (Gomez, Hadi, and Kemenova et al., 2020 and 2021), which proposes a multidimensional model that integrates spatial configurations, temporal use of spaces, and virus characteristics into one multidimensional model. This paper presents a specific branch of this model that analyzes the behavioral parameters, such as vaccination, masking, and mRNA booster rates, and compares them to reducing room occupancy. We focused on human behavior, specifically human interactions within six feet. We utilized the multipurpose simulation software, AnyLogic, to quantify individual exposure to the virus, in the high school building by Perkins and Will. The results show how the most effective solution, reducing the occupancy rates or redesigning layouts, being the most impractical one, is as effective as 80% of the population getting a third boost.
keywords Spatiotemporal Modeling, Behavior Analytics, COVID-19 Spread, Agent-Based Simulation, COVID-19 Prevention
series SIGraDi
email
last changed 2023/05/16 16:55

_id ijac202220403
id ijac202220403
authors Sardeshpande, Dhanashree; Vasudha Gokhale
year 2022
title “Legibility” a product of obligatory processes in parametric architectural design: A study of implications of associative modeling on design thinking in a parametric architectural design studio
source International Journal of Architectural Computing 2022, Vol. 20 - no. 4, pp. 728–741
summary In a problem-based, digital-intensive learning environment, the increased proliferation of computational tools used for architectural design has led to a fundamental transformation in architectural studios. Many studies have shown that this has significantly led to the change in cognition of design environments in academia. Design decisions are made through a recursive process that is cyclically refined by allowing constant feedback and testing. This paper represents an observational study with an aim to understand the impact of digital mediums on design processes and design outcomes focusing on associative modeling using VPL. It contextualizes the difference, the associative modeling system as a parametric subset brings to design thinking when used as a medium to explore architectural design. It analyzes specific attributes of associative modeling, otherwise native to computational thinking, that contribute to the legibility of the design process. The paper demonstrates how associative modeling allows the design process to be examined and edited at any stage during and even after algorithmic development, bringing in flexibility. It is argued that digital design tool affordances enable students to develop multilayered and more structured design logic that augments cognition bringing more legibility to the design thinking process
keywords architectural design pedagogy, digital design pedagogy, parametric design, design thinking, parametric design thinking, computational thinking, legibility, associative modeling using VPL
series journal
last changed 2024/04/17 14:30

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_404733 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002