CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 540

_id caadria2022_338
id caadria2022_338
authors Dias Guimaraes, Gabriela, Gu, Ning, Gomes da Silva, Vanessa, Ochoa Paniagua, Jorge, Rameezdeen, Rameez, Mayer, Wolfgang and Kim, Ki
year 2022
title Data, Stakeholders, and Environmental Assessment: A BIM-Enabled Approach to Designing-out Construction and Demolition Waste
doi https://doi.org/10.52842/conf.caadria.2022.2.587
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 587-596
summary Construction and Demolition waste has started to become a target in the path for a more sustainable industry mainly due to massive resource consumption, land depletion and emissions. As a substantial amount of waste originates due to inadequate decision-making during design, strategies to design-out waste are required. Accurate environmental impact of, not only the whole building, but construction materials and elements are crucial to the development of these strategies, but dependent on data availability, expert knowledge and proper sharing and storage of information. Hence, this study aims to investigate the relation between data, stakeholders and environmental assessment to properly build a design-out waste framework. An in-depth data collection from literature review and stakeholders' interviews guided the development of a conceptual framework to assist designers with information related to waste production and its reduction. After that, the necessary technical specifications for its adoption through a BIM environment were analysed. Its contribution is firstly on a shift of thinking during the design phase, as the goal is to provide environmental information so designers can take into consideration the long-term consequences of waste from different strategies and solutions; and secondly in the development of a computational tool that facilitates the design-out process.
keywords Construction and Demolition Waste, Design, BIM, Environmental Data, Stakeholders, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_263
id caadria2022_263
authors Gough, Phillip, Globa, Anastasia and Reinhardt, Dagmar
year 2022
title Computational Design with Myco-Materials
doi https://doi.org/10.52842/conf.caadria.2022.2.649
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 649-658
summary A sustainable, circular, post-carbon economy of the future will take waste material from one part of the economy and give it new value. This will reduce energy and material leakage from the economy and create new opportunities for innovation in materials. Myco-materials provide an opportunity to transform ligno-cellulosic matter, such as waste cardboard and sawdust, into useful materials. This is achieved by using a fungus to bind together these substrates into useful forms. This paper explores how computational design parameters can be informed from the mycelia growth process. We created several prototype forms that show behaviour of myco-materials through the growing and drying process. These show how inclusion of cardboard substructures may improve the performance of the resulting material by increasing its stability during the drying process. We also demonstrate limits to the size of myco-materials through computational design. Myco-materials will likely be part of a sustainable post-carbon economy, by bringing new value to waste material, and this paper shows how computational design can be informed by mycelial growth.
keywords Mycelia, Biodesign, Growing Designs, Computational Design, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_102
id sigradi2022_102
authors Barreto, Joao; Becker, Newton; Guedes, Joana; Cidrack, Renata
year 2022
title A Parametric Approach to Efficient Implementation of Green Infrastructure in the Urban Field.
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 249–260
summary Water availability has a key role in their process of occupation. However, accelerated urbanization had several detrimental impacts, increasing the vulnerability of urban communities. Because of the limitations of traditional planning, an alternative approach is emerging to respond to the constant changes in the landscape. Now, green infrastructure (GI), an ecosystem-based approach (EbA), is being used combined with traditional solutions to increase the resilience of the cities. In this paper, we proposed the use of an algorithm to determine the best place to implement GI. The algorithm used the inputs to develop a multi-criteria analysis capable of translating urban complexity. Results show that the GI solution can’t be efficiently implemented without context evaluation. However, the algorithm has the potential to become an informative tool in the decision-making process of urban planning.
keywords Parametric Analysis, Bioretention, Sustainable Design, Green Infrastructure, Water Resources
series SIGraDi
email
last changed 2023/05/16 16:55

_id acadia23_v3_195
id acadia23_v3_195
authors Gandia, Augusto; Iverson, Aileen
year 2023
title Hybrid Making: Physical Explorations with Computational Matter
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary This publication introduces hybrid making as the subject of a workshop conducted at the ACADIA Conference 2023 (See Fig. 1). We contextualize hybrid making in today’s design digitalization marked by the opening of Artificial Intelligence (AI), wherein AI is seen as an accelerant in the ongoing digital evolution. In design-related practice and research, digital design is increasingly dominant (See Fig. 2); as shown in a quick survey of ACADIA 2022 wherein 10 out of 14 workshops focused on topics related to digitalization. Given this context, the subject of our workshop, hybrid making, highlights that which is excluded in purely digital processes, namely a richness of designing associated with the qualities of materials and fabrication (See Fig. 3). Hybrid making seeks to influence digital evolution with aspects of analogue processes such as the integration of constraints related to actual physical materials and their context. The task of hybrid making, therefore, is to introduce actual constraints into digital ones (See Fig. 4).
series ACADIA
type workshop
email
last changed 2024/04/17 14:00

_id acadia22_444
id acadia22_444
authors Gong, Lei; Zhou, Xinjie; Chai, Hua; Liu, Junguang; Yuan, Philip F.
year 2022
title Tailoring Bending Behavior
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 444-455.
summary Bending-active structures have drawn considerable attention in the past decades of research and practice. However, most existing bending active structures are made of homogeneous materials with constant bending properties, making it difficult to achieve complex design intentions. This paper presents a novel hybrid material design strategy that enables the realization of curved active structures with complex geometries. This hybrid material consists of birch plywood and 3D printed PETG. The bending behavior of the hybrid material can be adjusted by changing the density of the 3D-printed part.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id caadria2022_317
id caadria2022_317
authors Grugni, Francesco, Voltolina, Marco and Cattaneo, Tiziano
year 2022
title Use of Object Recognition AI in Community and Heritage Mapping for the Drafting of Sustainable Development Strategies Suitable for Individual Communities, With Case Studies in China, Albania and Italy
doi https://doi.org/10.52842/conf.caadria.2022.1.717
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 717-726
summary In order to plan effective strategies for the sustainable development of individual communities, as prescribed by the United Nations‚ Sustainable Development Goal 11, it is necessary for designers and policy makers to gain a deep awareness of the bond that connects people to their territory. AI-driven technologies, and specifically Object Recognition algorithms, are powerful tools that can be used to this end, as they make it possible to analyse huge amounts of pictures shared on social media by residents and visitors of a specific area. A model of the emotional, subjective point of view of the members of the community is thus generated, giving new insights that can support traditional techniques such as surveys and interviews. For the purposes of this research, three case studies have been considered: the neighbourhood around Siping Road in Shanghai, China; the village of Moscopole in southeastern Albania; the rural area of Oltrep Pavese in northern Italy. The results demonstrate that a conscious use of AI-driven technologies does not necessarily imply homogenisation and flattening of individual differences: on the contrary, in all three cases diversities tend to emerge, making it possible to recognise and enhance the individuality of each community and the genius loci of each place.
keywords sustainable communities, artificial intelligence, object recognition, social media, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_148
id caadria2022_148
authors Khajehee, Arastoo, Yabe, Taisei, Lu, Xuanyu, Liu, Jia and Ikeda, Yasushi
year 2022
title Development of an Affordable On-Site Wood Craft System: Interactive Fabrication via Digital Tools
doi https://doi.org/10.52842/conf.caadria.2022.2.031
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 31-40
summary This research aims to develop a craft system that simplifies the transition between design and fabrication. One of the main purposes of this system is to allow non-professionals to engage in craft with the aid of affordable digital fabrication tools. By removing the technical hurdles that prevent beginners from engaging in digital fabrication, the system aims to enable those who are interested in making things as a hobby or DIY projects to enjoy digital craft. The developed craft system provides a comprehensive workflow, starting from the initial shape to the final CNC milling machine G-Code generation. It is developed through Object-Oriented Programming, resulting in an interactive system that provides information about the fabricability of the final shelf structure to user/designer. The real-time design-to-fabrication aspect allows for some degree of simultaneous design changes, making the craft experience more center864108000enjoyable. In line with the UN Sustainable Development Goals, this research is an attempt to provide more opportunities for individuals to get into digital fabrication, enabling them to acquire skills within the rapidly growing industry. Furthermore, as demonstrated by other digital fabrication tools like 3D printers, DIY builds can potentially be economically beneficial for the users.
keywords Digital Fabrication, Real-Time Design to Fabrication, Affordable On-Site Craft, SDG 8, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_286
id caadria2022_286
authors Khean, Nariddh, During, Serjoscha, Chronis, Angelos, Konig, Reinhard and Haeusler, Matthias Hank
year 2022
title An Assessment of Tool Interoperability and its Effect on Technological Uptake for Urban Microclimate Prediction with Deep Learning Models
doi https://doi.org/10.52842/conf.caadria.2022.1.273
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 273-282
summary The benefits of deep learning (DL) models often overshadow the high costs associated with training them. Especially when the intention of the resultant model is a more climate resilient built environment, overlooking these costs are borderline hypocritical. However, the DL models that model natural phenomena‚conventionally simulated through predictable mathematical modelling‚don't succumb to the costly pitfalls of retraining when a model's predictions diverge from reality over time. Thus, the focus of this research will be on the application of DL models in urban microclimate simulations based on computational fluid dynamics. When applied, predicting wind factors through DL, rather than arduously simulating, can offer orders of magnitude of improved computational speed and costs. However, despite the plethora of research conducted on the training of such models, there is comparatively little work done on deploying them. This research posits: to truly use DL for climate resilience, it is not enough to simply train models, but also to deploy them in an environment conducive of rapid uptake with minimal barrier to entry. Thus, this research develops a Grasshopper plugin that offers planners and architects the benefits gained from DL. The outcomes of this research will be a tangible tool that practitioners can immediately use, toward making effectual change.
keywords Deep Learning, Technological Adoption, Fluid Dynamics, Urban Microclimate Simulation, Grasshopper, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_279
id caadria2022_279
authors Kim, Dongyun, Guida, George and Garcia del Castillo y Lopez, Jose Luis
year 2022
title PlacemakingAI : Participatory Urban Design with Generative Adversarial Networks
doi https://doi.org/10.52842/conf.caadria.2022.2.485
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 485-494
summary Machine Learning (ML) is increasingly present within the architectural discipline, expanding the current possibilities of procedural computer-aided design processes. Practical 2D design applications used within concept design stages are however limited by the thresholds of entry, output image fidelity, and designer agency. This research proposes to challenge these limitations within the context of urban planning and make the design processes accessible and collaborative for all urban stakeholders. We present PlacemakingAI, a design tool made to envision sustainable urban spaces. By converging supervised and unsupervised Generative Adversarial Networks (GANs) with a real-time user interface, the decision-making process of planning future urban spaces can be facilitated. Several metrics of walkability can be extracted from curated Google Street View (GSV) datasets when overlayed on existing street images. The contribution of this framework is a shift away from traditional design and visualization processes, towards a model where multiple design solutions can be rapidly visualized as synthetic images and iteratively manipulated by users. In this paper, we discuss the convergence of both a generative image methodology and this real-time urban prototyping and visualization tool, ultimately fostering engagement within the urban design process for citizens, designers, and stakeholders alike.
keywords Machine Learning, Generative Adversarial Networks, user interface, real-time, walkability, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_121
id ascaad2022_121
authors Mohsen, Hiba; Tohme, Mohamad; Nashi, Rawan
year 2022
title From Passive to Immersive: Metaverse as a Pedagogical Approach in History Class: Presenting a Constant Reminder of Historical Remnants and a Customizable Reality for Future Preferences; Beirut as a Case Study
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 202-219
summary It is widely acknowledged that passive, non-immersive strategies of teaching adopted in history classes in Lebanon do not offer the right platform for knowledge retention in students. With that said, virtual reality and the use of Metaverse as a pedagogical approach is prophesied as the most apt to invoke a positive attitude from children towards the topic being studied, and thus, in this case, it increases their awareness of the existing built heritage they live amidst. This research sets out from a recent project implemented by Beirut Arab University, together with three UN agencies. The latter aimed for “developing children emotional attachment to the territory of Beirut Blast through activating their participation in the construction of cognitive maps by playing with spatial maps strategically designed in a game environment”. A thorough assessment of the outcomes of the activities implemented throughout the project, including the executed physical models and game boards that simulate myriad neighborhoods in Beirut, is carried out, followed by an analytical comparison of these outcomes with those from using the proposed innovative digital tools. A pilot study is conducted on Martyr’s square to assess how virtual tools can enhance the sensory experience and perception of the built space, making youth active learners rather than passive. It illustrates how introducing children to educating architecture from a young age not only nurtures their awareness of their local neighborhoods, but also generates responsible citizens. The outcome of this study can be divided over a timeline of past, present, and future. The virtual recreation of old Beirut aims to enhance the virtual learning experience as opposed to that from books and chalkboards. Children are expected to formulate a better understanding of their heritage, become more attached to the remnants of the latter, and set out to customize the reality to their preferences or vision of how a better, sustainable Beirut looks like.
series ASCAAD
email
last changed 2024/02/16 13:38

_id caadria2022_264
id caadria2022_264
authors Zhang, Garry Hangge, Meng, Leo Lin, Gardner, Nicole, Yu, Daniel and Haeusler, Matthias Hank
year 2022
title Transit Oriented Development Assistive Interface (TODAI): A Machine Learning Powered Computational Urban Design Tool for TOD
doi https://doi.org/10.52842/conf.caadria.2022.1.253
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 253-262
summary Transit-oriented Development(TOD) is widely regarded as a sustainable development paradigm for its sensible space planning and promotion of public transit access. Research in providing decision support tools of TOD may contribute to the Sustainable Development Goals, especially towards sustainable cities and communities (SDG goal 11).While the existing Geographic Information System(GIS) approach may well inform TOD planning, computational design, simulation, and visualisation techniques can further enhance this process. The research aims to provide a data-driven, computational-aided planning support system (PSS) to enhance the TOD decision-making process. The research adopts an action research methodology, which iteratively designs experiments and inquires through situating the research question in real-world practice. A work-in-progress prototype is provided - Transit-Oriented Development Assistive Interface (TODAI), along with an experiment in a newly proposed metro station in Sydney, Australia. TODAI provides real-time visualisation of urban forms and analytical data indicators reflecting key considerations relevant to TOD performance. A regressive machine learning model (XGBoost) is used to make predictions of analytical indicators, promptly producing outcomes that may otherwise require a costly computational operation.
keywords TransUrban Planning, Transit-Oriented Development, Planning Support System, Machine Learning, SDG 11it-Oriented Development, Urban Planning, Machine Learning, Computational Design, SDG11, Sustainable Cities and Communities
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_291
id caadria2022_291
authors Zhang, Qiyan, Li, Biao, Mo, Yichen, Chen, Yulong and Tang, Peng
year 2022
title A Web-based Interactive Tool for Urban Fabric Generation: A Case Study of Chinese Rural Context
doi https://doi.org/10.52842/conf.caadria.2022.1.625
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 625-634
summary The design of rural fabric is significant for making sustainable communities and requires innovative design models and prospective work paths. This paper presents an interactive tool based on the web to generate block fabric that responds to the Chinese rural context, consisting of streets, plots, and buildings. The tool is built upon the Browser/Server (B/S) architecture, allowing users to access the generation system via the web simply and to have interactive control over the generation process in a user-friendly way. The underlying tensor field and rule-based system are adopted in the backend to model the fabric subject to multiple factors, with rules extracted from the rural design prototype. The system aims to integrate the procedural model with practical design constraints in the rural context, such as patterns, natural boundaries, elevations, planning structure, and existing streets. The proposed framework supports extensions to different urban or suburban areas, inspiring the promising paths of remote cooperation and generative design for sustainable cities and communities.
keywords Generative Design, Web-based Tool, Urban Fabric, Rural Context, Procedural Modeling, Tensor Field, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_403
id ecaade2022_403
authors Çavuº, Özlem and Alaçam, Sema
year 2022
title Precision Factors in Modelling of Relief Patterns on Thin Aluminum Plates - Learning from making process
doi https://doi.org/10.52842/conf.ecaade.2022.1.111
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 111–120
summary Surface coordinates on thin metal sheets constantly change during the engraving, and the digital model is not truly compatible with the physical engraving process because of the ignorance of the relationship between the hand movements with the tooltip and material in digital fabrication. Hence, this research creates experiments to learn from the physicality of the making process for precision factors in modeling relief patterns on thin aluminum plates. It questions the identification and elimination of precision problems of material and behavior in the production process of relief with a robotic arm. It aims to determine the relationships among materials, tools, and geometry in robotic manufacturing. UArm Swift Pro as a tool performs the task concerning speed, the surface of the tooltip, material thickness, drawing, and engraving modes. Created 3D geometries on aluminum surfaces are compared according to the change in distance between initial and target points, curvature, and radius of the target geometry.
keywords Engraving, Forming, Sheet Metals, Relief Patterns, Robotic Manufacturing
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_234
id ecaade2022_234
authors Afsar, Secil, Estévez, Alberto T., Abdallah, Yomna K., Turhan, Gozde Damla, Ozel, Berfin and Doyuran, Aslihan
year 2022
title Activating Co-Creation Methodologies of 3D Printing with Biocomposites Developed from Local Organic Wastes
doi https://doi.org/10.52842/conf.ecaade.2022.1.215
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 215–224
summary Compared to the take-make-waste-oriented linear economy model, the circular model has been studied since the 1980s. Due to consumption-oriented lifestyles along with having a tendency of considering waste materials as trash, studies on sustainable materials management (SMM) have remained at a theoretical level or created temporary and limited impacts. To ensure SMM supports The European Green Deal, there is a necessity of developing top-down and bottom-up strategies simultaneously, which can be metaphorized as digging a tunnel from two different directions to meet in the middle of a mountain. In parallel with the New European Bauhaus concept, this research aims to create a case study for boosting bottom-up and data-driven methodologies to produce short-loop products made of bio-based biocomposite materials from local food & organic wastes. The Architecture departments of two universities from different countries collaborated to practice these design democratization methodologies using data transfer paths. The 3D printable models, firmware code, and detailed explanation of working with a customized 3D printer paste extruder were shared using online tools. Accordingly, the bio-based biocomposite recipe from eggshell, xanthan gum, and citric acid, which can be provided from local shops, food & organic wastes, was investigated concurrently to enhance its printability feature for generating interior design elements such as a vase or vertical gardening unit. While sharing each step from open-source platforms with adding snapshots and videos allows further development between two universities, it also makes room for other researchers/makers/designers to replicate the process/product. By combining modern manufacturing and traditional crafting methods with materials produced with DIY techniques from local resources, and using global data transfer platforms to transfer data instead of products themselves, this research seeks to unlock the value of co-creative design practices for SMM.
keywords Sustainable Materials Management, Co-Creation, Food Waste, 3D Printing, New European Bauhaus
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_357
id caadria2022_357
authors Bedarf, Patrick, Szabo, Anna, Zanini, Michele, Heusi, Alex and Dillenburger, Benjamin
year 2022
title Robotic 3D Printing of Mineral Foam for a Lightweight Composite Concrete Slab
doi https://doi.org/10.52842/conf.caadria.2022.2.061
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 61-70
summary This paper presents the design and fabrication of a lightweight composite concrete slab prototype using 3D printing (3DP) of mineral foams. Conventionally, concrete slabs are standardized monolithic elements that are responsible for a large share of used materials and dead weight in concrete framed buildings. Optimized slab designs require less material at the expense of increasing the formwork complexity, required labour, and costs. To address these challenges, foam 3D printing (F3DP) can be used in construction as demonstrated in previous studies for lightweight facade elements. The work in this paper expands this research and uses F3DP to fabricate the freeform stay-in-place formwork components for a material-efficient lightweight ribbed concrete slab with a footprint of 2 x 1.3 m. For this advancement in scale, the robotic fabrication and material processing setup is refined and computational design strategies for the generation of advanced toolpaths developed. The presented composite of hardened mineral foam and fibre-reinforced ultra-high-performance concrete shows how custom geometries can be efficiently fabricated for geometrically complex formwork. The prototype demonstrates that optimized slabs could save up to 72% of total concrete volume and 70% weight. The discussion of results and challenges in this study provides a valuable outlook on the viability of this novel fabrication technique to foster a sustainable and resourceful future construction culture.
keywords robotic 3d-printing, mineral foam, stay-in-place formwork, concrete composite, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_55
id caadria2022_55
authors Dritsas, Stylianos, Hoo, Jian Li and Fernandez, Javier
year 2022
title Sustainable Rapid Prototyping with Fungus-Like Adhesive Materials
doi https://doi.org/10.52842/conf.caadria.2022.2.263
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 263-272
summary The purpose of the research work presented in this paper is to develop a sustainable rapid prototyping technology. Fused filament fabrication using synthetic polymers is today the most popular method of rapid prototyping. This has environmental repercussions because the short-lived artifacts produced using rapid prototyping contribute to the problem of plastic waste. Natural biological materials, namely Fungus-Like Adhesive Materials (FLAM) investigated here, offer a sustainable alternative. FLAM are cellulose and chitin composites with renewable sourcing and naturally biodegradable characteristics. The 3D printing process developed for FLAM in the past, targeted large-scale additive manufacturing applications. Here we assess the feasibility of increasing its resolution such that it can be used for rapid prototyping. Challenges and solutions related to material, mechanical and environmental control parameters are presented as well as experimental prototypes aimed at evaluating the proposed process characteristics.
keywords Rapid Prototyping, Sustainable Manufacturing, Digital Fabrication, Robotic Fabrication, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_302
id ecaade2022_302
authors Lu, Xin, Meng, Zeyuan, Rodriguez, Alvaro Lopez and Pantic, Igor
year 2022
title Reusable Augmented Concrete Casting System - Accessible method for formwork manufacturing through holographic guidance
doi https://doi.org/10.52842/conf.ecaade.2022.1.371
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 371–380
summary Reinforced concrete has been one of the essential materials for modern architecture for the last hundred years. Its use is entirely global, having been adopted by all cultures and styles since its invention in the late 19th century. Although its value is excellent due to its low cost, durability and adaptability, its environmental impact is significant, being, in fact, one of the most polluting industries in the world (Babor et al. 2009). This experimental project will research a more sustainable use of concrete, exploring a new form of reusable concrete formwork that will ideally reduce the CO2 footprint by removing wood waste in the casting process and replacing it with adaptable metal components. The modular part-based system for the concrete casting also attempts to simplify one of the current complexities for concrete construction, the Skilled-Labour shortage. (Yusoff et al. 2021). To mitigate this problem, the project also proposes using an Augmented Assembly logic for the casting parts to guide the ensemble and dismantle the formwork through an optimised algorithmic logic. The use of Augmented Reality as a replacement for traditional paper instructions will facilitate access to more workers to this construction art and potentially improve access to optimised use of concrete in developing communities with restricted building technological resources.
keywords Mixed Reality, Distributed Manufacturing, Augmented Manufacturing, Sustainability, Computational Design, Concrete Casting
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_74
id caadria2022_74
authors Mazza, Domenico, Kocaturk, Tuba and Kaljevic, Sofija
year 2022
title Geelong Digital Outdoor Museum (GDOM) - Photogrammetry as the Surface for a Portable Museum
doi https://doi.org/10.52842/conf.caadria.2022.1.677
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 677-686
summary This paper presents the development and evaluation of the Geelong Digital Outdoor Museum (GDOM) prototype accessible at https://gdom.mindlab.cloud. GDOM is a portable museum‚our novel adaptation of the distributed museum model (Stuedahl & Lowe, 2013) which uses mobile devices to present museum collections attached to physical sites. Our prototype defines a way for intangible heritage associated with tangible landscapes to be accessible via personal digital devices using 360 3D scanned digital replicas of physical landscapes (photogrammetric digital models). Our work aligns with efforts set out in the UN Sustainable Development Goal 11 (SDG 11) to safeguard cultural and natural heritage, by openly disseminating the heritage of physical sites seamlessly through the landscape. Using a research by design methodology we delivered our prototype as a modular web-based platform that leveraged the Matterport digital model platform. We qualitatively evaluated the prototype's usability and future development opportunities with 32 front-end users and 13 potential stakeholders. We received a wide gamut of responses that included: users feeling empowered by the greater accessibility, users finding a welcome common ground with comparable physical experiences, and users and potential stakeholders seeing the potential to re-create physical world experiences with modifications to the digital model along with on-site activation. Our potential stakeholders suggested ways in which GDOM could be integrated into the arts, education, and tourism to widen its utility and applicability. In future we see design potential in breaking out of the static presentation of the digital model and expanding our portable museum experience to work on-site as a complement to the remote experience. However, we recognise the way in which on-site activation integrate into users' typical activities can be tangential (McGookin et al., 2019) and this would necessitate further investigation into how to best integrate the experience on-site.
keywords Cultural Heritage, Intangible Heritage, Digital Heritage, Web Platform, 3D Scanning, Photogrammetry, Digital model, Portable Museum, Distributed Museum, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_271
id caadria2022_271
authors Napier, Ilaena Mariam
year 2022
title Robotically Printed Seaweed as a Biomaterial within Architecture and Design
doi https://doi.org/10.52842/conf.caadria.2022.2.303
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 303-312
summary This research aims to develop and understand the impact of seaweed as a bio-based material within architecture and design. The research is influenced by current global challenges, outlined by the Sustainable Development Goals (SDG), such as carbon drawdown, the problem of material waste, and the need to create more sustainable manufacturing processes. Seaweed is an organic biomass that does not require land, fresh water or fertilisers to grow, and growing it can reduce the effects of global warming as it sequesters large amounts of carbon dioxide. In turn, it can be harvested and used for a range of products including food, biofuel, fertiliser and bioplastic. The research focuses on the development of an organic, water-based biocomposite material made from sodium alginate, a derivative of brown seaweed, combined with cellulose powder, vegetable glycerine, and kelp powder. A set of methodical experiments were conducted and studied, with the aim of creating a novel material which can adapt to its surrounding environment and can degrade naturally. By creating and fabricating using renewable resources, one can create novel materials that are carbon neutral and contribute to a natural resource cycle. Ultimately, the material decays and returns to the earth, for the purpose of remediating soils and replenishing growth.
keywords Seaweed Biocomposite Material, Paste Extrusion Method, Water-based Robotic Fabrication, Circular Design, SDG 12, SDG 13, SDG 14
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_100
id caadria2022_100
authors Oghazian, Farzaneh, Brown, Nathan and Davis, Felecia
year 2022
title Calibrating a Formfinding Algorithm for Simulation of Tensioned Knitted Textile Architectural Models
doi https://doi.org/10.52842/conf.caadria.2022.1.111
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 111-120
summary This paper presents an optimization-based calibration process for tuning a digital formfinding algorithm used with knitted textile materials in architectural tension structures. 3D scanning and computational optimization are employed to accurately approximate a physical model in a digital workflow that can be used to establish model settings for future exploration within a knit geometric typology. Several aspects of the process are investigated, including different optimization algorithms and various approaches to data extraction. The goal is to determine the appropriate optimization method and data extraction, as well as automate the process of adjusting formfinding settings related to the length of the meshes associated with the knitted textile behavior. The calibration process comprises three steps: extract data from a 3D scanned model; determine the bounds of formfinding settings; and define optimization variables, constraints, and objectives to run the optimization process. Knitted textiles made of natural yarns are organic materials and when used at the industrial level can satisfy DSG 9 factors to promote sustainable industrialization and foster innovation in building construction through developing sustainable architectural systems. The main contributions of this paper are calibrated digital models of knitted materials and a comparison of the most effective algorithms and model settings, which are a starting point to apply this process to a wider range of knit geometries. These models enhance the implementation and further development of novel architectural knitted systems.
keywords Tensioned Knitted Textiles, Computational Design, Formfinding, Calibrating, Optimization, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_39299 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002