CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 658

_id caadria2022_69
id caadria2022_69
authors Rogeau, Nicolas, Rezaei Rad, Aryan, Vestartas, Petras, Latteur, Pierre and Weinand, Yves
year 2022
title A Collaborative Workflow to Automate the Design, Analysis, and Construction of Integrally-Attached Timber Plate Structures
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 151-160
doi https://doi.org/10.52842/conf.caadria.2022.2.151
summary This paper introduces a computational framework that fosters collaboration between architects, engineers, and contractors by bridging the gap between architectural design, structural analysis, and digital construction. The present research is oriented toward the formulation of an automatic design-to-construction pipeline for Integrally-Attached Timber Plate Structures (IATPS). This construction system is based on assembling timber panels through the sole interlocking of wood-wood connections inspired by traditional Japanese joinery. Prior research focused on developing distinct computational workflows and dealt with the automation of 3D modelling, numerical simulation, fabrication, and assembly separately. In the current study, a single and interactive design tool is presented. Its versatility is demonstrated through two case studies, as well as the assembly of a physical prototype with a robotic arm. Results indicate that efficiency in terms of data flow and stakeholder synergy is considerably increased. The proposed approach contributes to the†Sustainable Development Goal (SDG) 11 by facilitating the collaborative design of sustainable timber structures. Besides, the research also contributes to SDG 9 as it paves the way for sustainable industrialisation of the timber construction sector through streamlined digital fabrication and robotic assembly processes. This reduces manufacturing time and associated costs while leveraging richer design possibilities.
keywords Timber plate structures, Timber joints, Collaborative design, Interdisciplinary design, Structural performance assessment, Robotic assembly, SDG 11, SDG 9.
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_99
id sigradi2022_99
authors Schmidlin, Flavio; Tavares da Silva, Felipe
year 2022
title Investigation of indoor daylight performance of the two-sided roof monitor system solution space
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 237–248
summary The present study evaluated levels of zenith daylight and the incidence of solar radiation in an indoor environment with two-sided roof monitor system opening using a parametric geometric model, numerical simulations and machine learning techniques. It was used a climatic database from a locality with a hot and humid tropical climate, at low latitude in Brazil. The daylight performance was analyzed using the Useful Daylight Illuminances and the incident solar radiation with annual and daily maximum results. The study included analyzes with the zenith openings oriented to North-South and East-West, considering the photosensitive sensor meshes on the walls and floor. The results presented that the modeling process used can help the architectural design process in its dimension of natural illuminance and incidence of solar radiation in internal environments, showing optimized configurations for the room size and for the zenithal opening geometry.
keywords Predictive Modeling, Parametric Modeling, Radiation, Zenithal Daylight, Indoor Environment
series SIGraDi
email
last changed 2023/05/16 16:55

_id ecaade2022_334
id ecaade2022_334
authors Sepúlveda, Abel and De Luca, Francesco
year 2022
title A Novel Multi-criteria Method for Building Massing based on Energy Performance and Solar Access - The Mixed Solar Envelope (MSE) method
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 649–658
doi https://doi.org/10.52842/conf.ecaade.2022.1.649
summary This paper proposes a novel multi-criteria method for building massing based on energy performance and solar access allowed to the surrounding buildings (Mixed Solar Envelope (MSE) method). We used a single thermal zone simulation-based methodology to validate the method. We applied the MSE method in a generic urban zone located in Tallinn, Estonia. Determining the building form, the designer can prioritize energy performance and/or solar access for each studied neighbor’s room, as well as the importance between studied rooms. The method allowed to generate building masses (MSEs) capable of saving up to 73% and 67% of the total annual energy consumption in office and residential rooms with window-to-wall-ratio of 80%. As a tool to negotiate between different rooms, the total annual energy savings was between 56-80% when considering a pure energy-based criterion. The annual energy savings was between 26- 30% while maximizing the annual number of sun hours when considering solar access- based criteria.
keywords Energy Efficiency, Solar Access, Building Massing, Reverse Solar Envelope, Solar Envelope, Multi-Criteria Design, Early Design Stages, Multi-Optimization
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2022_59
id caadria2022_59
authors Banihashemi, Farzan, Reitberger, Roland and Lang, Werner
year 2022
title Investigating Urban Heat Island and Vegetation Effects Under the Influence of Climate Change in Early Design Stages
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 679-688
doi https://doi.org/10.52842/conf.caadria.2022.2.679
summary Different criteria need to be considered for optimal strategies in the early design stages of urban developments. Under the influence of climate change, the urban heat island effect (UHI) is a phenomenon that gains importance in the early design stages. Here, different parameters, for instance, vegetation ratio in the city district and building density, play a significant role in the UHI effect. These parameters need to be quantified through different simulation tools for optimal climate adaptation and mitigation measures on the urban district scale. However, not all parameters and their influence are clear to the decision-makers and actors in the early design stages. Hence, we propose a Monte Carlo based sensitivity analysis (SA) and uncertainty analysis (UA) to show the significance of different parameters and quantify them. The SA aims to identify the major influencing parameters, whereas the UA quantifies the effect on the energy performance and indoor thermal comfort of occupants. The workflow is integrated into a collaborative design platform and applied in a case study to support decision-makers in the early design stages for new developments, densification, or refurbishment scenarios.
keywords Monte Carlo Simulation, Sensitivity Analysis, Uncertainty Analysis, Building Energy Simulation, SDG 13, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ijac202220101
id ijac202220101
authors Bao, Ding Wen; Xin Yan, Yi Min Xie
year 2022
title Encoding topological optimisation logical structure rules into multi-agent system for architectural design and robotic fabrication
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 7–17
summary Natural phenomena have been explored as a source of architectural and structural design inspiration with different approaches undertaken within architecture and engineering. The research proposes a connection between two dichotomous principles: architectural complexity and structural efficiency through a hybrid of natural phenomena, topology optimisation and generative design. Both Bi-directional Evolutionary Structural Optimisation (BESO) and multi-agent algorithms are emerging technologies developed into new approaches that transform architectural and structural design, respectively, from the logic of topology optimisation and swarm intelligence. This research aims to explore a structural behaviour feedback loop in designing intricate functional forms through encoding BESO logical structure rules into the multi-agent algorithm. This research intends to study and evaluate the application of topology optimisation and multi-agent system in form-finding and later robotic fabrication through a series of prototypes. It reveals a supposition that the structural behaviour-based design method matches the beauty and function of natural appearance and structure. Thus, a new exploration of architectural design and fabrication strategy is introduced, which benefits the collab- oration among architects, engineers and manufacturers. There is the potential to seek the ornamental complexities in architectural forms and the most efficient use of material based on structural performance in the process of generating complex geometry of the building and its various elements.
keywords Swarm intelligence, multi-agent, bi-directional evolutionary structural optimisation (BESO), intricate architectural form, efficient structure
series journal
last changed 2024/04/17 14:29

_id ecaade2022_367
id ecaade2022_367
authors Doumpioti, Christina and Huang, Jeffrey
year 2022
title Field Condition - Environmental sensibility of spatial configurations with the use of machine intelligence
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 67–74
doi https://doi.org/10.52842/conf.ecaade.2022.2.067
summary Within computational environmental design (CED), different Machine Learning (ML) models are gaining ground. They aim for time efficiency by automating simulation and speeding up environmental performance feedback. This study suggests an approach that enhances not the optimization but the generative aspect of environmentally driven ML processes in architectural design. We follow Stan Allen's (2009) idea of 'field conditions' as a bottom-up phenomenon according to which form and space emerge from local invisible and dynamic connections. By employing parametric modeling, environmental analysis data, and conditional Generative Adversarial Networks [cGAN] we introduce a generative approach in design that reverses the typical design process of going from formal interpretation to analysis and encourages the emergence of spatial configurations with embedded environmental intelligence. We call it Intensive-driven Environmental Design Computation [IEDC], and we employ it in a case study on a residential building typology encountered in the Mediterranean. The paper describes the process, emphasizing dataset preparation as the stage where the logic of field conditions is established. The proposed research differentiates from cGAN models that offer automatic environmental performance predictions to one that spatial predictions stem from dynamic fields.
keywords Field Architecture, Environmental Design, Generative Design, Machine Learning, Residential Typologies
series eCAADe
email
last changed 2024/04/22 07:10

_id ijac202220306
id ijac202220306
authors Duclos-Prévet, Claire; François Guéna; Mariano Efron
year 2022
title Constraint handling methods for a generative envelope design using genetic algorithms: The case of a highly constrained problem
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 587–609
summary The use of genetic algorithms as generative and performance design techniques often involves, in practice, constraint handling, which can be a complex task. Moreover, environmental simulations are computationally expensive and managing constraints can avoid wasting time on infeasible solutions. Despite these two incentives, and the benefits of an immense literature, both applied and theorical, on constrained optimization, there are only few guidelines and tools directly applicable by architects to address this issue. This paper proposes to fill this gap by identifying, classifying, and implementing different constraint management techniques available to architects. Seven methods have been tested for a highly constrained envelope design problem, consisting in the optimization of a sun-shading system. Three of them are easily replicable to different types of projects while the four others need to find a problem-specific heuristic. It appears that the second category is more efficient but implies the use of generative techniques that are more difficult to implement than parametric models
keywords Optimization under constraint, performative envelope design, generative and sustainable design, agent-based modeling, multiobjective genetic algorithm, visual comfort
series journal
last changed 2024/04/17 14:30

_id caadria2022_145
id caadria2022_145
authors Duering, Serjoscha, Fink, Theresa, Chronis, Angelos and Konig, Reinhard
year 2022
title Environmental Performance Assessment - The Optimisation of High-Rises in Vienna
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2022.1.545
summary Our cities are facing different kinds of challenges - in parallel to the urban transformation and densification, climate targets and objectives of decision-makers are on the daily agenda of planning. Therefore, the planning of new neighbourhoods and buildings in high-density areas is complex in many ways. It requires intelligent processes that automate specific aspects of planning and thus enable impact-oriented planning in the early phases. The impacts on environment, economy and society have to be considered for a sustainable planning result in order to make responsible decisions. The objective of this paper is to explore pathways towards a framework for the environmental performance assessment and the optimisation of high-rise buildings with a particular focus on processing large amounts of data in order to derive actionable insights. A development area in the urban centre of Vienna serves as case study to exemplify the potential of automated model generation and applying ML algorithm to accelerate simulation time and extend the design space of possible solutions. As a result, the generated designs are screened on the basis of their performance using a Design Space Exploration approach. The potential for optimisation is evaluated in terms of their environmental impact on the immediate environment.
keywords simulation, prediction and evaluation, machine learning, computational modelling, digital design, high-rises, SGD 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_386
id ecaade2022_386
authors Foged, Isak W. and Scaffidi, Antonio
year 2022
title Design and Fabrication Methods for Hemp Based Acoustic Elements
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 101–110
doi https://doi.org/10.52842/conf.ecaade.2022.1.101
summary This study investigates and proposes design and fabrication methods for hemp-based heat-pressed acoustic tiles. Through computational pattern generation and acoustic analysis methods, combined with CNC-milling of formwork for heat pressing and room acoustic measurements are material-geometric relations examined and described. The study results in new procedural design method for creating bespoke visual-acoustic modules and knowledge of how these hemp-based tiles can impact the acoustic environment.
keywords Hemp, Acoustics, Pattern Generation, Heat Form Pressing
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_458
id caadria2022_458
authors Gong, Pixin, Huang, Xiaoran, Huang, Chenyu and White, Marcus
year 2022
title Machine Learning-Based Walkability Modeling in Urban Life Circle
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 645-654
doi https://doi.org/10.52842/conf.caadria.2022.1.645
summary With China's fast urbanization, the study of the walkability of residents' life circles has become critical to improve people's quality of life. Traditional walkability calculations are based on Lawrence Frank's theory. However, the weighted calculation method cannot be adapted to ever-changing and complicated scenarios as the scope and topic of research transforming. This study investigated walkability at the community level by combining machine learning techniques with multi-source data. Feature indicators affecting walkability were estimated from multi-source data. Machine learning was used to refine the weighting calculation under the previous indicator framework. We compared the performance of 20 regression models from 6 different machine learning algorithms for estimating the walkability of 14578 communities in downtown Shanghai. It is concluded that the Bagged Tree Model (R2=0.86, RMSE=0.36862) achieves the best performance, which is used to revise the initial walkability index values. The workflow proposed in this paper allows for rapid application of expert empirical consensus to comprehensive urban design and detailed urban governance in the future.
keywords Life Circle, Walkability Indicator, Multi-source Data, Machine Learning, Refined Urban Design, SDG 3, SDG 10, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_124
id ecaade2022_124
authors Ham, Jeremy, Woessner, Uwe and Kieferle, Joachim
year 2022
title Exploring Synaespatia within a Networked Musico-Spatial Virtual Environment
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 467–474
doi https://doi.org/10.52842/conf.ecaade.2022.2.467
summary This paper addresses the conference theme of futuristic co-creation through inter- disciplinary research that brings together the fields of spatial design, music and sound and spatialisation in virtual reality (VR). We describe a ‘Networked Musico-Spatial Virtual Environment’ (NMSVE) that spatialises, in real time VR, frequency distribution and wave forms of live and recorded sound, provides a form of real-time 3D spatial notation of musical instruments (digital drum kit, keyboards) and sends and receives these spatialisations to two or more participants in different continents across the network. Through the NMSVE, new forms of ‘synaespatia’ can be enabled as the experience of sound and music through cross-domain spatialisation across a range of networked performance modalities. Whilst the technologies were developed primarily to advance musico-spatial performance, they offer significant potential to enable new understandings of sound and music for the hearing impaired and as a research tool for architectural acoustics.
keywords Sound Spatialisation, VR, Musico-Spatial, Networked Performance, Acoustics
series eCAADe
email
last changed 2024/04/22 07:10

_id cdrf2022_514
id cdrf2022_514
authors Jiaxiang Luo, Tianyi Gao, and Philip F. Yuan
year 2022
title Fabrication of Reinforced 3D Concrete Printing Formwork
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_44
summary In recent years, the emerging 3D printing concrete technology has been proved to be an effective and intelligent strategy compared with conventional casting concrete construction. Due to the principle of additive manufacturing strategy, this concrete extrusion technique creates great opportunities for designing freeform geometries for surface decoration since this material has a promising performance of high compressive strength, low deformation, and excellent durability. However, the structure behavior is usually questioned, defined by the thickness and printing path. At the same time, the experiments for using 3D printing elements for structural and functional parts are still insufficient. Little investigation has been made into developing reinforcement strategies compatible with 3D printing concrete. In fact, conventional formwork and easy-to-install reinforcement support structures have various advantages in terms of labor costs but can hardly be reused. Thus, using 3D concrete printing as formwork for projects in different scales is an effective solution in the mass customized prefabrication era. Considering large-scale projects, the demand to provide concrete formwork with a proper reinforcement strategy for better toughness, flexibility, and strength is necessary. In this paper, we proposed different off-site reinforced 3D printing concrete strategies and evaluated them from time and material cost, deviation, and accessibility of fabrication.
series cdrf
email
last changed 2024/05/29 14:03

_id caadria2022_223
id caadria2022_223
authors Kim, Jong Bum, Oprean, Danielle, Cole, Laura and Zangori, Laura
year 2022
title Net Zero Game: A Pilot Study of Game Development for Green Building Education in Rural Schools
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 455-464
doi https://doi.org/10.52842/conf.caadria.2022.2.455
summary The research investigates the design and development of a serious game to teach green building design and energy literacy in rural middle schools in the United States. The paper presents a pilot study, education mini-game development integrated with parametric BIM and energy simulations. The game scenario was built on the developed science curriculum modules in our funded research, teaching building energy technologies such as daylighting, artificial lighting, window configurations, building materials, solar panels, etc. The mini game presents a baseline science lab and a media library of typical public schools in the United States. The players have the opportunity to improve energy literacy in several ways: manipulating the building configurations and the energy options, reviewing energy cost and the emission level changes, and monitoring the performance from the dashboards. This paper presents background theory, curriculum design, the mini-game development framework, methods and tools for energy simulation and BIM visualization, and the findings and challenges.
keywords Serious Game, Energy Literacy, Green Building Education, Parametric BIM, Energy Simulation, SDG 4, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_217
id sigradi2022_217
authors Kim, Yujin; Jeronimidis, George; Ebrahim, Hesham
year 2022
title The effect of façade curvature and surrounding building heights on pedestrian-level wind speeds in the City of London
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1175–1186
summary This paper analyses the effect of façade curvature with varying the surrounding building heights on pedestrian-level wind speeds and comfort for walking, using computational fluid dynamics. The case study focuses on 20 Fenchurch Street site in London as several complaints have risen in relation to high wind speeds, the cause of which is not thoroughly understood. The results of the simulation revealed that although the increase of surrounding building heights reduces overall pedestrian-level wind speeds for both curved existing and cuboid building, façade curvature impacts differently on winds, compared to the cuboid. Isolated curved and cuboid building would perform similarly with the exception of the northwest corner. However, introducing the existing surrounding buildings, the curved façade geometry would create larger area of walking discomfort compared to the cuboid geometry. When the height of the surrounding buildings is increased, both buildings would perform similarly with minor aerodynamic advantage to the curved-façade.
keywords Building Performance, Wind Microclimate, Tall Building, Surroundings, Pedestrian-level Wind Speeds
series SIGraDi
email
last changed 2023/05/16 16:57

_id ecaade2022_122
id ecaade2022_122
authors Kinoshita, Airi, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2022
title Enhanced Tracking Method with Object Detection for Mixed Reality in Outdoor Large Space
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 457–466
doi https://doi.org/10.52842/conf.ecaade.2022.2.457
summary Mixed-reality landscape simulation is one of the visual methods used in landscape design studies. A markerless tracking method using image processing has been proposed for properly aligning the real and virtual worlds involved with landscape simulations in large spaces. However, this method is challenging because tracking breaks down if a dynamic object is encountered during the mixed-reality execution. In this study, we integrated deep-learning object detection with natural feature-based tracking, which tracks manually defined feature points (tracking reference points), with the aim of reducing the impact of moving objects such as people and cars on mixed-reality tracking. The prototype system was implemented and tracking was performed on pre-recorded video taken outdoors. Performance was verified in terms of the number of errors associated with tracking the reference points and the accuracy of the mixed-reality display results (camera pose estimation results). Compared to the conventional system, our system was able to reduce the influence of moving objects that cause errors when tracking reference points. The accuracy of the camera pose estimation results was also verified to be improved. This research will contribute to developing mixed-reality simulation systems for large-scale spaces that are accessible to everyone, including users in the architectural field.
keywords Landscape Visualization, Mixed Reality, Object Detection, Tracking, Deep Learning
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_344
id caadria2022_344
authors Krezlik, Adrian
year 2022
title Considering Energy, Materials and Health Factors in Architectural Design, Two Renovation Strategies for the Portuguese Building Stock
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 619-628
doi https://doi.org/10.52842/conf.caadria.2022.2.619
summary According to the Intergovernmental Panel on Climate Change, the built environment has a significant share in global final energy use, greenhouse gases emission, land-system change, and biodiversity loss to list some indicators. In Europe, the biggest challenge is to regenerate existing building stock to create a positive impact on Nature. The Portuguese housing stock is old: 56% is more than 30 years old, and it has a low level of thermal comfort and energy efficiency. The first thermal regulations appeared in 1990 and therefore most of the houses need urgent renovation to meet EU decarbonization goals, and to improve energy efficiency, as well as well-being and comfort of residents. This paper presents a method that aims to verify existing solutions known from vernacular architecture as complementary to existing strategies. It employs digital simulation to verify whether they could be used for renovation, measuring their impact on human and planetary health. The paper shows that there is a wide spectrum of parameters that influence the renovation process and that it is possible to enhance building performance using vernacular knowledge.
keywords Building Energy Modelling, Life Cycle Assessment, Occupant Health, Energy Renovation, Vernacular Mimicry, SDG 3, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_394
id caadria2022_394
authors Li, Yuanyuan, Huang, Chenyu, Zhang, Gengjia and Yao, Jiawei
year 2022
title Machine Learning Modeling and Genetic Optimization of Adaptive Building Facade Towards the Light Environment
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 141-150
doi https://doi.org/10.52842/conf.caadria.2022.1.141
summary For adaptive facades, the dynamic integration of architectural and environmental information is essential but complex, especially for the performance of indoor light environments. This research proposes a new approach that combines computer-aided design methods and machine learning to enhance the efficiency of this process. The first step is to clarify the design factors of adaptive facade, exploring how parameterized typology models perform in simulation. Then interpretable machine learning is used to explain the contribution of adaptive facade parameters to light criteria (DLA, UDI, DGP) and build prediction models for light simulation. Finally, Wallacei X is used for multi-objective optimization, determines the optimal skin options under the corresponding light environment, and establishes the optimal operation model of the adaptive facades against changes in the light environment. This paper provides a reference for designers to decouple the influence of various factors of adaptive facades on the indoor light environment in the early design stage and carry out more efficient adaptive facades design driven by environmental performance.
keywords Adaptive Facades, Light Environment, Machine learning, Light Simulation, Genetic Algorithm, SDG 3, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_62
id sigradi2022_62
authors Mateus, Daniel; Henriques, Gonçalo Castro; Eskinazi, Mara; Menna, Ronaldo Lee; Nepomuceno, Taiane Melo
year 2022
title Carioca modern facades: expanding passive shading systems through computational methods
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 127–138
summary In the 1940s, modern Rio de Janeiro architects developed passive systems to improve buildings performance, without resorting to air conditioning systems. This research studies the performance of a set of eight buildings, from the Carioca School, investigating in a prospective sense how to improve their performance through computational methods. The authors modelled the eight buildings and analysed as a case study the Nova Cintra building performance, regarding insolation and illuminance, using the environmental software Ladybug and Honeybee. Based on the simulation data, they used combinatorial modeling to change the position of each of the three shading type’s modules of the north facade of Nova Cintra, to improve their overall performance. Results confirm that is possible to continue to improve the buildings performance, as already accomplished by the modern buildings, using computational methods to improve, reducing also energy consumption through natural systems and diminishing the need for artificial air conditioning systems.
keywords Generative Design, Shading performance, Insolation and illuminance analysis, Combinatorial modeling, Carioca modern facades
series SIGraDi
email
last changed 2023/05/16 16:55

_id ascaad2022_011
id ascaad2022_011
authors Najafi, Qodsiye; Mahlabani, Yousef; Goharian, Ali; Mahdavinejad, Mohammadjavad
year 2022
title A Novel Design-Based Optimization Solution for Building by Sensitivity Analysis
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 632-653
summary The important objective of a building must be to provide a comfortable environment for people. Heating, ventilation and air conditioning (HVAC) systems provide a comfortable environment, but they are using high energy consumption, therefore, designing an energy-efficient building that balances energy performance and thermal comfort is necessary. To achieve this subject is important to choose the effective parameters for energy performance. This research aim is to produce a methodology for multi-objective optimization of daylight and thermal comfort in order to study the effect of wall material and shading of an office building (Tehran a basic-location). The building simulation was developed and validated by comparing predicted daylight hours and thermal comfort hour based on test and training on Jupiter Notebook (Anaconda3). The sensitivity analysis uses a multiple linear regression (MLR) method. Secondly, optimization is based on a genetic algorithm (GA) with the effective parameters to optimize the daylight and thermal comfort performance. For this, we developed a parametric model using the Grasshopper plugin for Rhino and then use Honeybee and Ladybug plugins to simulate thermal comfort and daylight, at the end use the Octopus engine to find an optimization solution. The result of this paper is essential as a preliminary analysis for shading devices, window-to-wall ratios, and wall construction optimization in the open-plan office.
series ASCAAD
email
last changed 2024/02/16 13:24

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_134693 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002