CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 643

_id caadria2022_227
id caadria2022_227
authors Stuart-Smith, Robert and Danahy, Patrick
year 2022
title Visual Character Analysis within Algorithmic Design: Quantifying Aesthetics Relative to Structural and Geometric Design Criteria
doi https://doi.org/10.52842/conf.caadria.2022.1.131
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 131-140
summary Buildings are responsible for 40% of world C02 emissions and 40% of the world's raw material consumption. Designing buildings with a reduced material volume is essential to securing a post-carbon built environment and supports a more affordable, accessible architecture. Architecture‚s material efficiency is correlated to structural efficiency however, buildings are seldom optimal structures. Architects must resolve several conflicting design criteria that can take precedence over structural concerns, while material-optimization is also impacted from limited means to quantitatively assess aesthetic decisions. Flexible design methods are required that can adapt to diverse constraints and generate filagree material arrangements, currently infeasible to explicitly model. A novel approach to generative topological design is proposed employing a custom multi-agent method that is adaptive to diverse structural conditions and incorporates quantitative analysis of visual formal character. Computer vision methods Gabor filtering, Canny Contouring and others are utilized to evaluate the visual appearance of designs and encode these within quantitative metrics. A matrix of design outcomes for a pavilion are developed to test adaptation to different spatial arrangements. Results are evaluated against visual character, structural, and geometric methods of analysis and demonstrate a limited set of aesthetic design criteria can be correlated with structural and geometric data in a quantitative metric.
keywords Generative/Algorithmic Design, Computer Vision, Environmental Performance, Multi-Agent Systems, Visual Character Analysis, SDG 10, SDG 11, SDG 9, SDG 12, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_121
id ascaad2022_121
authors Mohsen, Hiba; Tohme, Mohamad; Nashi, Rawan
year 2022
title From Passive to Immersive: Metaverse as a Pedagogical Approach in History Class: Presenting a Constant Reminder of Historical Remnants and a Customizable Reality for Future Preferences; Beirut as a Case Study
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 202-219
summary It is widely acknowledged that passive, non-immersive strategies of teaching adopted in history classes in Lebanon do not offer the right platform for knowledge retention in students. With that said, virtual reality and the use of Metaverse as a pedagogical approach is prophesied as the most apt to invoke a positive attitude from children towards the topic being studied, and thus, in this case, it increases their awareness of the existing built heritage they live amidst. This research sets out from a recent project implemented by Beirut Arab University, together with three UN agencies. The latter aimed for “developing children emotional attachment to the territory of Beirut Blast through activating their participation in the construction of cognitive maps by playing with spatial maps strategically designed in a game environment”. A thorough assessment of the outcomes of the activities implemented throughout the project, including the executed physical models and game boards that simulate myriad neighborhoods in Beirut, is carried out, followed by an analytical comparison of these outcomes with those from using the proposed innovative digital tools. A pilot study is conducted on Martyr’s square to assess how virtual tools can enhance the sensory experience and perception of the built space, making youth active learners rather than passive. It illustrates how introducing children to educating architecture from a young age not only nurtures their awareness of their local neighborhoods, but also generates responsible citizens. The outcome of this study can be divided over a timeline of past, present, and future. The virtual recreation of old Beirut aims to enhance the virtual learning experience as opposed to that from books and chalkboards. Children are expected to formulate a better understanding of their heritage, become more attached to the remnants of the latter, and set out to customize the reality to their preferences or vision of how a better, sustainable Beirut looks like.
series ASCAAD
email
last changed 2024/02/16 13:38

_id acadia22_346
id acadia22_346
authors Rossi, Gabriella; Chiujdea, Ruxandra-Stefania; Hochegger, Laura; Lharchi, Ayoub; Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette
year 2022
title Integrated Design Strategies for Multi-scalar Biopolymer Robotic 3D Printing
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 346-355.
summary In this paper we present strategies and workflows for cellulose-based biopolymer 3D printing. We propose a digital design framework informed by the fabrication system and guided through human design input. The workflow stabilizes the material at the scale of the toolpath, the component, and the wall assembly, by integrating joinery and cross-bracing together with the component geometry. We showcase the feasibility of a large-scale dry-assembly of 3D printed biopolymer components. The demonstrator wall allows us to evaluate our workflows and discuss the challenges and implication of bringing biomaterials in our built environment.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ascaad2023_042
id ascaad2023_042
authors Žigmundová, Viktória; Suchánková, Kateřina; Stretavská, Antónia; Míča, Jakub; Rayne, Taylor; Tsikoliya, Shota ; ,
year 2023
title Additive Manufacturing of Mycelium Composites for Sustainable Landscape Architecture
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 863-877.
summary This study explores the potential of mycelium composites as a sustainable and eco-friendly material for landscape architecture in the context of today's global climate and environmental crisis. Mycelium, the vegetative part of fungi, has shown promising properties such as acoustic and thermal insulation, biodegradability, and environmental performance (Vasatko et al., 2022). The central remit of this research is in proposing bespoke computational and robotic fabrication methods and workflows for investigating the performance of mycelial materials and observing their properties and growth response. Taken together, the topic of this paper is to illustrate the application and composition of such fabrication techniques as an integrated multi-material system, capable of combining the complex, organic relationships between clay, lignocellulosic substrate, and fungi with a focus on the potential of such composite materials for implementation within the built environment. Outlined here are the processes and procedures essential to this multi-material fabrication framework, including a detailed account of a series of substrate material mixtures and printed clay scaffold geometries, both of which exhibit properties informed by the material synthesis and fabrication process. We foremost propose the strategic mixing of different substrate types to be 3D printed with clay as a strategy for probing the optimization of mycelial overgrowth and binding to the 3D printed geometries. Subsequently, we proceed in detailing the study’s approach and process of 3D printing the mixtures of recycled material, drying the geometry, and sterilizing the final design once inoculated with the mycelium. Ultimately, we motivate this research in pursuit of further understanding of mycelium's material and mycoremediation capacities in service of more environmentally responsive and responsible architectural applications.
series ASCAAD
email
last changed 2024/02/13 14:34

_id acadia22pr_64
id acadia22pr_64
authors Davis, Michael; Hurley, Daniel; Lawrence, Ben; Liu, Yinan; Print, Cristin; Rieger, Uwe; Robb, Tamsin; Windahl, Charlotta; Woodhouse, Braden
year 2022
title XR Tumor Evolution Project - A Hybrid Architectural Space for Cancer Research
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 64-69.
summary The Extended Reality Tumor Evolution Project (XRTEP) is a unique, real-world application of extended reality technology in cancer research. It is enabled by a rare inter-disciplinary collaboration between the School of Architecture and Planning, the Faculty of Medical and Health Sciences, and the Centre for E-Research at the University of Auckland
series ACADIA
type project
email
last changed 2024/02/06 14:04

_id ascaad2022_000
id ascaad2022_000
authors El-Bastawissi, Ibtihal Y.; Abdelmohsen, Sherif
year 2022
title ASCAAD 2022: Hybrid Spaces of the Metaverse
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, 743 p.
summary The ASCAAD 2022 theme focuses on Hybrid Spaces of the Metaverse, with the aim of unraveling the opportunities and potentials of architecture in the age of the Metaverse. Historically space was always the container of people’s activities and memories; it is the collective reflection of their life styles. Walls, floors and ceilings of architectural spaces witnessed the moments of joy and happiness, as well as moments of misery that changed human history, from the signing of the United Nations Declaration post WWII, to the first I-phone sold in the Apple store; history is written inside architectural spaces. The new era of the 4th industrial revolution, which is associated with digital transformation, will unlock new opportunities for architects, interior designers and whoever will enter the domain of the metaverse. The metaverse will not only serve as a portal to a new world, but also as an extension to new activities such as commercial, social, educational and business activities that will thrive in the new virtual realm. The metaverse will act as the natural transcendence of technological advancements carrying new potentials to the architectural profession. Active Worlds, Second Life, Roblox and Fortnite are all early versions of what we will witness in the next few years, shifting from entertainment to full commercial, official and governmental activities; all will be hosted inside virtual and hybrid spaces. A new era will start inside virtual realms; real economy will rise inside virtual architecture but without the multiple physical or structural constraints that limit physicality anymore such as gravity, and day and night cycles; no oxygen is needed anymore. But this time, human activities will not only be recorded and saved but also attended and lived in real time. Computational design will continue to thrive and even evolve into new forms aligning with new changes and challenges of the metaverse. Hybrid spaces are the spaces that will be built as a virtual extension of real spaces. They will be in connection to real spaces and reflecting their activities on a real time basis. On the other hand, pure virtual spaces will occur, trespassing time zones and geographical barriers. The importance of hybrid experiences was most realized after the pandemic lockdowns; and now is the time to invent new design methodologies and new theories as a natural transcendence of architecture profession. Hyperlinks portals replacing staircases and elevators, physically impossible structures, open budget interiors, teleportation are all new notions emerging with the new domain. Today, virtual spaces are hosted on various cloud services and registered as Non-Fungible Tokens (NFTs). They are experienced as immersed spaces using headsets or semi immersed spaces presented through laptops and/or mobile screens. With the new accelerating pace of technology, there is high possibility for integration within our neural networks to be experienced in our minds with just closing our eyes in the near future.
series ASCAAD
email
last changed 2024/02/16 13:24

_id ascaad2022_093
id ascaad2022_093
authors Ozden, Suedanur; Arslanturk, Esra; Senem, Mehmet; As, Imdat
year 2022
title Gamification in Urban Planning: Experiencing the Future City
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 530-547
summary Virtual Reality (VR) systems have been commonly used in the game and entertainment industries and are also increasingly explored in architecture and urban planning. They assist designers to communicate design ideas to a wider public and can engage them in the design processes. In this paper, we explore gaming environments to allow users to learn about smart city applications, such as innovative mobility approaches, urban farming, drone delivery, etc. The project is part of a real-world project for a future city for 50,000 inhabitants in the European side of Istanbul, Turkey. VR technologies can offer a testing ground for testing ideas, simulating performance, crowdsourcing ideas, before building the actual city physically. Gaming incentivizes citizens to participate in the design process, and the data collected provides a significant feedback loop to shape the city of the future. Citizens can immerse themselves in the VR environment, and experience the design via four circulation modes, e.g., walking, biking, driving, and flying. They allow users to explore novel circulatory approaches within new and innovative city arteries. Indeed, the design of the city accommodates a portfolio of mobility options, and the gamification allows testing pioneering designs, e.g., parallel streets for pedestrians, vehicles, etc. Furthermore, the game allows users to collect points when engaging in smart city topics, such as urban farming, solar energy usage, carbon neutrality, etc. Feedback loop that helps to iterate on the design. The project consists of three phases, a. an immersive VR version of the city experienced on head-mounted-displays, b. edutainment and the gamification of the city, and c. the integration of the digital version of the city into Meta’s multi-user space. In the paper, we present early findings of the project, the methods/tools explored, and discuss the utility of VR technologies in the design processes of architecture and urban planning.
series ASCAAD
email
last changed 2024/02/16 13:29

_id cdrf2022_284
id cdrf2022_284
authors Ralph Spencer Steenblik
year 2022
title Developing a Hybrid Intelligence Through Hacking the Machine Learning Neural Style Transfer Process for Possible Futures
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_25
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary This article highlights work using machine learning in collaboration with designers for speculative world building. The process is unique because of the feedback loop, between the designer and the computational process. Worldbuilding is a speculative practice and requires vision and courage on the part of the designer. Working with machine learning neural style transfer (NST) allows the designers to consider possibilities humanity may not otherwise allow ourselves to imagine. This is important because human imagination paves the path for the future of humankind. Imagining a sustainable future requires considering unconventional solutions. Imagining non-probable futures allows humanity to glean desirable aspects to strive for. Even if a conceived future is impossible within the built environment, there are many opportunities for people to inhabit these environments virtually. Letting yourself get lost in these places is a form of travel, even when conditions limit one's ability to physically do so.
series cdrf
email
last changed 2024/05/29 14:02

_id ascaad2022_033
id ascaad2022_033
authors Rohani, Nima; Kim, Ikhwan
year 2022
title Urban Design Analysis of New York City's Virtual Model: The Case of Tom Clancy's The Division
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 188-201
summary People have started spending time with digital tools and virtual worlds to escape reality's horrors. However, designed spaces are more than the players' needs, especially those digital games that their stories involve urban environments. This inefficiency causes spending futile efforts both in time and cost for the digital games' productions; The urban environments in these digital games are replicas of real-world cities. Some companies use some techniques for downgrading replicas. Therefore, this study aims to uncover the used techniques for designing Tom Clancy's The Division (2016). By using reverse engineering methodology and qualitative comparative analysis, the in-game map compared with the real-world map. Based on the results, the used techniques allowed the designers to scale down the game environment to be 2.5 times smaller than the actual city. Rather, verisimilitude is achieved by combining sufficiently accurate elements to give the impression of complete accuracy. By implementing the results of this research, designers can develop smaller replicas to be perceived as more extensive.
series ASCAAD
email
last changed 2024/02/16 13:24

_id ascaad2022_110
id ascaad2022_110
authors Salem, Mona; Moussa, Ramy
year 2022
title A Hybrid Approach Based on Building Physics and Machine Learning for Thermal Comfort Prediction in Smart Buildings
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 253-263
summary One of the most important challenges facing the world is the application of modern technology in order to create smart buildings that achieve sustainable development goals (SDGs). Thermal comfort and reduction of energy consumption in buildings are considered important factors which, in turn, are reflected in creating a healthy environment and improving human productivity. Internet of Things (IoT) provides an ideal solution for collecting real-time data on the factors affecting indoor thermal comfort and energy consumption. However, comfort level is subjective and depends on many factors, which may not be learned by conventional models, an integrated model depending on thermal comfort factors is needed. In this work, a hybrid physics-based model incorporated with machine learning techniques is used for the prediction of thermal comfort inside buildings. XGBoost (eXtreme Gradient Boost) algorithm method was used due to its abilities to handle complex problems. A calculated dataset was extracted from the physics-based model gathered with the environmental variables data such as humidity, moisture, temperature, and air velocity collected from IoT devices. The results show an improvement in the prediction of the thermal comfort approach as compared with the conventional models. The XGBoost algorithm can exhibit an effective solution for eliminating deficiencies of traditional models and can be used when designing smart buildings, simulating, and evaluating the designed buildings, controlling energy consumption, and achieving thermal comfort.
series ASCAAD
email
last changed 2024/02/16 13:38

_id ascaad2022_052
id ascaad2022_052
authors Shakeri, Sheida; Ornek, Muhammed
year 2022
title How Metaverse Evolves the Architectural Design
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 156-171
summary Architects have long relied on visualization tools to develop their concepts for specific design problems. From the early traditional drawings to the three-dimensional visualizations and virtual environments, all have enabled architects to demonstrate design outputs relatively early in the process. Real-world projects are similar to what architects imagined from the beginning. In other words, the design process has always started by creating the digital representation of a project and then attempting to replicate it in real life. Once the digital representation of design parts is complete, architects prepare their design for construction. However, the final visualization emerges from actual architectural functions, structure constraints, Gravity, materiality, privacy, and physical laws, meaning that architecture evolves the digitally represented visualizations. With the growth of the metaverse, all physical restrictions are being eliminated, and architects can expand the boundaries of how spaces can be represented regardless of being virtual or physical. As a virtual environment on the internet, the metaverse redefines the rules of architecture and offers endless possibilities for architectural innovation. This article aims to explore the role the metaverse plays in designing architecture. It outlines the fundamental concepts of the metaverse to identify significant elements that could influence architecture design.
series ASCAAD
email
last changed 2024/02/16 13:29

_id acadia22_196
id acadia22_196
authors Sunshine, Gil
year 2022
title Inventory
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 196-207.
summary Inventory offers an alternative to contemporary CAD software, where the gap between digital models and physical constraints is vast. Rather than abstract commands that project forth a not yet existing material condition, Inventory is based on digital representations of specific pieces of material and processes for fabricating assemblies of parts. By the very nature of their being digital, these representations are necessarily approximations of their physical counterparts. They inhabit the space between the low resolution of pure geometric abstraction and high resolution of physical phenomena, and therefore, might be called “medium resolution” (Sunshine 2022). Inventory uses game engine physics to embed simulations of physical constraints in the digital modeling process. Inventory is a software interface for making architecture in a medium resolution world.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id caadria2022_001
id caadria2022_001
authors van Ameijde, Jeroen, Gardner, Nicole, Hyun, Kyung Hoon and Luo, Dan
year 2022
title CAADRIA 2022: POST-CARBON - Volume 2
source CAADRIA 2022, POST-CARBON - Proceedings of the 27th CAADRIA Conference - vol. 2, Sydney, 9-15 April 2022, 774 p.
summary The annual Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) conference provides an international community of researchers and practitioners with a venue to exchange, to discuss and to publish their latest ideas and accomplishments. These proceedings, consisting of two volumes, contain the research papers that were accepted for presentation at the 27th International CAADRIA Conference, organised jointly by the University of New South Wales, The University of Sydney, and the University of Technology Sydney. The papers in this publication have been selected through a two-stage, double-blind peer review process. All reviews and papers have been evaluated by the Paper Selection Committee. After receiving an initial 488 abstract submissions, a final set of 150 full papers has been selected for publication, translating to an acceptance rate of 30.7%. The papers in these proceedings are specifically selected for their contribution to this year's conference theme, following the conference organisers' call for authors to position their work in relation to the United Nations Sustainable Development Goals (SDGs). As the world is experiencing the increasing impacts of climate change, there is an urgent need to reflect on the potential of the latest research in architecture, urbanism and construction to address these global challenges.
series CAADRIA
email
last changed 2022/05/23 12:05

_id caadria2022_000
id caadria2022_000
authors van Ameijde, Jeroen, Gardner, Nicole, Hyun, Kyung Hoon, Luo, Dan and Sheth, Urvi
year 2022
title CAADRIA 2022: POST-CARBON - Volume 1
source CAADRIA 2022, POST-CARBON - Proceedings of the 27th CAADRIA Conference - vol. 1, Sydney, 9-15 April 2022, 772 p.
summary The annual Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) conference provides an international community of researchers and practitioners with a venue to exchange, to discuss and to publish their latest ideas and accomplishments. These proceedings, consisting of two volumes, contain the research papers that were accepted for presentation at the 27th International CAADRIA Conference, organised jointly by the University of New South Wales, The University of Sydney, and the University of Technology Sydney. The papers in this publication have been selected through a two-stage, double-blind peer review process. All reviews and papers have been evaluated by the Paper Selection Committee. After receiving an initial 488 abstract submissions, a final set of 150 full papers has been selected for publication, translating to an acceptance rate of 30.7%. The papers in these proceedings are specifically selected for their contribution to this year's conference theme, following the conference organisers' call for authors to position their work in relation to the United Nations Sustainable Development Goals (SDGs). As the world is experiencing the increasing impacts of climate change, there is an urgent need to reflect on the potential of the latest research in architecture, urbanism and construction to address these global challenges.
series CAADRIA
email
last changed 2022/05/23 12:04

_id acadia22_001
id acadia22_001
authors Akbarzadeh, Masoud; Aviv, Dorit; Jamelle, Hina; Stuart-Smith, Robert
year 2022
title ACADIA 2022: Hybrids and Haecceities [Projects Catalog]
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 240p.
summary Hybrids & Haecceities seeks novel approaches to design and research that dissolve binary conditions and inherent hierarchies in order to embrace new modes of practice. Haecceities describe the qualities or properties of objects that define them as unique. Concurrently, Hybrids are entities with characteristics enhanced by the process of combining two or more elements with different properties. In concert, these terms offer a provocation toward more inclusive and specific forms of computational design. Hybrids & Haecceities aligns with a fundamental shift away from abstract generalized models of production toward greater degrees of customization at unprecedented scales, made possible by the Fourth Industrial Revolution. With greater reliance on cyber-physical systems, this shift supports more diverse and considered forms of embodiment and participation in the built environment. Conversely, the design and construction industries have profound global effects with significant political, economic, and environmental impacts. The urgent need to decarbonize buildings, and at the same time, provide equitable infrastructure to communities at risk, places responsibility on the design disciplines to form new collaborations in the effort to address today’s social and ecological crises.
series ACADIA
type projects catalog
email
last changed 2024/02/06 14:00

_id acadia22_000
id acadia22_000
authors Akbarzadeh, Masoud; Aviv, Dorit; Jamelle, Hina; Stuart-Smith, Robert
year 2022
title ACADIA 2022: Hybrids and Haecceities [Proceedings]
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 839p.
summary Hybrids & Haecceities seeks novel approaches to design and research that dissolve binary conditions and inherent hierarchies in order to embrace new modes of practice. Haecceities describe the qualities or properties of objects that define them as unique. Concurrently, Hybrids are entities with characteristics enhanced by the process of combining two or more elements with different properties. In concert, these terms offer a provocation toward more inclusive and specific forms of computational design. Hybrids & Haecceities aligns with a fundamental shift away from abstract generalized models of production toward greater degrees of customization at unprecedented scales, made possible by the Fourth Industrial Revolution. With greater reliance on cyber-physical systems, this shift supports more diverse and considered forms of embodiment and participation in the built environment. Conversely, the design and construction industries have profound global effects with significant political, economic, and environmental impacts. The urgent need to decarbonize buildings, and at the same time, provide equitable infrastructure to communities at risk, places responsibility on the design disciplines to form new collaborations in the effort to address today’s social and ecological crises.
series ACADIA
type proceedings
email
last changed 2024/02/06 14:00

_id caadria2022_33
id caadria2022_33
authors Alva, Pradeep, Mosteiro-Romero, Martin, Miller, Clayton and Stouffs, Rudi
year 2022
title Digital Twin-Based Resilience Evaluation of District-Scale Archetypes
doi https://doi.org/10.52842/conf.caadria.2022.1.525
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 525-534
summary District-scale energy demand models can be powerful tools for understanding interactions in complex urban areas and optimising energy systems in new developments. The process of coupling characteristics of urban environments with simulation software to achieve accurate results is nascent. We developed a digital twin through a web map application for a 170ha district-scale university campus as a pilot. The impact on the built environment is simulated with pandemic (COVID-19) and climate change scenarios. The former can be observed through varying occupancy rates and average cooling loads in the buildings during the lockdown period. The digital twin dashboard was built with visualisations of the 3D campus, real-time data from sensors, energy demand simulation results from the City Energy Analyst (CEA) tool, and occupancy rates from WiFi data. The ongoing work focuses on formulating a resilience assessment metric to measure the robustness of buildings to these disruptions. This district-scale digital twin demonstration can help in facilities management and planning applications. The results show that the digital twin approach can support decarbonising initiatives for cities.
keywords Digital twin, City Information Modelling, Planning Support System, energy demand model, SGD 11, SGD 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_272
id acadia22_272
authors Cano, Julianna
year 2022
title Straddling the Boundary
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 272-275.
summary Starting small and building outward enables us to loosen our anthropocentric grip and engage in a new consensual relationship with our environment. Not only does this approach create empathy, it eliminates the opportunity for normative solutions. With this approach, physical architectural development would no longer be measured by footprint but instead by its impact on the microcosms that the architecture initiated and supported. In doing so, these discrete physical interventions would no longer serve larger institutionalized agendas and would be free to develop from their own component parts. This freedom gives rise to new architectural potential that has long been stunted by predefined programmatic constraints and assumptions.
series ACADIA
type field note
email
last changed 2024/02/06 14:00

_id ecaade2022_249
id ecaade2022_249
authors Carrasco Hortal, Jose, Hernandez Carretero, Sergi, Abellan Alarcon, Antonio and Bermejo Pascual, Jorge
year 2022
title Algae, Gobiidae Fish and Insects that inspire Coastal Custodian Entities - Digital models for a real-virtual space using TouchDesigner
doi https://doi.org/10.52842/conf.ecaade.2022.1.361
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 361–370
summary At the beginning of the twenty-first century, a discipline at the intersection of digital art and science explores how natural and artificial species are affected, coexist, and feed back to humans based on multi-scalar hybrid models. They embody types of surveillance entities or non-human custodians, and serve as inspiration for another generation of designs produced ten years later, the case studies that are presented here. This paper explains the design and parametric fundamentals of a digital architecture installation at the University of Alicante (Spain 2021) using CNC models and the TouchDesigner programming environment. The installation contains a clan of technological-virtual hybrid species, non-human custodians, which: (a) strengthen the Proposal’s discourse on the recognition of legal identity of the Mar Menor lagoon (Southeast Spain); (b) incorporate reactive designs; (c) help raise awareness of the effect of human actions on the lagoon’s ecology and nearby streams. The viewpoint is not anthropocentric, because it adopts the perspective of the foraging fish species or the oxygen-seeking algae species, among others, in order to reveal the deterioration processes. In most cases, the result is a sort of synaesthetic conversation that interweaves light, sound, movement and data.
keywords Human-Machine Interaction, TouchDesigner, Non-Human Custodian, Responsive Interface, Ethnography of Things
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_662
id acadia22_662
authors Furgiuele, Antonio; Ergezer, Mehmet; Zaman, Cagri Hakan
year 2022
title Towards an Adversarial Architecture
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 662-671.
summary A key technological weakness of artificial intelligence (AI) is adversarial images, a constructed form of image-noise added to an image that can manipulate machine learning algorithms but is imperceptible to humans. Adversarial Architecture explores the application of adversarial images to the built environment and develops a new method of design agency to directly engage artificial intelligence. Embedding a layer of information to physical surfaces that is only perceptible to machines has many potential applications, such as uniquely identifying and tracking objects, embedding accessibility features directly to surfaces, and counter-surveillance systems in different scales.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_240664 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002