CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 675

_id cdrf2022_304
id cdrf2022_304
authors Anni Dai
year 2022
title Co-creation: Space Reconfiguration by Architect and Agent Simulation Based Machine Learning
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_27
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary This research is a manifestation of architectural co-creation between agent simulation based machine learning and an architect’s tacit knowledge. Instead of applying machine learning brains to agents, the author reversed the idea and applied machine learning to buildings. The project used agent simulation as a database, and trained the space to reconfigure itself based on its distance to the nearest agents. To overcome the limitations of machine learning model’s simplified solutions to complicated architectural environments, the author introduced a co-creation method, where an architect uses tacit knowledge to overwatch and have real-time control over the space reconfiguration process. This research combines both the strength of machine learning’s data-processing ability and an architect’s tacit knowledge. Through exploration of emerging technologies such as machine learning and agent simulation, the author highlights limitations in design automation. By combining an architect’s tacit knowledge with a new generation design method of agent simulation based machine learning, the author hopes to explore a new way for architects to co-create with machines.
series cdrf
email
last changed 2024/05/29 14:02

_id caadria2022_152
id caadria2022_152
authors Deshpande, Rutvik, Nisztuk, Maciej, Cheng, Cesar, Subramanian, Ramanathan, Chavan, Tejas, Weijenberg, Camiel and Patel, Sayjel Vijay
year 2022
title Synthetic Machine Learning for Real-time Architectural Daylighting Prediction
doi https://doi.org/10.52842/conf.caadria.2022.1.313
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 313-322
summary "Synthetic Machine Learning‚ offers a revolutionary leap in real-time environmental analysis for conceptual architectural design. By integrating automatic synthetic data generation, artificial neural network (ANN) training and online deployment, Synthetic Machine Learning offers two main advantages over conventional simulation; First, it reduces the analysis time for a reference simulation from minutes to seconds; Second, it is possible to deploy ANN as a web service in an online design environment, which therein increases accessibility, significantly reducing simulation costs and setup time. The application of Synthetic Machine Learning to perform Daylight Autonomy (DA) and Spatial Daylight Autonomy (sDA) studies to maximise building daylighting for a given use, window to wall ratio, and floorplan arrangement is showcased through a preliminary demonstration work. Comparatively the use of algorithmically generated synthetic data versus real-world data is becoming ubiquitous in other disciplines, the advantages of this approach to the building design process are further discussed.
keywords Daylight Autonomy, machine learning, building energy performance, synthetic data-sets, SDG 7, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ijac202220302
id ijac202220302
authors Kabošová, Lenka; Angelos Chronis; Theodoros Galanos
year 2022
title Fast wind prediction incorporated in urban city planning
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 511–527
summary Digital design and analysis tools are continually progressing, enabling more seamless integration of climatic impacts into the conceptual design stage, which naturally means enhanced environmental performance of the final designs. Planning sustainable urban configurations and, consequently, environment-derived architectural forms becomes more rapid and requires less effort enabling smooth incorporation into day-to-day practice. This research paper presents a wind prediction-based architectural design method for improving outdoor wind comfort through urbanism and architecture. The added value of the environment-driven design loop consisting of parametric design, wind flow analysis, and necessary design modifications lies in leveraging the newly developed wind prediction tool InFraRed. As is demonstrated in the application study in Kosice, Slovakia, iterating through various design options and evaluating their impact on the wind flow is swift and reliable. That enables the designer to explore the best-performing design alternatives for outdoor wind comfort, yet the extra time required for the analysis is negligible
keywords real-time wind predictions, wind comfort, parametric design, computational fluid dynamics analysis, machine learning, infrared
series journal
last changed 2024/04/17 14:29

_id ascaad2022_110
id ascaad2022_110
authors Salem, Mona; Moussa, Ramy
year 2022
title A Hybrid Approach Based on Building Physics and Machine Learning for Thermal Comfort Prediction in Smart Buildings
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 253-263
summary One of the most important challenges facing the world is the application of modern technology in order to create smart buildings that achieve sustainable development goals (SDGs). Thermal comfort and reduction of energy consumption in buildings are considered important factors which, in turn, are reflected in creating a healthy environment and improving human productivity. Internet of Things (IoT) provides an ideal solution for collecting real-time data on the factors affecting indoor thermal comfort and energy consumption. However, comfort level is subjective and depends on many factors, which may not be learned by conventional models, an integrated model depending on thermal comfort factors is needed. In this work, a hybrid physics-based model incorporated with machine learning techniques is used for the prediction of thermal comfort inside buildings. XGBoost (eXtreme Gradient Boost) algorithm method was used due to its abilities to handle complex problems. A calculated dataset was extracted from the physics-based model gathered with the environmental variables data such as humidity, moisture, temperature, and air velocity collected from IoT devices. The results show an improvement in the prediction of the thermal comfort approach as compared with the conventional models. The XGBoost algorithm can exhibit an effective solution for eliminating deficiencies of traditional models and can be used when designing smart buildings, simulating, and evaluating the designed buildings, controlling energy consumption, and achieving thermal comfort.
series ASCAAD
email
last changed 2024/02/16 13:38

_id caadria2022_239
id caadria2022_239
authors Huang, Chenyu, Zhang, Gengjia, Yin, Minggang and Yao, Jiawei
year 2022
title Energy-driven Intelligent Generative Urban Design, Based on Deep Reinforcement Learning Method With a Nested Deep Q-R Network
doi https://doi.org/10.52842/conf.caadria.2022.1.233
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 233-242
summary To attain "carbon neutrality," lowering urban energy use and increasing the use of renewable resources have become critical concerns for urban planning and architectural design. Traditional energy consumption evaluation tools have a high operational threshold, requiring specific parameter settings and cross-disciplinary knowledge of building physics. As a result, it is difficult for architects to manage energy issues through 'trial and error' in the design process. The purpose of this study is to develop an automated workflow capable of providing urban configurations that minimizing the energy use while maximizing rooftop photovoltaic power potential. Based on shape grammar, parametric meta models of three different urban forms were developed and batch simulated for its energy performance. Deep reinforcement learning (DRL) is introduced to find the optimal solution of the urban geometry. A neural network was created to fit a real-time mapping of urban form indicators to energy performance and was utilized to predict reward for the DRL process, namely a Deep R-Network, while nested within a Deep Q-Network. The workflow proposed in this paper promotes efficiency in optimizing the energy performance of solutions in the early stages of design, as well as facilitating a collaborative design process with human-machine interaction.
keywords energy-driven urban design, intelligent generative design, rooftop photovoltaic power, deep reinforcement learning, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2024_186
id caadria2024_186
authors Huang, Jingfei and Tu, Han
year 2024
title Inconsistent Affective Reaction: Sentiment of Perception and Opinion in Urban Environments
doi https://doi.org/10.52842/conf.caadria.2024.2.395
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 395–404
summary The ascension of social media platforms has transformed our understanding of urban environments, giving rise to nuanced variations in sentiment reaction embedded within human perception and opinion, and challenging existing multidimensional sentiment analysis approaches in urban studies. This study presents novel methodologies for identifying and elucidating sentiment inconsistency, constructing a dataset encompassing 140,750 Baidu and Tencent Street view images to measure perceptions, and 984,024 Weibo social media text posts to measure opinions. A reaction index is developed, integrating object detection and natural language processing techniques to classify sentiment in Beijing Second Ring for 2016 and 2022. Classified sentiment reaction is analysed and visualized using regression analysis, image segmentation, and word frequency based on land-use distribution to discern underlying factors. The perception affective reaction trend map reveals a shift toward more evenly distributed positive sentiment, while the opinion affective reaction trend map shows more extreme changes. Our mismatch map indicates significant disparities between the sentiments of human perception and opinion of urban areas over the years. Changes in sentiment reactions have significant relationships with elements such as dense buildings and pedestrian presence. Our inconsistent maps present perception and opinion sentiments before and after the pandemic and offer potential explanations and directions for environmental management, in formulating strategies for urban renewal.
keywords Urban Sentiment, Affective Reaction, Social Media, Machine Learning, Urban Data, Image Segmentation.
series CAADRIA
email
last changed 2024/11/17 22:05

_id caadria2022_420
id caadria2022_420
authors van Ameijde, Jeroen and Leung, Carson Ka Shut
year 2022
title UAV-based People Location Tracking and Analysis for the Data-Driven Assessment of Social Activities in Public Spaces
doi https://doi.org/10.52842/conf.caadria.2022.1.293
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 293-302
summary In sustainable high-density cities, public spaces play an important role in supporting social and community health and well-being. Amidst ongoing urbanisation, it is of increasing importance to study public space interaction patterns and placemaking processes that contribute to the quality of life of urban residents. This paper reports on the development of a new methodology for the computational tracking and analysis of social activities in urban spaces, using Computer Vision Object Detection (CVOD) techniques to create digitalised pedestrian trajectory data. Referring to concepts from humanistic geography and time geography, our method offers a new platform for data-driven urban place studies, detecting co-presence and social interaction in relation to urban morphology. This paper focuses on the development of Machine Learning protocols, algorithms for tracing and mapping pedestrian trajectories in a georeferenced photogrammetry model, and computational analysis of co-presence. The resulting workflow forms a foundation for future research around detecting, analysing and quantifying behavioural parameters, to evaluate the ability of public spaces to support social interaction and placemaking.
keywords Public Space Analysis, Pedestrian Location Tracking, Computer Vision Object Detection, Machine Learning, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_223
id cdrf2022_223
authors Zhiyi Dou, Waishan Qiu, Wenjing Li, Dan Luo
year 2022
title Evaluation Process of Urban Spatial Quality and Utility Trade-Off for Post-COVID Working Preferences
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_19
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The formation of cities, and the relocation of workers to densely populated areas reflect a spatial equilibrium, in which the higher real consumption levels of urban areas are offset by lower non-monetary amenities [1]. However, as the society progress toward a post-COVID stage, the prevailing decentralized delivery systems and location-based services, the growing trend of working from home, with citizens’ shifting preference of de-appreciating densities and gathering, have not only changed the possible spatial distribution of opportunities, resources, consumption and amenities, but also transformed people’s preference regarding desirable urban spatial qualities, value of amenities, and working opportunities [2, 3].

This research presents a systematic method to evaluate the perceived trade-off between urban spatial qualities and urban utilities such as amenities, transportation, and monetary opportunities by urban residence in the post-COVID society. The outcome of the research will become a valid tool to drive and evaluate urban design strategies based on the potential self-organization of work-life patterns and social profiles in the designated neighbourhood.

To evaluate the subjective perception of the urban residence, the study started with a comparative survey by asking residence to compare two randomly selected urban contexts in a data base of 398 contexts sampled across Hong Kong and state their living preference under the presumption of following scenarios: 1. working from home; 2. working in city centre offices. Core information influencing the spatial equilibrium are provided in the comparable urban context such as street views, housing price, housing space, travel time to city centre, adjacency to public transport and amenities, etc. Each context is given a preference score calculated with Microsoft TrueSkill Bayesian ranking algorithm [4] based on the comparison survey of two scenarios.

The 398 contexts are further analysed via GIS and image processing, to be deconstructed into numerical values describing main features for each of the context that influence urban design strategies such as composition of spatial features, amenity allocation, adjacency to city centre and public transportations. Machine learning models are trained with the numerical values of urban features as input and two preference scores for the two working scenarios as the output. The correlation heat maps are used to identify main urban features and its p-value that influence residence’s preference under two working scenarios in post–COVID era. The same model could also be applied to inform the direction of urban design strategies to construct a sustainable community for each type of working population and validate the design strategies via predicting its competitiveness in attracting residence and developing target industries.

series cdrf
email
last changed 2024/05/29 14:02

_id ijac202220209
id ijac202220209
authors Tunçer, Bige; Francisco Benita
year 2022
title Data-driven thinking for measuring the human experience in the built environment
source International Journal of Architectural Computing 2022, Vol. 20 - no. 2, pp. 316–333
summary This article introduces a methodology to implement Data-driven Thinking in the context of urban design. We present the results of a case study based on a 7-day workshop with 10 participants with landscape design and architecture background. The goal of the workshop was to expose participants to Data-driven Thinking through experimental design, multi-sensor data collection, data analysis, visualization, and insight generation. We evaluate their learning experience in designing an experimental setup, collecting real-time immediate environmental and physiological body reactions data. Our results from the workshop show that participants increased their knowledge about measuring, visualizing and understanding data of the surrounding built environment
keywords Data-driven thinking, urban sensing, body reactions, pedagogy, design support
series journal
last changed 2024/04/17 14:29

_id caadria2022_336
id caadria2022_336
authors Araujo, Goncalo, Santos, Luis, Leitao, Antonioand Gomes, Ricardo
year 2022
title AD-Based Surrogate Models for Simulation and Optimization of Large Urban Areas
doi https://doi.org/10.52842/conf.caadria.2022.2.689
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 689-698
summary Urban Building Energy Model (UBEM) approaches help analyze the energy performance of urban areas and predict the impact of different retrofit strategies. However, UBEM approaches require a high level of expertise and entail time-consuming simulations. These limitations hinder their successful application in designing and planning urban areas and supporting the city policy-making sector. Hence, it is necessary to investigate alternatives that are easy-to-use, automated, and fast. Surrogate models have been recently used to address UBEM limitations; however, they are case-specific and only work properly within specific parameter boundaries. We propose a new surrogate modeling approach to predict the energy performance of urban areas by integrating Algorithmic Design, UBEM, and Machine Learning. Our approach can automatically model and simulate thousands of building archetypes and create a broad surrogate model capable of quickly predicting annual energy profiles of large urban areas. We evaluated our approach by applying it to a case study located in Lisbon, Portugal, where we compare its use in model-based optimization routines against conventional UBEM approaches. Results show that our approach delivers predictions with acceptable accuracy at a much faster rate.
keywords urban building energy modelling, algorithmic design, machine learning in Architecture, optimization of urban areas, SDG 7, SDG 12, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_325
id caadria2022_325
authors Cui, Qinyu, Zhang, Shuyu and Huang, Yiting
year 2022
title Retail Commercial Space Clustering Based on Post-carbon Era Context: A Case Study of Shanghai
doi https://doi.org/10.52842/conf.caadria.2022.1.515
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 515-524
summary In the post-carbon era, it has become a development and research trend on adjusting commercial locations to help achieve resource conservation by using big data. This paper uses multi-source urban data and machine learning to make reasonable evaluations and adjustments to commercial district planning. Many relevant factors are affecting urban commercial agglomeration, but how to select the appropriate ones among the many factors is a problem to be considered and studied, while there may be spatial differences in the strength of each influencing factor on commercial agglomeration. Therefore, this paper takes Shanghai, a city with a high economic and commercial development level in China, as an example and identifies the influencing factors through a literature review. Next, this paper uses the machine learning BORUTA algorithm of features selection to screen the influencing factors. It then uses multi-scale geographically weighted regression model (MGWR) to analyse the spatial heterogeneity of factors affecting retail spatial agglomeration. Finally, based on the background of the changing transportation modes and the unchanged social activities in the post-carbon era, the future spatial planning pattern of retail commercial space is discussed to provide particular suggestions for the future location adjustment of urban commerce.
keywords Business District Hierarchy, Agglomeration Effect, Spatial Variability, Multi-scale Geographically Weighted Regression Model, Machine Learning, Big Data Analysis, SDG 8, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_3
id cdrf2022_3
authors Deli Liu and Keqi Wang
year 2022
title Spatial Analysis of Villages in Jilin Province Based on Space Syntax and Machine Learning
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_1
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The development of machine learning technology gives architects and urban planners a new tool that can be used for research and design. The topic of this paper is to analyze the rural space of Jilin Province with the machine learning algorithms and space syntax theory, and to obtain the inherent formation and development laws of rural spatial forms, which can be used as a reference and evaluation system for subsequent rural development, and also can emphasize the locality and continuity of rural development. First, based on geographic information data, researching the connection between the distribution of villages and geographic data at a macro level and to classify them. Then, from each category, selecting one township and use all villages in its area as samples for the more specific study. Spatial features of individual village are extracted based on space syntax theory, and representative spatial features which can as feature values for cluster analysis are selected through comparative analysis. Then classify villages from high-dimensional data and explore their type characteristics. Finally, we hope the result of this study can help provide useful theoretical references for rural construction and nature conservation in the future.
series cdrf
email
last changed 2024/05/29 14:02

_id ecaade2022_367
id ecaade2022_367
authors Doumpioti, Christina and Huang, Jeffrey
year 2022
title Field Condition - Environmental sensibility of spatial configurations with the use of machine intelligence
doi https://doi.org/10.52842/conf.ecaade.2022.2.067
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 67–74
summary Within computational environmental design (CED), different Machine Learning (ML) models are gaining ground. They aim for time efficiency by automating simulation and speeding up environmental performance feedback. This study suggests an approach that enhances not the optimization but the generative aspect of environmentally driven ML processes in architectural design. We follow Stan Allen's (2009) idea of 'field conditions' as a bottom-up phenomenon according to which form and space emerge from local invisible and dynamic connections. By employing parametric modeling, environmental analysis data, and conditional Generative Adversarial Networks [cGAN] we introduce a generative approach in design that reverses the typical design process of going from formal interpretation to analysis and encourages the emergence of spatial configurations with embedded environmental intelligence. We call it Intensive-driven Environmental Design Computation [IEDC], and we employ it in a case study on a residential building typology encountered in the Mediterranean. The paper describes the process, emphasizing dataset preparation as the stage where the logic of field conditions is established. The proposed research differentiates from cGAN models that offer automatic environmental performance predictions to one that spatial predictions stem from dynamic fields.
keywords Field Architecture, Environmental Design, Generative Design, Machine Learning, Residential Typologies
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_145
id caadria2022_145
authors Duering, Serjoscha, Fink, Theresa, Chronis, Angelos and Konig, Reinhard
year 2022
title Environmental Performance Assessment - The Optimisation of High-Rises in Vienna
doi https://doi.org/10.52842/conf.caadria.2022.1.545
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 545-554
summary Our cities are facing different kinds of challenges - in parallel to the urban transformation and densification, climate targets and objectives of decision-makers are on the daily agenda of planning. Therefore, the planning of new neighbourhoods and buildings in high-density areas is complex in many ways. It requires intelligent processes that automate specific aspects of planning and thus enable impact-oriented planning in the early phases. The impacts on environment, economy and society have to be considered for a sustainable planning result in order to make responsible decisions. The objective of this paper is to explore pathways towards a framework for the environmental performance assessment and the optimisation of high-rise buildings with a particular focus on processing large amounts of data in order to derive actionable insights. A development area in the urban centre of Vienna serves as case study to exemplify the potential of automated model generation and applying ML algorithm to accelerate simulation time and extend the design space of possible solutions. As a result, the generated designs are screened on the basis of their performance using a Design Space Exploration approach. The potential for optimisation is evaluated in terms of their environmental impact on the immediate environment.
keywords simulation, prediction and evaluation, machine learning, computational modelling, digital design, high-rises, SGD 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_456
id caadria2022_456
authors Gong, Pixin, Huang, Xiaoran, Huang, Chenyu and White, Marcus
year 2022
title Quantifing the Imbalance of Spatial Distribution of Elderly Service with Muti-source Data
doi https://doi.org/10.52842/conf.caadria.2022.1.455
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 455-464
summary With the growing challenge of aging populations around the world, the study of the elderly service is an essential initiative to accommodate the particular needs of the disadvantaged communities and promote social equity. Previous research frameworks are very case-specific with limited evaluation indicators that cannot be extended to other scenarios and fields. Based on multi-source data and Geographic Information System (GIS), this paper quantifies and visualises the imbalance in the spatial distribution of elderly services in 218 neighbourhoods in Shijingshan District, Beijing, China. Mortality data were obtained, and the most contributing indicators to mortality were investigated by correlation analysis. Finally, mapping between other facility indicators to mortality rates was constructed using machine learning to further investigate the factors influencing the quality of elderly services at the community level. The conclusion shows that the functional density of transportation facilities, medical facilities, living services facilities, and the accessibility of elderly care facilities are most negatively correlated with mortality. The correlation conclusion is combined with a machine learning prediction model to provide future recommendations for the construction of unbalanced elderly neighbourhoods. This research offers a novel systematic method to study urban access to elderly services as well as a new perspective on improving social fairness.
keywords elderly service facilities, multi-source data, machine learning, SDG 3, SDG 10, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_161
id ecaade2022_161
authors Kharbanda, Kritika, Papadopoulou, Iliana, Pouliou, Panagiota, Daw, Karim, Belwadi, Anirudh and Loganathan, Hariprasath
year 2022
title LearnCarbon - A tool for machine learning prediction of global warming potential from abstract designs
doi https://doi.org/10.52842/conf.ecaade.2022.2.601
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 601–610
summary The new construction that is projected to take place between 2020 and 2040 plays a critical role in embodied carbon emissions. The change in material selection is inversely proportional to the budget, as the project progresses. Given the fact that early-stage design processes often do not include environmental performance metrics, there is an opportunity to investigate a toolset that enables early-stage design processes to integrate this type of analysis into the preferred workflow of concept designers. The value here is that early-stage environmental feedback can inform the crucial decisions that are made in the beginning, giving a greater chance for a building with better environmental performance in terms of its life cycle. This paper presents the development of a tool called LearnCarbon, as a plugin of Rhino3d, used to educate architects and engineers in the early stages about the environmental impact of their design. It facilitates two neural networks trained with the Embodied Carbon Benchmark Study by Carbon Leadership Forum, which learn the relationship between building geometry, typology, and structure with the Global Warming potential in tCO2e. The first one, a regression model, is able to predict the GWP based on the massing model of a building, along with information about typology and location. The second one, a classification model, predicts the construction type given a massing model and target GWP. LearnCarbon can help improve the building life cycle impact significantly, through early predictions of the structure’s material, and can be used as a tool for facilitating sustainable discussions between the architect and the client.
keywords Machine Learning, Carbon Emissions, LCA, Rhino Plug-in
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_279
id caadria2022_279
authors Kim, Dongyun, Guida, George and Garcia del Castillo y Lopez, Jose Luis
year 2022
title PlacemakingAI : Participatory Urban Design with Generative Adversarial Networks
doi https://doi.org/10.52842/conf.caadria.2022.2.485
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 485-494
summary Machine Learning (ML) is increasingly present within the architectural discipline, expanding the current possibilities of procedural computer-aided design processes. Practical 2D design applications used within concept design stages are however limited by the thresholds of entry, output image fidelity, and designer agency. This research proposes to challenge these limitations within the context of urban planning and make the design processes accessible and collaborative for all urban stakeholders. We present PlacemakingAI, a design tool made to envision sustainable urban spaces. By converging supervised and unsupervised Generative Adversarial Networks (GANs) with a real-time user interface, the decision-making process of planning future urban spaces can be facilitated. Several metrics of walkability can be extracted from curated Google Street View (GSV) datasets when overlayed on existing street images. The contribution of this framework is a shift away from traditional design and visualization processes, towards a model where multiple design solutions can be rapidly visualized as synthetic images and iteratively manipulated by users. In this paper, we discuss the convergence of both a generative image methodology and this real-time urban prototyping and visualization tool, ultimately fostering engagement within the urban design process for citizens, designers, and stakeholders alike.
keywords Machine Learning, Generative Adversarial Networks, user interface, real-time, walkability, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_176
id ecaade2022_176
authors Kotov, Anatolii, Starke, Rolf and Vukorep, Ilija
year 2022
title Spatial Agent-based Architecture Design Simulation Systems
doi https://doi.org/10.52842/conf.ecaade.2022.2.105
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 105–112
summary This paper presents case studies and analysis of agent-based reinforcement learning (RL) systems towards practical applications for specific architecture/engineering tasks using Unity 3D-based simulation methods. Finding and implementing sufficient abstraction for architecture and engineering problems to be solved by agent-based systems requires broad architectural knowledge and the ability to break down complex problems. Modern artificial intelligence (AI) and machine learning (ML) systems based on artificial neural networks can solve complex problems in different domains such as computer vision, language processing, and predictive maintenance. The paper will give a theoretical overview, such as more theoretical abstractions like zero-sum games, and a comparison of presented games. The application section describes a possible categorization of practical usages. From more general applications to more narrowed ones, we explore current possibilities of RL application in the field of relatable problems. We use the Unity 3D engine as the basis of a robust simulation environment.
keywords AI Aided Architecture, Reinforcement Learning, Agent Simulation
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2024_87
id caadria2024_87
authors Li, Jiongye and Stouffs, Rudi
year 2024
title Distribution of Carbon Storage and Potential Strategies to Enhance Carbon Sequestration Capacity in Singapore: A Study Based on Machine Learning Simulation and Geospatial Analysis
doi https://doi.org/10.52842/conf.caadria.2024.2.089
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 89–98
summary The expansion of urbanization leads to significant changes in land use, consequently affecting carbon storage. This research aims to investigate the carbon loss due to land use alterations and proposes strategies for mitigation. Utilizing existing land use data from 2017 and 2022, along with simulated data for 2025 generated by an ANN model and Cellular Automata, we identified changes in land use. These changes were then correlated with variations in carbon storage, both gains and losses. Our findings reveal a significant loss of 36,859 metric tons of carbon storage from 2017 to 2022. The projection for 2025 estimates a further reduction, reaching a total loss of 83,409 metric tons. By employing the LISA method, we identified that low-carbon storage zones are concentrated in the southeast region of the research site. By overlaying these zones with areas of carbon storage loss, we pinpointed regions severely affected by carbon depletion. Consequently, we propose that mitigation strategies should be imperatively implemented in these identified areas to counteract the trend of carbon storage loss. This approach offers urban planners a solution to identify areas experiencing carbon storage decline. Moreover, our research methodology provides a novel framework for scholars studying similar carbon issues.
keywords land use and land cover (LULC) changes, simulated LULC, machine learning model, carbon storage changes, GIS
series CAADRIA
email
last changed 2024/11/17 22:05

_id cdrf2022_244
id cdrf2022_244
authors Miric Ljubica
year 2022
title Collective Intelligence and Effects of Anticipation
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_21
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Based on the extrapolation of contemporary theories that mind is a prediction machine, this paper points out the repetitive nature of the prediction parameters of collective intelligence anticipation scenarios and questions the hybridity of fears and desires regarding the evolution of artificial intelligence. Through the analysis of mnemonic principles of remembrance it combines the ancient technique of the art of memory with the contemporary views on the dynamics of perceptions in order to establish a link between the spatial constructs and their rapid expansion through the presence of the digital medium while in parallel suggesting an approach to the integration of the necessity for a more sophisticated systems of artificial intelligence into the collective intelligence. The main question of this paper is whether the anticipation of the future results in the creation of such a future, can a prediction-based interaction between man and machine govern its outcome? In order to attempt to develop potential new methods of integrating an idea of a different, more neutral outcome, the focus will be on the characteristics of perception that surpass the influenced, emotional response, and the observation of the general, innate human mechanisms of alignment. Through the study of the principles of memory the aim of this paper is to ask whether the individual comprehension of space and time as disengaged in given examples can in fact produce a system of ideas compatible in its nature to that of the machine itself. What are the main aspects of both human and machine that would stem their hybridity, and how should the collective intelligence adapt to enable the interlink?
series cdrf
email
last changed 2024/05/29 14:02

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_397905 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002