CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 676

_id acadia22_694
id acadia22_694
authors Ashour,, Ziad; Yan, Wei
year 2022
title BIMxAR: Building Information Modeling-Powered Augmented Reality
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 694-703.
summary In this study, we present an AR system prototype (BIMxAR), its new and accurate building-scale registration method (DL-3S-BIM) for aligning BIM and physical buildings, and its novel visualization features that facilitate the comprehension of building construction systems, materials configuration, and 3D section views of complex structures through the integration of AR, Building Information Modeling (BIM), and physical buildings. 
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id ecaade2022_292
id ecaade2022_292
authors Baudoux, Gaelle, Calixte, Xaviera and Leclercq, Pierre
year 2022
title Transition between Architectural Ideation and BIM - Towards a new method through semantic building modeling
doi https://doi.org/10.52842/conf.ecaade.2022.2.357
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 357–366
summary Faced with the challenges of the actors' coordination regarding the increasing building complexity, the new digital collective approaches of advanced design raise the problem of the transition between collaborative ideation (first creative moments of deployment of ideas) and the following phases of digital production (including the formalisation of building specifications in BIM models). In response, we aim to develop a digitally instrumented method for moving from conventional architectural graphic documents to the 3D digital models characteristic of BIM. We propose here a detailed formalisation of the ideation-BIM transition problem and a method for managing building information to improve this transition.
keywords Building Information Modeling, Architectural Ideation, Digital Representation, Media Architecture, Semantic Model
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_191
id sigradi2022_191
authors Hemmerling, Marco
year 2022
title INTERCOM 2.0 – A web-based platform for collaborative design processes
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 823–832
summary Next to the advantages of consistent 3D planning, the Building Information Modeling (BIM) method also places new demands on the actors and thus primarily causes a change in the way of working. Against this background the paper discusses the development of the web-based BIM platform INTERCOM for collaborative planning processes in academia and AEC that enables monitoring, processing and assessment in a location and time independent environment. In addition to the technical advantages, a deeper, active and flexible discussion is intended to be created, involving all project partners. As such, INTERCOM is based on the openBIM idea and provides open access for all participants with a high degree of networking for solving complex planning tasks. The research showcases a further development of a previously implemented prototype and discusses the findings from the first academic projects, focussing on the collaborative workflow and the decision making throughout the design process.
keywords Building Information Modeling (BIM), Collabroative Design Process, Common Data Environment (CDE), Architecture Curriculum
series SIGraDi
email
last changed 2023/05/16 16:57

_id ecaade2022_116
id ecaade2022_116
authors Jovanovic, Luka, Ming, Leo, Doherty, Ben, Gardner, Nicole, Haeusler, M. Hank and Yu, K. Daniel
year 2022
title Automated Code Compliance Checking - A computational workflow for verifying model, parameter and regulatory compliance
doi https://doi.org/10.52842/conf.ecaade.2022.2.319
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 319–328
summary Building Code Compliance Checking (CCC) is a necessary part of the design process in the Architecture, Engineering and Construction (AEC) industry that is typically time consuming. Existing Automated Code Compliance Checking (ACCC) solutions can be considered as ‘Blackbox’ and are often location specific. Using action research methodology this research develops the design of the computational workflow led by an ‘informed research participant’ – an industry partner – who has knowledge of the problem. All to create a visible and customizable script to evaluate model compliance as well as CCC results. The research outcomes demonstrate a promising compliance checking computational workflow method that could be applied to a range of building codes and standards and contributes to building the AEC industry’s confidence in workflow automation to drive more productive and sustainable ways of working. This investigation, its proposed hypothesis, methodology, implications, significance, and evaluation are presented in the paper.
keywords Automated Compliance Checking, Regulatory Compliance Checking, BIM Family, Grasshopper (GH), Revit
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_471
id caadria2022_471
authors Kim, Taehoon, Hong, Soonmin, Panya, David Stephen, Gu, Hyeongmo, Park, Hyejin, Won, Junghye and Choo, Seungyeon
year 2022
title Development of Technology for Automatic Extraction of Architectural Plan Wall Lines for Concrete Waste Prediction Using Point Cloud
doi https://doi.org/10.52842/conf.caadria.2022.2.597
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 597-606
summary Recently, as more and more projects on residential environment improvement in cities are actively carried out, the cases of demolishing or remodelling buildings has been increasing. Most of the target buildings for such projects are made of concrete. In order to reduce energy use as well as carbon emissions, the amount of concrete used as a building material should be reduced. This is because the concrete is the largest amount of construction waste, which the exact amount of concrete needs to be predicted. The architectural drawings are essential for the estimation and demolition of building waste, but the problem is that most of the old buildings' drawings do not exist. The 3D scanning process was performed to create the plans for such old buildings instead of the conventional method that is long time-consuming and labour-intensive actual measurement. In this study, we scanned 40 old houses that were scheduled to be demolished. The result showed that the 3D scanned drawings' accuracy - 99.2% - was higher than the ones measured by the conventional way. Through the algorithm developed in this study, the various processes of demolition, drawing measurement, and discarding quantity prediction can be solved in one process, thereby reducing work efficiently. And, considering the reliability of the research results, it is possible to reduce the economic loss by predicting the exact amount of waste in advance. After that, if the algorithm, developed in this study, can be further subdivided and supplemented to identify the materials for each part of the old buildings, it will be able to propose an efficient series of processes that distinguish between recyclable materials and wastes and thereby efficiently dispose of them. 0864108000
keywords Point Cloud, Construction Waste, Parametric Design, Algorithm, Automatic Extraction, SDG 8
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_272
id ecaade2022_272
authors Soman, Aditya, Azadi, Shervin and Nourian, Pirouz
year 2022
title DeciGenArch - A generative design methodology for participatory architectural configuration via multi-criteria decision analysis
doi https://doi.org/10.52842/conf.ecaade.2022.1.459
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 459–468
summary Our approach to Generative Design converts the problems of design from the geometrical drawing of shapes in a continuous setting to topological decision making about spatial configurations in a discrete setting. The paper presents a comprehensive formulation of the zoning problem as a sub-problem of architectural 3D layout configurations. This formulation focuses on the problem of zoning as a location-allocation problem in the context of Operations Research. Specifically, we propose a methodology for solving this problem by combining a well-known Multi-Criteria Decision-Analysis (MCDA) method called 'Technique for Order of Preference by Similarity to Ideal Solution' (TOPSIS) with a Multi-Agent System (MAS) operating in a discrete design space.
keywords 3D Layout problem, Participatory Design, Multi-Agent System, Multi-Criteria Decision Analysis, TOPSIS
series eCAADe
email
last changed 2024/04/22 07:10

_id cdrf2022_527
id cdrf2022_527
authors Xiang Wang, Yang Li, Ziqi Zhou, Xueyuan Lv, Philip F. Yuan, Lei Chen
year 2022
title Levelling Calibration and Intelligent Real-Time Monitoring of the Assembly Process of a DfD-Based Prefabricated Structure Using a Motion Capture System
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_45
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Conventional measuring techniques and equipment such as the level and total-station are commonly used in on-site construction to measure the position of building elements. However, a motion capture system can measure the dynamic 3D movements of markers attached to any target structure with high accuracy and high sampling rate. Considering the characteristics of prefabricated structures that is composed by lot of discrete building elements, advanced requirements for the on-site assembly monitoring is required. This paper introduces an innovative real-time monitoring technique for the DfD-based (Design for Disassembly) structure with the application of motion capture system and other hardware in an IoT-based BIM system. The design and construction method of the structure system, on-site setup of monitoring system and hardware, data acquisition and analysis method, calibration algorithm as well as the BIM system are further illustrated in the paper. The proposed method is finally applied in a real building project that is composed by thousand discrete building elements and covers a large area of 50*25 m. As demonstrator, such monitoring system is applied in the real construction of a DfD-based prefabricated steel structure in the “Water Cube” (Chinese National Aquatics Centre) in Beijing. The building process is successfully recorded and displayed on-site with the digital twin model in the BIM system. The construction states of the building elements are gathered with different kind of IoT techniques such as the RfID chips and QR-Codes. With the demand to control the flatness tolerance within 6 mm (within a 25*50 m area), a large area monitoring system was applied in the project and finally reduced the construction time within 20 days. The final tolerance is verified and further discussed2.
series cdrf
email
last changed 2024/05/29 14:03

_id ascaad2022_087
id ascaad2022_087
authors Mallasi, Zaki
year 2022
title A Pixels-Based Design Approach for Parametric Thinking in Patterning Dynamic Facades
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 654-673
summary In today’s Architectural design process, there has been considerable advancements in design computation tools that empowers designer to explore and configure the building façades schemes. However, one could formally argue that some processes are prescribed, lacks automation and are only for the purpose of visualizing the aesthetic design concepts. As a result, these design concept explorations are driven manually to exhibit variations between schemes. To overcome such limitations, the development presented here describes a proactive approach to incorporate parametric design thinking process and Building Information Modeling (BIM). This paper reports on an ongoing development in computational design and its potential application in exploring an interactive façade pattern. The objective is to present the developed approach for exploring façade patterns that responds parametrically to design-performance attractors. Examples of these attractors are solar exposure, interior privacy importance, and aesthetics. It introduces a paradigm-shift in the development of design tools and theory of parameterization in architecture. This work utilizes programming script to manipulate the logic behind placement of faced panels. The placement and sizes for the building facade 3D parametric panels react to variety of Analytical Image Data (AID) as a source for the design-performance data (e.g.: solar exposure, interior privacy importance, and aesthetics). Accordingly, this research developed the PatternGen(c) add-on in Autodesk ® Revit that utilizes a merge (or an overlay) of AID images as a source to dynamically pattern the building façade and generate the facade panels arrangement rules panels on the building exterior. This work concludes by a project case study assessment, that the methodology of applying AID would be an effective dynamic approach to patterning façades. A case-study design project is presented to show the use of the AID pixel-gradient range from Red, Green and Blue as information source value. In light of the general objectives in this study, this work highlights how future designers may shift to a hybrid design process.
series ASCAAD
email
last changed 2024/02/16 13:29

_id caadria2022_277
id caadria2022_277
authors Akbar, Zuardin, Wood, Dylan, Kiesewetter, Laura, Menges, Achim and Wortmann, Thomas
year 2022
title A Data-Driven Workflow for Modelling Self-Shaping Wood Bilayer, Utilizing Natural Material Variations with Machine Vision and Machine Learning
doi https://doi.org/10.52842/conf.caadria.2022.1.393
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 393-402
summary This paper develops a workflow to train machine learning (ML) models with a small dataset from physical samples to predict the curvatures of self-shaping wood bilayers based on local variations in the grain. In contrast to state-of-the-art predictive models, specifically 1.) a 2D Timoshenko model and 2.) a 3D numerical model with a rheological model, our method accounts for natural and unavoidable material variations. In this paper, we only focus on local grain variations as the main driver for curvatures in small-scale material samples. We extracted a feature matrix from grain images of active and passive layers as a Grey Level Co-Occurrence Matrix and used it as the input for our ML models. We also analysed the impact of grain variations on the feature matrix. We trained and tested several tree-based regression models with different features. The models achieved very accurate predictions for curvatures in each sample (R;0.9) and extend the range of parameters that is incalculable by a Timoshenko model. This research contributes to the material-efficient design of weather-responsive shape-changing wood structures by further leveraging the use of natural material features and explainable data-driven modelling and extends the topic in ML for material behaviour-driven design among the CAADRIA community.
keywords data-driven model, machine learning, material programming, smart material, timber structure, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_304
id cdrf2022_304
authors Anni Dai
year 2022
title Co-creation: Space Reconfiguration by Architect and Agent Simulation Based Machine Learning
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_27
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary This research is a manifestation of architectural co-creation between agent simulation based machine learning and an architect’s tacit knowledge. Instead of applying machine learning brains to agents, the author reversed the idea and applied machine learning to buildings. The project used agent simulation as a database, and trained the space to reconfigure itself based on its distance to the nearest agents. To overcome the limitations of machine learning model’s simplified solutions to complicated architectural environments, the author introduced a co-creation method, where an architect uses tacit knowledge to overwatch and have real-time control over the space reconfiguration process. This research combines both the strength of machine learning’s data-processing ability and an architect’s tacit knowledge. Through exploration of emerging technologies such as machine learning and agent simulation, the author highlights limitations in design automation. By combining an architect’s tacit knowledge with a new generation design method of agent simulation based machine learning, the author hopes to explore a new way for architects to co-create with machines.
series cdrf
email
last changed 2024/05/29 14:02

_id ecaade2022_218
id ecaade2022_218
authors Bank, Mathias, Sandor, Viktoria, Schinegger, Kristina and Rutzinger, Stefan
year 2022
title Learning Spatiality - A GAN method for designing architectural models through labelled sections
doi https://doi.org/10.52842/conf.ecaade.2022.2.611
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 611–619
summary Digital design processes are increasingly being explored through the use of 2D generative adversarial networks (GAN), due to their capability for assembling latent spaces from existing data. These infinite spaces of synthetic data have the potential to enhance architectural design processes by mapping adjacencies across multidimensional properties, giving new impulses for design. The paper outlines a teaching method that applies 2D GANs to explore spatial characteristics with architectural students based on a training data set of 3D models of material-labelled houses. To introduce a common interface between human and neural networks, the method uses vertical slices through the models as the primary medium for communication. The approach is tested in the framework of a design course.
keywords AI, Architectural Design, Materiality, GAN, 3D, Form Finding
series eCAADe
email
last changed 2024/04/22 07:10

_id ijac202220212
id ijac202220212
authors Castriotto, Caio; Felipe Tavares; Gabriela Celani; Olga Popovic Larsen; Xan Browne
year 2022
title Clamp links: A novel type of reciprocal frame connection
source International Journal of Architectural Computing 2022, Vol. 20 - no. 2, pp. 378–399
summary Reciprocal frames (RFs) are complex structural systems based on mutual support between elements. One of the main challenges for these structures is achieving geometrical complexity with ease for assembly. This paper describes the development of a new type of connection for RF that uses a single bolt to fix a whole fan. The method used was the Research Through Design, using algorithmic modelling and virtual and physical prototyping. After the exploration of different alternatives, the connection selected was structurally evaluated with a 3D solid finite element analysis (FEM) software and a 2D bar parametric model. Finally, a fullscale pavilion was built as a proof-of-concept. A total of 47 connections were fabricated using four 3D-printed templates combined with a hand router. The construction allowed us to draw conclusions on the connection design and the assembly method, and the process as a whole can contribute to the development of new structural links and production methods.
keywords Reciprocal frames, connections, computational design, simulations, digital fabrication
series journal
last changed 2024/04/17 14:29

_id cdrf2022_396
id cdrf2022_396
authors Chengbi Duan, Suyi Shen, Dingwen Bao, and Xin Yan
year 2022
title Exploration and Design of the Contemporary Bracket Set Through Topology Optimization
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_34
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Dou Gong, pronounced in Chinese, and known as Bracket Set, is a vital support component in the ancient wooden tectonic systems. It is located between the column and the beam and connects the eave and pillar, making the heavy roof extend out of the eaves longer. The development of the bracket set is entirely a microcosm of the development of ancient Chinese architecture; the aesthetic structure and oriental artistic temperament behind the bracket make it gradually become the cultural and spiritual symbol of traditional Chinese architecture. In the contemporary era, inheriting and developing the bracket set has become an essential issue. This paper introduces the topological optimization method bi-directional evolutionary structural optimization (BESO) for form-finding. Through analyzing the development trend of bracket set and mechanical structure, the authors integrate 2D and 3D optimization methods and apply the hybrid methods to form-finding. This research aims to design a new bracket set corresponding to “structural performance-based aesthetics.“ The workflow proposed in this paper is valuable for architrave and other traditional building components.
series cdrf
email
last changed 2024/05/29 14:03

_id caadria2022_60
id caadria2022_60
authors Chowdhury, Shuva and Hanegraaf, Johan
year 2022
title Co-presence in Remote VR Co-design: Using Remote Virtual Collaborative Tool Arkio in Campus Design
doi https://doi.org/10.52842/conf.caadria.2022.2.465
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 465-474
summary A participatory co-design approach is most often counted as a time-consuming method and ends without any concrete solution. Since the new evolution of virtual reality-based communication tools, researchers are trying to integrate citizens in the spatial design making process in-situ situation. However, there has been little research on how remotely co-presence in VR can integrate end-users in a co-design environment in re-envisioning their own using spaces. This study adopts a remote VR collaborative platform Arkio to involve novice designers remotely to design their known urban places. Participants are in three different virtual communication systems. Groups can actively engage in co-creating 3D artefacts relevant to a virtual urban environment and communicate through audio together in a remote setting. The platform was tested with a group of graduate students. The given design task was to re-envision the urban places of their academic institute campus. The sessions have been recorded and transcribed for analysis. The analysis of remote conversations shows that co-presence existed while they were engaged in co-design.
keywords Affordable Tools, Remote Collaboration, Virtual Reality, Participatory Design, SDG 11, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_299
id caadria2022_299
authors Cui, Qiang, Zhang, Huikai, Pawar, Siddharth Suhas, Yu, Chuan, Feng, Xiqiao and Qiu, Song
year 2022
title Topology Optimization for 3D-Printable Large-Scale Metallic Hollow Structures With Self-Supporting
doi https://doi.org/10.52842/conf.caadria.2022.2.101
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 101-110
summary Design for Additive Manufacturing (DfAM), is a one of the most commonly used and foundational techniques used in the development of new products, and particularly those that involve large-scale metallic structures composed of hollow components. One such AM technique is Wire Arc Additive Manufacturing (WAAM), which is the application of robotic welding technology applied to Additive Manufacturing. Due to the lack of a simple method to describe the fabricating constraint of WAAM and the complex hollow morphology, which difficultly deploys topology optimization structural techniques that use WAAM. In this paper, we develop a design strategy that unifies ground-structure optimization method with generative design that considers the features of hollow components, WAAM overhang angle limits and manufacturing thickness limits. The method is unique in that the user can interact with the design results, make changes to parameters, and alter the design based on the user‚s aesthetic or specific manufacturing setup needs. We deploy the method in the design and 3D printing of an optimized Electric Vehicle Chassis and successfully test in under different loading conditions.
keywords Topology optimization, Generative design, Self-supporting, Hollow structures, Metallic 3D printing, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_156
id sigradi2022_156
authors Dornelas, Wallace; Martinez, Andressa
year 2022
title Towards a Parametric Variation of Floor Plans: a Preliminary Approach for Vertical Residential Buildings
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 151–162
summary In the context of the housing demands that respond to several family profiles, allied with the potential of the algorithmic approaches to Architecture, this paper aims to describe an exploratory process of possible solutions toward a generative system of housing distribution in vertical multifamily buildings. As a method, this work presents a parametric design process of a multifamily building, simulating a variety of shape solutions for apartment buildings, in a Grasshopper definition. The work also discusses the data transmission between the parametric modeling using Grasshopper in the Rhinoceros interface and the connection of the final design to Graphisoft’s Archicad BIM-based software. As a result, the parametric model allows several design solutions for several building shapes and contexts. For this study, to fully explore the design possibilities, we applied the method in the context of a Brazilian metropolitan city.
keywords Generative design, Visual algorithmic design, Parametric architecture, Housing
series SIGraDi
email
last changed 2023/05/16 16:55

_id caadria2022_72
id caadria2022_72
authors Fingrut, Adam and Leung, Carson Ka Shut
year 2022
title Rapid Assembly of Masonry Structures with Ad-Hoc Material Attributes, Computer Vision and SCARA Robots.
doi https://doi.org/10.52842/conf.caadria.2022.2.011
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 11-20
summary This paper discusses the design and development of scale masonry structures using robot arms, computer vision hardware and bespoke computational workflows. In parallel to the development of full-scale masonry solutions using a Cable Driven Parallel Robot (CDPR), a faster method for testing large numbers of brick elements is needed to verify buildability, mitigate collisions, and think differently about recycled materials during real-world construction activities. Additionally, by incorporating scanning and analysis technology, materials can be digitized, and their attributes translated into variables for placement within an intended structure.
keywords Automation in Construction, Masonry, Computational Design, Discrete Element Assemblies, Reuse, SDG 9, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_129
id caadria2022_129
authors Fukuda, Tomohiro, Nagamachi, Shiho, Nakamura, Hoki, Yamauchi, Yuji, Ito, Nao and Shimizu, Shunta
year 2022
title Web-Based Three-Dimensional Augmented Reality of Digital Heritage for Nighttime Experience
doi https://doi.org/10.52842/conf.caadria.2022.1.737
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 737-746
summary Digital heritage is a sustainable medium that allows people to understand the historical shape and context of cities and architecture, leading to visions for the future. Opportunities for the public to experience life-size representations of digital heritage in three-dimensional augmented reality (3D-AR) at outdoor sites are still limited, especially at night. Therefore, the objective of this study is to develop a web-based 3D-AR method to digitally reconstruct a heritage site. A prototype system was developed using the five-storey pagoda of Tango Kokubunji Temple, which was built around 1330 AD and later destroyed, as a digital heritage reconstruction. An interactive initial positioning method was developed to display the five-storey pagoda on real historical foundation stones by tapping a crosshair button, under the condition that the artificial lighting is insufficient at night and the distance between the viewpoint and the 3D model of the pagoda is large. Combining the lighting effects of the real and virtual worlds at night was also demonstrated. We held an event where the general public could experience 3D-AR on their own mobile devices, and conducted a usability evaluation to verify the system.
keywords digital heritage, digital restoration, augmented reality (AR), web system, lighting design, virtual and real worlds, SDG 4, SDG 8
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_256
id acadia22_256
authors Gerritsen, Patricia Duenas; Wissemann, Emily; García del Castillo y López, Jose Luis
year 2022
title Designer Agency in 3D Packing of Irregular Material Stock
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 256-267.
summary This paper presents a flexible computational method to simulate architectural design elements out of nonstandard and irregular sets of material stocks. This approach contributes to ongoing efforts to reduce material processing in common reuse strategies by developing a framework for human-machine design collaborations. Our three-dimensional packing method accepts as inputs user preferences with the goal of creating a framework for design that integrates creative decision-making, enabling architects to simulate and conceptualize alternative design schemes for material reuse
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ecaade2022_136
id ecaade2022_136
authors Hong, Soon-min, Kim, Dong-wuk, Gu, Hyeong-mo and Choo, Seung-yeon
year 2022
title Establishment of Database for Automated Building Codes Compliance Checking in the Pre-Design Phase
doi https://doi.org/10.52842/conf.ecaade.2022.2.329
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 329–338
summary The ICT’s development has led to the introduction of work automation technology into the AEC industry, and many governments around the world have attempted to increase work efficiency by introducing the automation technology for building legality review into the building administrative system. Prior to this, it is essential to develop a database of which natural language-based building codes should be modified in code. Thus, this study addresses a method to convent building acts in the form of natural language into computer-readable one through formalization and encoding and to establish database with the aim of developing the automation technology for legality review for setting size used in pre-design phase. The method suggested is verified through the developed authoring tool.
keywords Automated Checking, Building Codes Compliance, Mass Generation
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_945248 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002