CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 682

_id ascaad2023_042
id ascaad2023_042
authors Žigmundová, Viktória; Suchánková, Kateřina; Stretavská, Antónia; Míča, Jakub; Rayne, Taylor; Tsikoliya, Shota ; ,
year 2023
title Additive Manufacturing of Mycelium Composites for Sustainable Landscape Architecture
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 863-877.
summary This study explores the potential of mycelium composites as a sustainable and eco-friendly material for landscape architecture in the context of today's global climate and environmental crisis. Mycelium, the vegetative part of fungi, has shown promising properties such as acoustic and thermal insulation, biodegradability, and environmental performance (Vasatko et al., 2022). The central remit of this research is in proposing bespoke computational and robotic fabrication methods and workflows for investigating the performance of mycelial materials and observing their properties and growth response. Taken together, the topic of this paper is to illustrate the application and composition of such fabrication techniques as an integrated multi-material system, capable of combining the complex, organic relationships between clay, lignocellulosic substrate, and fungi with a focus on the potential of such composite materials for implementation within the built environment. Outlined here are the processes and procedures essential to this multi-material fabrication framework, including a detailed account of a series of substrate material mixtures and printed clay scaffold geometries, both of which exhibit properties informed by the material synthesis and fabrication process. We foremost propose the strategic mixing of different substrate types to be 3D printed with clay as a strategy for probing the optimization of mycelial overgrowth and binding to the 3D printed geometries. Subsequently, we proceed in detailing the study’s approach and process of 3D printing the mixtures of recycled material, drying the geometry, and sterilizing the final design once inoculated with the mycelium. Ultimately, we motivate this research in pursuit of further understanding of mycelium's material and mycoremediation capacities in service of more environmentally responsive and responsible architectural applications.
series ASCAAD
email
last changed 2024/02/13 14:34

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2022_385
id ecaade2022_385
authors Zheng, Shuyuan, Velho, Avantika, Ross, Kate, Chen, Hongshun, Li, Ling and Zolotovsky, Katia
year 2022
title Self-Cleaning Surface Architectures from Chitin Biomaterials - Computational and experimental methodology
doi https://doi.org/10.52842/conf.ecaade.2022.1.091
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 91–100
summary The current pandemic and the climate crisis urge people to rethink their relationships to the natural and urban environments. In this research we turned to nature for inspiration to find new ways to keep human environments clean and healthy. This paper presents a computational and experimental methodology to design self-cleaning architectural surfaces from chitin biomaterial modeled after butterfly wings. We fabricate surface architectures using parametric modeling, 3d printing, and molding of chitin biomaterial, and assess their performance using mechanical testing, experimental and computational simulations. The goal is to provide an alternative to hydrophobic fossil fuel-based plastics using surface morphologies of biomaterials to achieve structural rigidity and self- cleaning properties in architectural surfaces.
keywords Material-based Design, Parametric Design, Digital Fabrication, Biomaterials, Computational Simulation, Hydrophobicity, Biomimicry
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_312
id ecaade2022_312
authors Bhagat, Puja and Gursoy, Benay
year 2022
title Stretch – 3D Print – Release: Formal descriptions of shape-change in 3D printed shapes on stretched fabrics
doi https://doi.org/10.52842/conf.ecaade.2022.1.301
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 301–310
summary Researchers have previously explored 3D printing 2D shapes on stretched fabrics using plastic filaments. When released, the 3D printed plastic constrains the fabric to take a 3D form. By leveraging the material properties and resultant tension between the rigid plastic and pliable fabric, it is possible to create 3D forms which would otherwise be difficult to construct with traditional fabrication techniques. Multiple factors are in play in this shape-change. Therefore, it is often difficult to anticipate the 3D form that will emerge when the stretched fabric is released. In this paper, we present our systematic bottom-up explorations on the effects of various parameters on shape-change and formalize our findings as rules. These rules help to visualize the interrelations between (abstract) shapes designed for 3D printing, (material) shapes 3D printed on stretched fabric, and (material) shapes that emerge when the fabric is released. The rules also help to explore design possibilities with this technique in a more controlled, communicable, and repeatable way. We also present a series of vaulted forms that we generated using these rules and by stretching - 3D printing - releasing the fabric.
keywords Material Computing, Shape-change, Adaptive Architecture, Digital Fabrication, 3D Printing on Textiles
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_66
id sigradi2022_66
authors Garcia-Alvarado, Rodrigo; Banda Perez, Pablo; Moroni Orellana, Ginnia
year 2022
title Architectural Diversity of Residential Buildings through Digital Design and Robotic Construction
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 957–966
summary The housing demand in Latin America has promoted to build big complexes with repetitive designs to ensure their execution and commercialization, but neglecting the differences in occupation, cultures, ages, abilities, genders, climates and locations. Producing low quality, environmental deterioration and social alienation. This work exposes a parametric programming and robotic construction strategy to develop a varied residential process. Based on structural volumes and 3d-printed walls, to provide a diversity of housing configurations. The modular generation of volumes and development of the envelope is programmed to meet various thermal and occupational conditions, with printing trajectories for the walls according to the equipment, execution processes and material capacities. A repertoire of 494 residential volumes has been defined and prototype walls have been made, suggesting an innovative design system, wich provides a new paradigm for housing construction with digital technologies and robotic execution to diversify residential quality.
keywords Inclusive Design, Housing, Parametric Design, Robotics, Digital Fabrication
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_476
id caadria2022_476
authors Gong, Lei, Zhou, Yifan, Zheng, Lang and Yuan, Philip F.
year 2022
title Extrusion-Based 3d Printing for Recyclable Gypsum
doi https://doi.org/10.52842/conf.caadria.2022.2.273
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 273-282
summary Gypsum is one of the most commonly used construction materials in cladding and non-load-bearing decoration. Recently, 3D printing technology has been involved in creating complex geometry. The particle-based method is the principal approach in 3D gypsum printing. However, the complex device and limited printable range limit the massive production of large-scale building components. This paper proposed a novel extrusion-based gypsum printing method and corresponding robotic fabrication workflow. First, several experiments are conducted to analyze the effect of different admixtures (retarder, activation agent, and accelerator) on the material setting properties. Second, a set-on-demand gypsum-based material is proposed by actively controlling multiple admixtures. Then, a process parameter-based robotic fabrication workflow is proposed, and a set of extrusion- based 3D gypsum printing equipment is built. center864108000A curved gypsum panel sample is printed as experimental verification. By comparing to the particle-based method, The test sample shows that the extrusion-based method can effectively improve the production efficiency and reduce the production cost. Therefore, the proposed method gives a relatively efficient and cost-effective way to produce recyclable gypsum material massively.
keywords 3D Gypsum Printing, Extrusion-based, Set-on-Demand Material, Material Modification, Robotic Fabrication Workflow, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_444
id acadia22_444
authors Gong, Lei; Zhou, Xinjie; Chai, Hua; Liu, Junguang; Yuan, Philip F.
year 2022
title Tailoring Bending Behavior
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 444-455.
summary Bending-active structures have drawn considerable attention in the past decades of research and practice. However, most existing bending active structures are made of homogeneous materials with constant bending properties, making it difficult to achieve complex design intentions. This paper presents a novel hybrid material design strategy that enables the realization of curved active structures with complex geometries. This hybrid material consists of birch plywood and 3D printed PETG. The bending behavior of the hybrid material can be adjusted by changing the density of the 3D-printed part.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id ijac202220103
id ijac202220103
authors Jauk, Julian; Lukas Gosch, Hana Vašatko, Ingolf Christian, Anita Klaus, Milena Stavric
year 2022
title MyCera. Application of mycelial growth within digitally manufactured clay structures
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 31–40
summary In this paper we will demonstrate a digital workflow that includes a living material such as mycelium and makes the creation of structural designs possible. Our interdisciplinary research combines digital manufacturing with the use of mycelial growth, which enables fibre connections on a microscopic scale. We developed a structure that uses material informed toolpaths for paste-based extrusion, which are built on the foundation of experiments that compare material properties and growth observations. Subsequently, the tensile strength of 3D printed unfired clay elements was increased by using mycelium as an intelligently oriented fibre reinforcement. Assembling clay-mycelium composites in a living state allows force-transmitting connections within the structure. This composite has exhibited structural properties that open up the possibility of its implementation in the building industry. It allows the design and efficient manufacturing of lightweight ceramic constructions customised to this composite, which would not have been possible using conventional ce- ramics fabrication methods.
keywords Clay, Mycelium, 3D Printing, Growth, Bio-welding
series journal
last changed 2024/04/17 14:29

_id caadria2022_193
id caadria2022_193
authors Tsai, Tsung-Han, Chen, Ting-Chia, Huang, Ching-Wen, Lu, Yen-Cheng and Wang, Shih-Yuan
year 2022
title S.n.o.w_Sintering TPU via Nichrome Wire
doi https://doi.org/10.52842/conf.caadria.2022.2.243
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 243-252
summary This paper introduces and investigates NiChrome wire sintering, a novel fabrication technique in the field of additive manufacturing. With a combination of differentiated material states and material properties, this research generates forms with different sintering strategies through computation and fabrication systems. Rather than creating objects through selectively depositing melted material in a predetermined path, layer-by-layer, this rapid prototyping methodology generates 2D or 3D spatial wireframes by weaving NiChrome wire and sintering thermoplastic polyurethane (TPU) onto it by utilizing the instantaneous high temperature of NiChrome wire after electrification. A series of experiments is presented utilizing a proportional integral derivative (PID) temperature control system in cooperation with thermal camera equipment to ensure consistent results under the same conditions. In addition, the project focuses not only on developing NiChrome wire sintering systems but also on the applicabilities of this technique by fabricating wireframe surfaces under different situations.
keywords Nichrome Wire Sintering, Rapid Prototyping, Elastic Material, Digital Fabrication, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_396
id cdrf2022_396
authors Chengbi Duan, Suyi Shen, Dingwen Bao, and Xin Yan
year 2022
title Exploration and Design of the Contemporary Bracket Set Through Topology Optimization
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_34
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Dou Gong, pronounced in Chinese, and known as Bracket Set, is a vital support component in the ancient wooden tectonic systems. It is located between the column and the beam and connects the eave and pillar, making the heavy roof extend out of the eaves longer. The development of the bracket set is entirely a microcosm of the development of ancient Chinese architecture; the aesthetic structure and oriental artistic temperament behind the bracket make it gradually become the cultural and spiritual symbol of traditional Chinese architecture. In the contemporary era, inheriting and developing the bracket set has become an essential issue. This paper introduces the topological optimization method bi-directional evolutionary structural optimization (BESO) for form-finding. Through analyzing the development trend of bracket set and mechanical structure, the authors integrate 2D and 3D optimization methods and apply the hybrid methods to form-finding. This research aims to design a new bracket set corresponding to “structural performance-based aesthetics.“ The workflow proposed in this paper is valuable for architrave and other traditional building components.
series cdrf
email
last changed 2024/05/29 14:03

_id caadria2022_55
id caadria2022_55
authors Dritsas, Stylianos, Hoo, Jian Li and Fernandez, Javier
year 2022
title Sustainable Rapid Prototyping with Fungus-Like Adhesive Materials
doi https://doi.org/10.52842/conf.caadria.2022.2.263
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 263-272
summary The purpose of the research work presented in this paper is to develop a sustainable rapid prototyping technology. Fused filament fabrication using synthetic polymers is today the most popular method of rapid prototyping. This has environmental repercussions because the short-lived artifacts produced using rapid prototyping contribute to the problem of plastic waste. Natural biological materials, namely Fungus-Like Adhesive Materials (FLAM) investigated here, offer a sustainable alternative. FLAM are cellulose and chitin composites with renewable sourcing and naturally biodegradable characteristics. The 3D printing process developed for FLAM in the past, targeted large-scale additive manufacturing applications. Here we assess the feasibility of increasing its resolution such that it can be used for rapid prototyping. Challenges and solutions related to material, mechanical and environmental control parameters are presented as well as experimental prototypes aimed at evaluating the proposed process characteristics.
keywords Rapid Prototyping, Sustainable Manufacturing, Digital Fabrication, Robotic Fabrication, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_65
id ecaade2022_65
authors Halici, Süheyla Müge and Gül, Leman Figen
year 2022
title Utilizing Generative Adversarial Networks for Augmenting Architectural Massing Studies: AI-assisted Mixed Reality
doi https://doi.org/10.52842/conf.ecaade.2022.1.323
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 323–330
summary A technique for architectural massing studies in Mixed Reality (MR) is described. Generative Adversarial Networks let an object appear to have a different material than it actually has. The benefits during design are twofold. From one side the congruence between shape and material are subject to verification in real-time. From the other side, the designer is liberated from the usual restrictions and biases as to shape that are inevitable due to the mechanical properties of a mock-up. This is referred to as artificial intelligence assisted MR (AI-A MR) in this work. The technique consists of two steps: based on preparing synthetic data in Rhino/Grasshopper to be trained with an image-to- image translation model and implemented to the trained model in MR design environment. Next to the practical merits, a contribution of the work with respect to MR methodology is that it exemplifies the solution of some persistent tracking and registration problems.
keywords Hybrid Design Environment, Dynamic Design Models, Mixed Reality, Generative Adversarial Networks, Image-to-Image Translation, Tracking
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_76
id acadia22_76
authors Kwon, Hyunchul; Soni, Priyank; Saeedi, Ali; Shahverdi, Moslem; Dillenburger, Benjamin
year 2022
title 3D Printing and Shape Memory Alloys
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 76-89.
summary This paper presents a novel method combining the use of 3D printing (3DP) and shape memory alloys (SMAs) to compose kinetic architectural elements that are energy- and material-efficient within compact-integrated composites. Kinetic systems for architectural use have been explored since the late twentieth century using motor mechanics. However, the primary challenges of this method include maintenance of mechanical units, their high energy demand, and noise during actuation. To address these shortcomings, this research explores a hybrid of 3DP motion-optimized parts with embedded SMAs as a muscle that changes shape with temperature stimulus
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ecaade2022_138
id ecaade2022_138
authors Kycia, Agata, Rossi, Andrea, Hugo, Jörg, Jünger, Konrad, Sauer, Christiane and Krüger, Nils
year 2022
title Felt and Fold - Design and manufacturing of customized nonwovens through robotic needle felting
doi https://doi.org/10.52842/conf.ecaade.2022.1.195
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 195–204
summary This paper explores the potential of robotic needle felting for customized production of nonwoven textiles and their architectural applications. The possibility to program the robotic movement and locally control fiber density and distribution allows the design of nonwoven, heterogeneous materials with graded properties not by differentiating their chemical composition, but rather controlling their mechanical structure. We propose a parametric design and fabrication workflow relying on a 6-axis robotic arm. We describe design techniques for the generation of felted surfaces with varying material properties and their translation to instructions for robotic felting, as well as the physical fabrication setup. Within our research, the ability to locally differentiate material properties is further explored to create three-dimensional folding behaviors. We study how fiber densities affect their folding ability and geometry, examine qualities of resulting edges, analyze how they affect folding and finally design targeted folded structures by informing the felting pattern. While robotic felting has not yet found significant applications in architecture, the designs and prototypes demonstrate its potential in the architectural context, as it suggests new solutions for recyclable, circular building components or surfaces.
keywords Robotic Needle Felting, Graded Nonwovens, Folding, Heterogeneous Materials
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22pr_190
id acadia22pr_190
authors Lasting, Liam; Akbari, Mostafa; Mogas-Soldevila, Laia; Akbarzadeh, Masoud
year 2022
title Terrene 2.0 - Biomaterial Systems and Shellular Structures for Augmented Earthen Construction
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 190-195.
summary For specific design criteria, rammed earth construction offers solutions as a concrete substitute since it has significantly less embodied energy. However, its typical construction process still utilizes wasteful formwork. Therefore, we propose to augment the principles of rammed earth by integrating renewable additives to improve the mechanical properties of the system towards richer geometry and developing a reusable waste-free formwork.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id cdrf2022_466
id cdrf2022_466
authors Yiping Meng, Yiming Sun, and Wen-Shao Chang
year 2022
title Morphology of Free-Form Timber Structure Determination by LSTM Oriented by Robotic Fabrication
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_40
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Robotic arms are increasingly being used as an automation tool in non-standardized fabrication and construction, while the mechanical characteristics can also impact the accomplishment or the accuracy of the components. Timber is regularly used in different scales of a non-standard free-form structure fabricated by the robotic arm. The anisotropic mechanical characteristics of timber constrain the structural morphology. Developing a method of determining the morphology that meets the technical restrictions of the robotic arm and the material properties of timber is the aim of this research. In this paper, taking Centre Pompidou-Metz as a geometric case, glue-laminated timber as the main construction material, LSTM is applied for predicting the shape of the element. The geometric data is transformed into the fabrication data to testify to the kinematic singularities. The limitation of the workspace is derived from the Monte-Carlo method based on the DH model of the robotic arm. The experimental results show that the proposed method is effective in predicting the curves that match the characteristics of timber materials and robotic fabrication constraints.
series cdrf
email
last changed 2024/05/29 14:03

_id acadia22_68
id acadia22_68
authors Al Othman, Sulaiman; Bechthold, Martin
year 2022
title Non-Linear Fabrication
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 68-75.
summary This paper describes an improved data collection methodology in the context of clay 3D printing that integrates structured light scanning tech- nology. The ultimate goal is to use this data for toolpath calibration during the next step of the research. The integrated process measures and then addresses the deflections caused by the successive build-up of clay layers that cause changes in stiffness across the lower printed layers, distortions and shifting of clay beads caused by extrusion pressure and nozzle maneuvering, and air gaps in the clay mix that affect the material flow rate.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id cdrf2022_478
id cdrf2022_478
authors Andrea Macruz, Mirko Daneluzzo, and Hind Tawaku
year 2022
title Performative Ornament: Enhancing Humidity and Light Levels for Plants in Multispecies Design
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_41
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The paper shifts the design conversation from a human-centered design methodology to a posthuman design, considering human and nonhuman actors. It asks how designers can incorporate a multispecies approach to creating greater intelligence and performance projects. To illustrate this, we describe a project of “ornaments” for plants, culminating from a course in an academic setting. The project methodology starts with “Thing Ethnography” analyzing the movement of a water bottle inside a house and its interaction with different objects. The relationship between water and plant was chosen to be further developed, considering water as a material to increase environmental humidity for the plant and brightness through light reflectance and refraction. 3D printed biomimetic structures as supports for water droplets were designed according to their performance and placed in different arrangements around the plant itself. Humidity levels and illuminance of the structures were measured. Ultimately, this created a new approach for working with plants and mass customization. The paper discusses the resultant evidence-based design and environmental values.
series cdrf
email
last changed 2024/05/29 14:03

_id acadia22_58
id acadia22_58
authors Anton, Ana; Skevaki, Eleni; Bischof, Patrick; Reiter, Lex; Dillenburger, Benjamin
year 2022
title Column-Slab Interfaces for 3D Concrete Printing
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 58-67.
summary 3D Concrete Printing (3DCP) currently dominates the scene of digital fabrication with concrete. 3DCP can be utilized on-site or in prefabrication setups. While prefabrication with 3DCP allows for more complex construction elements, it also requires the design for connections and assembly. In the context of prefabrication using 3DCP, this paper illustrates the state of research in the design, construction, and assembly of 3D printed components. It proposes segmentation and fabrication strategies to produce horizontal and vertical structural members of a column-slab building system following the typology of mushroom slabs.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id sigradi2022_54
id sigradi2022_54
authors Balci, Ozan; Alaçam, Sema
year 2022
title Zone-sensitive RIZOBots in Action: Examining the Behavior of Mobile Robots In a Heterogeneous Environment
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 397–408
summary This study proposes a framework for the use of mobile robots namely RIZOBots in form studies in the early phases of design. The proposed framework was tested in two experiments. An agent-based model was utilized for the movement of mobile robots, a drawing task was defined as the task. In particular, rule sets for agent-agent and agent-environment interaction were used. Light-sensitivity rules were utilized to achieve agent-environment interaction, apart from obstacle detection. This study focuses on the effects of two different zone-related states on the behavior of RIZOBot which is a configurable differential-drive wheeled robot developed by authors using off-the-shelf products and 3D printed body parts. Two zone types with very basic features are used to define environmental conditions. The traces left on the canvas, the irregularities in the movement of the robots, and the robot-environment interaction will be evaluated in the study. The results and analysis of the two selected experiments are presented and the potential of the proposed framework is discussed.
keywords Robotics, Swarm robotics, Swarm behaviour, Mobile agents, Zone-sensitivity
series SIGraDi
email
last changed 2023/05/16 16:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 34HOMELOGIN (you are user _anon_218635 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002