CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 676

_id ijac202220212
id ijac202220212
authors Castriotto, Caio; Felipe Tavares; Gabriela Celani; Olga Popovic Larsen; Xan Browne
year 2022
title Clamp links: A novel type of reciprocal frame connection
source International Journal of Architectural Computing 2022, Vol. 20 - no. 2, pp. 378–399
summary Reciprocal frames (RFs) are complex structural systems based on mutual support between elements. One of the main challenges for these structures is achieving geometrical complexity with ease for assembly. This paper describes the development of a new type of connection for RF that uses a single bolt to fix a whole fan. The method used was the Research Through Design, using algorithmic modelling and virtual and physical prototyping. After the exploration of different alternatives, the connection selected was structurally evaluated with a 3D solid finite element analysis (FEM) software and a 2D bar parametric model. Finally, a fullscale pavilion was built as a proof-of-concept. A total of 47 connections were fabricated using four 3D-printed templates combined with a hand router. The construction allowed us to draw conclusions on the connection design and the assembly method, and the process as a whole can contribute to the development of new structural links and production methods.
keywords Reciprocal frames, connections, computational design, simulations, digital fabrication
series journal
last changed 2024/04/17 14:29

_id ecaade2022_5
id ecaade2022_5
authors Zhao, Jiangyang, Lombardi, Davide, Chen, Hanmei and Agkathidis, Asterios
year 2022
title Reinterpreting the Dougong Joint by Using Parametric Design Methods and Robotic Fabrication Technologies: a Critical Review
doi https://doi.org/10.52842/conf.ecaade.2022.2.159
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 159–167
summary The paper finds its roots in our previous research, which explored the application of robotic technologies for the fabrication of traditional Chinese timber joints and the reinterpretation of the Dougong joint (bucket arch joint) by using parametric tools and robotic fabrication techniques. It investigates which existing robotic technologies are suitable for the automated assembly and production of the Dougong joint through reviewing relevant research. The paper systematically reviews and comparatively analyses ten articles filtered through 1,756 publications searched by using the keywords ‘timber’, ‘digital fabrication’, and ‘robot’ in the databases Scopus, CumlnCAD, ScienceDirect, Engineer village and IEEE (Institute of Electrical and Electronics Engineers). Our findings include a comparative analysis chart evaluating workflows, tools and technologies on their suitability for the robotic reinterpretation of the Dougong as well as the proposal of a novel design to fabrication workflow for that particular purpose.
keywords Dougong Joint, Timber Structures, Parametric Design, Robotic Fabrication, Optimization Algorithm
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_226
id ecaade2022_226
authors Hardarson, Matthias K., Larsen, Niels M. and Aagaard, Anders K.
year 2022
title Kerf Guided Glulam - A novel way of creating curved glulam beams
doi https://doi.org/10.52842/conf.ecaade.2022.1.085
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 85–90
summary This paper proposes a novel way of producing curved glulam timber elements where the formwork is integrated into a glulam beam. The method proposed accomplishes this by placing kerf cuts on a timber profile that gets bent and then encased in a wood laminate, forming the glulam beam. The kerf placement allows the beam to be asymmetrically curved. The optimal placement for the kerf cuts is found by feeding an initial goal curve to a form-finding definition that subdivides it and places markers where cuts need to be made while manipulating the beam geometry, ensuring that it matches the initial input curve. The benefit of this method is that it is not reliant on large-scale glulam setups but can be fabricated with basic wood workshop tools in conjunction with a 5-axis CNC mill. The simplified production process enables smaller manufacturers and designers to produce dynamic wooden structures while saving on materials and labour that would have gone into producing formwork that eventually gets discarded.
keywords Digital Wood Workflows, Kerfs, Glulam, Parametric Design, Digital Fabrication, CNC, Design Democratisation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_138
id ecaade2022_138
authors Kycia, Agata, Rossi, Andrea, Hugo, Jörg, Jünger, Konrad, Sauer, Christiane and Krüger, Nils
year 2022
title Felt and Fold - Design and manufacturing of customized nonwovens through robotic needle felting
doi https://doi.org/10.52842/conf.ecaade.2022.1.195
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 195–204
summary This paper explores the potential of robotic needle felting for customized production of nonwoven textiles and their architectural applications. The possibility to program the robotic movement and locally control fiber density and distribution allows the design of nonwoven, heterogeneous materials with graded properties not by differentiating their chemical composition, but rather controlling their mechanical structure. We propose a parametric design and fabrication workflow relying on a 6-axis robotic arm. We describe design techniques for the generation of felted surfaces with varying material properties and their translation to instructions for robotic felting, as well as the physical fabrication setup. Within our research, the ability to locally differentiate material properties is further explored to create three-dimensional folding behaviors. We study how fiber densities affect their folding ability and geometry, examine qualities of resulting edges, analyze how they affect folding and finally design targeted folded structures by informing the felting pattern. While robotic felting has not yet found significant applications in architecture, the designs and prototypes demonstrate its potential in the architectural context, as it suggests new solutions for recyclable, circular building components or surfaces.
keywords Robotic Needle Felting, Graded Nonwovens, Folding, Heterogeneous Materials
series eCAADe
email
last changed 2024/04/22 07:10

_id cdrf2022_385
id cdrf2022_385
authors Yang Song, Asterios Agkathidis, and Richard Koeck
year 2022
title Augmented Bricks an Onsite AR Immersive Design to Fabrication Framework for Masonry Structures
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_33
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The Augmented Bricks research project aims to develop an immersive design to fabrication framework for the assembly of masonry building components by incorporating robotic fabrication and augmented reality (AR) technologies. Our method incorporates two main phases: firstly, the design phase in which users’ gestures and interactions are being identified in AR for the immersive design and simulation process; secondly, an innovative robotic assembly phase in which users can control a robotic arm for assembly by interacting with the AR user interface (UI). Our framework is validated by the design and assembly of four brick-based columns. Our findings highlight that the proposed design to fabrication framework offers a novel, intuitive design inspiration and experience beyond the traditional design methods. It returns the task of assembling parametric structures with high-tech equipment back to the designers, allowing them to master and participate in the entire design to the fabrication process. The impact of this practice-based research will allow architects and designers to modify and construct their designs more simply and intuitively through the AR environment.
series cdrf
email
last changed 2024/05/29 14:03

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia22_604
id acadia22_604
authors Adel, Arash
year 2022
title Co-Robotic Assembly of Nonstandard Timber Structures
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 604-613.
summary This paper presents a novel approach for the construction of nonstandard timber structures made from regionally sourced short dimensional lumber, which is enabled through human-robot collaborative assembly (HRCA). To address the research question, three main research objectives are identified and experimentally explored: 1) Characterization of a comprehensive construction process, which consists of off-site HRCA of bespoke timber sub-assemblies, 2) Development of a suitable constructive system for robotic assembly, making feasible the realization of articulated structures out of short timber elements, and 3) Incorporation of these techniques and their constraints into an integrative digital design and fabrication method and implementation of a continuous digital design-to-fabrication workflow. 
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id caadria2022_245
id caadria2022_245
authors Chai, Hua, Guo, Zhixian, Wagner, Hans Jakob, Stark, Tim, Menges, Achim and Yuan, Philip F.
year 2022
title In-Situ Robotic Fabrication of Spatial Glulam Structures
doi https://doi.org/10.52842/conf.caadria.2022.2.041
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 41-50
summary While current approaches in timber construction stress the advantages of off-site prefabrication, glued laminated timber(glulam) structures is limited to the constraints of standardized, prefabricated mostly linear elements, which also lends itself only to building typologies that offer an increased level of standardization and regularity. The design freedom of timber structures is incomparable to that of reinforced concrete structures, which mostly gains from the in-situ fabrication process. An in-situ robotic timber fabrication platform allows the on-site construction of glulam structures with highly differentiated networks of beams composed of robotically assembled discrete linear elements. Based on the possibilities of such mobile robotic fabrication process, this paper explores novel architectural typologies of spatial glulam structures. The research is conducted from several aspects including joint tectonics, design method, and robotic fabrication process. A large-scale pavilion is designed and fabricated to verify the feasibility of the proposed system. This research could provide a novel mode of in-situ robotic timber fabrication and corresponding glulam structure system for timber construction.
keywords Mobile Robot, Timber Structure, In-situ Fabrication, Computational Design, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_4
id acadia22_4
authors Gandia, Augusto; Gramazio, Fabio; Kohler, Matthias
year 2022
title Tolerance-Aware Design of Robotically Assembled Spatial Structures
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 4-23.
summary This paper presents a computational design method that integrates capabilities to manage material and fabrication tolerances occurring during the robotic assembly of spatial timber structures with tight-fit connections. This is achieved by building a data-base of tolerances measured during the robotic assembly process, which then allow for tolerance simulation as part of an assembly sequence planning method based on the Kruskal algorithm. Through a combination of optimization and linear regression techniques, the developed method enables designers to minimize deviations of their designs and diminish the risks of misfits during fabrication. In consequence, it allows for tolerance-aware designs.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id caadria2022_69
id caadria2022_69
authors Rogeau, Nicolas, Rezaei Rad, Aryan, Vestartas, Petras, Latteur, Pierre and Weinand, Yves
year 2022
title A Collaborative Workflow to Automate the Design, Analysis, and Construction of Integrally-Attached Timber Plate Structures
doi https://doi.org/10.52842/conf.caadria.2022.2.151
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 151-160
summary This paper introduces a computational framework that fosters collaboration between architects, engineers, and contractors by bridging the gap between architectural design, structural analysis, and digital construction. The present research is oriented toward the formulation of an automatic design-to-construction pipeline for Integrally-Attached Timber Plate Structures (IATPS). This construction system is based on assembling timber panels through the sole interlocking of wood-wood connections inspired by traditional Japanese joinery. Prior research focused on developing distinct computational workflows and dealt with the automation of 3D modelling, numerical simulation, fabrication, and assembly separately. In the current study, a single and interactive design tool is presented. Its versatility is demonstrated through two case studies, as well as the assembly of a physical prototype with a robotic arm. Results indicate that efficiency in terms of data flow and stakeholder synergy is considerably increased. The proposed approach contributes to the†Sustainable Development Goal (SDG) 11 by facilitating the collaborative design of sustainable timber structures. Besides, the research also contributes to SDG 9 as it paves the way for sustainable industrialisation of the timber construction sector through streamlined digital fabrication and robotic assembly processes. This reduces manufacturing time and associated costs while leveraging richer design possibilities.
keywords Timber plate structures, Timber joints, Collaborative design, Interdisciplinary design, Structural performance assessment, Robotic assembly, SDG 11, SDG 9.
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id sigradi2022_243
id sigradi2022_243
authors Banda, Pablo; Carrasco-Pérez, Patricio; García-Alvarado, Rodrigo; Munoz-Sanguinetti, Claudia
year 2022
title Planning & Design Platform of Buildings By Robotic Additive Manufacturing for Construction.
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 421–430
summary The following paper describes and comments a construction planning platform for the Additive Manufacturing of wall modules, as a set of design and planning actions that interwove robotic, material capacities and spatial characteristics. Goal here is to take semi-conventional strategy and augment the algorithmic process for design and knowledge acquisition regarding design oriented to 3D Printing Construction.
keywords Additive Manufacturing for Construction, 3D Printing, Digital Fabrication, Parametric Design
series SIGraDi
email
last changed 2023/05/16 16:56

_id acadia22_208
id acadia22_208
authors Blaney, Adam; Ozkan, Dilan; Pelit, Emel; Fonseca Braga, Mariana; Hardy, John G.; Ashton, Mark ; ,
year 2022
title Parametric Matter
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 208-223.
summary This paper discusses an ongoing interdisciplinary research project that develops a design and fabrication approach termed; tunable environments. This is an explorative approach, which enables updates from a digital parametric interface to be ‘pushed' into a 2D, 18 x 18 cm material sample, by modulating stimuli, so multiple properties can be updated/tuned at high resolutions. Our prototype explores how iterative updates can be achieved, which can be temporarily frozen in time. This opens up the idea of creating Parametric Matter/circular mate- rials, which could reduce waste that can be attributed to typical linear processes. Additionally, highly bespoke, ‘time-based’ structures could be achieved
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ecaade2022_60
id ecaade2022_60
authors Carl, Timo and Weilandt, Agnes
year 2022
title From Sheet to Folded Plate Structure - Design & build investigations with an interdisciplinary student team
doi https://doi.org/10.52842/conf.ecaade.2022.2.517
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 517–524
summary This paper outlines a teaching methodology that utilizes folding as a form-generator and introduces an interdisciplinary student team to digital tools and research-through-design based methods. At the heart of the project is the design of folded plate structures, which can be manufactured from 10mm cardboard material by using only 2D-CNC miter cutting. We present our computational workflow from conception to completion for two 1:1 scale demonstrators. Lastly, we identify aspects of the project that can be applied for other computational design teaching formats.
keywords Design-Build, Parametric Modelling, Form-Finding, Structural Simulation, Interdisciplinary Collaboration, Digital Fabrication, Folded Plate Structures
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_66
id sigradi2022_66
authors Garcia-Alvarado, Rodrigo; Banda Perez, Pablo; Moroni Orellana, Ginnia
year 2022
title Architectural Diversity of Residential Buildings through Digital Design and Robotic Construction
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 957–966
summary The housing demand in Latin America has promoted to build big complexes with repetitive designs to ensure their execution and commercialization, but neglecting the differences in occupation, cultures, ages, abilities, genders, climates and locations. Producing low quality, environmental deterioration and social alienation. This work exposes a parametric programming and robotic construction strategy to develop a varied residential process. Based on structural volumes and 3d-printed walls, to provide a diversity of housing configurations. The modular generation of volumes and development of the envelope is programmed to meet various thermal and occupational conditions, with printing trajectories for the walls according to the equipment, execution processes and material capacities. A repertoire of 494 residential volumes has been defined and prototype walls have been made, suggesting an innovative design system, wich provides a new paradigm for housing construction with digital technologies and robotic execution to diversify residential quality.
keywords Inclusive Design, Housing, Parametric Design, Robotics, Digital Fabrication
series SIGraDi
email
last changed 2023/05/16 16:57

_id cdrf2022_25
id cdrf2022_25
authors Hao Zhang, Yuetao Wang, Yuhan Tan, and Jilong Zhao
year 2022
title Parametric Skin Design Method Based on Plane Crystallographic Group Operation Principle
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_3
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Under the dual constraints of industrialization and digitalization, the building skin and structure are further integrated to form standardized units to meet the requirements of architectural performance, industrial prefabrication and “complexity” aesthetic characteristics. The complex and diverse forms of today's building skin hide profound mathematical logic relations and operation rules of form generation. Crystallographic group with regular symmetry and the operation principles reflected by it is one of the most important rules and methods of form and pattern processing in skin design. The study of the mural symbols in ancient Egypt, the murals in the Alhambra, the manuscripts of Escher and the window lattice in ancient Chinese architecture profoundly reflects the basic operation principle of crystal group in shaping the skin form of architecture. Abundant and diverse architectural skin forms can be formed through the operation of symmetry group on basic graphic units. On the basis of clarifying the basic principle of crystal group action, the operation matrix of crystallographic symmetry group can be transformed into parameterized operation steps through programming language for visual operation, and then the skin form with high complexity and leap dimension can be generated by geometric algorithm, and the design method of building skin generation based on crystallographic group is constructed. In the selection of operation form, combined with the calculation of building performance and structure, the construction skin can be used in practical engineering is generated. Based on crystallographic group operation, the unifications of building skin and the classification simplification of components can meet the requirements of modular and unifications design in the process of building industrialization, and meet the requirements of current building industrialization and digitization. It has great research significance and value in the aspects of design and construction efficiency and material economic cost.
series cdrf
email
last changed 2024/05/29 14:02

_id ecaade2022_324
id ecaade2022_324
authors Lin, Yu-Ting and Hsu, Pei-Hsien
year 2022
title Dynamic Inflatable Structures and Digital Fabrication Process
doi https://doi.org/10.52842/conf.ecaade.2022.1.311
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 311–320
summary Inflatable structures made of flat film materials have an advantage of low cost, lightweight and rapid deployment, but the variation of their forms is relatively limited, and it is a challenge to produce pneumatic deformations. This paper proposes a designing and manufacturing process of inflatable structures which are made of flat film materials and are able to perform dynamic movements. The process includes steps in which a target 3D surface is produced through programmed 2D paths heat-sealed on flat films of different thickness, leading to a structure composed of air chambers. A parametric modelling procedure and associated principles are developed for the relationship between the forms of a flat-film-based inflatable structure and the heat sealing patterns on the film. A system of double-layer air chambers was designed to control the direction of bending movements. In addition, the form variation of a designed inflatable structure can be achieved by a parametric design process described in this paper.
keywords Pneumatic Structural System, Inflatable Structure, Digital Fabrication, Design Tool, Kinetic Structure
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_51
id ecaade2022_51
authors Lüling, Claudia and Carl, Timo
year 2022
title Fuzzy 3D Fabrics & Precise 3D Printing - Combining research with design-build investigations
doi https://doi.org/10.52842/conf.ecaade.2022.1.067
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 67–76
summary We present a synergetic combination of two previously separate process technologies to create novel lightweight structures. 3D textiles and 3D printing. We will outline the development of a novel material system that consisted of flexible and foldable 3D textiles that are combined with stiff, linear 3D printed materials. Our aim is to produce material-reduced lightweight elements for building applications with an extended functionality and recyclability. Within an ongoing research project (6dTEX), we explore a mono-material system, which uses the same base materials for both the filament for 3D printing and the yarn of the fabrication of the 3D textiles. Based on preliminary 3D printing tests on flat textiles key process parameters were identified. Expertise has been established for 3D printing on textiles as well as for using printable recycled polyester materials (PES textile and PETG filament. Lastly for 3D printing on non-combustible material (alkali-resistant (AR) glass textiles and for 3D concrete printing (3DCP). The described process- knowledge facilitates textile architectures with an extended vocabulary, ranging from flat to single curved and folded topologies. Whereas the foundations are laid in the research project on a meso scale, we also extended our explorations into an architectural macro scale. For this, we used a more speculative design-build studio that was based on a more loose combination of 3D textiles and 3D printed elements. Lastly, we will discuss, how this first architectural application beneficially informed the research project.
keywords Material-Based Design, Additive Manufacturing, Design-Build, Parametric Modelling, Form-Finding, Co-Creation, Lightweight Structures, Single-Origin Composites, Space Fabrics
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_85
id caadria2022_85
authors Reinhardt, Dagmar, Holloway, Leona, Silveira, Sue and Larkin, Nicole
year 2022
title Tactile Oceans - Enabling Inclusive Access to Ocean Pools for Blind and Low Vision Communities
doi https://doi.org/10.52842/conf.caadria.2022.2.709
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 709-718
summary This research explores implementing computation to enhance access to ocean pool and marine landscapes for the inclusion of people who are blind or have low vision (BLV). Constructing reliable representations, explanations and descriptions can support interactions with objects and participation in activities, particularly in these ocean environments. We discuss the adoption of a series of computational design strategies to leverage the impact of recent scanning technologies in information transfer. The paper introduces a background to touch access and universal design. It presents a case study of aerial photogrammetry for an ocean pool in NSW, Australia, and presents multi-scalar workflows and processes across computational design and advanced fabrication methods, including a) photogrammetry through drone-flight on a macro-scale and 3D-scanning to establish data-sets; b) parametric design and scale adaptations;†and c) 3D printing and robotic milling for touch access.
keywords Blind, Universal Design, Touch Access, Photogrammetry, 3D Printing, SDG 3, SDG 10, SDG 14
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_418
id cdrf2022_418
authors Tria Amalia Ningsih, Abraham Chintianto, Cahyo Pratomo, Muhammad Haikal Milleza, Muhammad Arif Rahman, and Intan Chairunnisa
year 2022
title Hexagonal Responsive Facade Prototype in Responding Sunlight
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_36
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary This paper discusses an architectural responsive façade system using hexagonal parametric forms and kinetic mechanism which responds sunlight. Its purposes are to buffer excessive sun exposure that goes through interior space and maximize the covering area with an incremental rotational joint system. The study aims to explore responsive façade system as second skin for architectural building, focusing on design, mechanism, and fabrication processes. The prototype consists of three parts: the hexagonal modules where the membranes and its frames are compacted; a series of levers to synchronize the movement of opening the membranes from each module; and a structural framework to hold each module as united kinetic façade system. As a preliminary prototype, the system can potentially be applied to several types of existing buildings and easily installed in various sizes and configuration. This kinetic mechanism can decrease sun radiation up to 50% than unprotected window façade.
series cdrf
email
last changed 2024/05/29 14:03

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_100135 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002