CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 658

_id caadria2022_427
id caadria2022_427
authors Ding, Xinyue, Guo, Xiangmin, Lo, Tian Tian and Wang, Ke
year 2022
title The Spatial Environment Affects Human Emotion Perception-Using Physiological Signal Modes
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 425-434
doi https://doi.org/10.52842/conf.caadria.2022.2.425
summary In the past, spatial design was mainly from the perspective of designers. With the increasing demand for quality spaces, contemporary architecture has gradually shifted from focusing on form creation to human well-being, once again advocating the concept of "human-centered" spatial design. Exploring how the spatial environment affects human emotions and health is conducive to quantifying the emotional perception characteristics of space and promoting the improvement of human quality of life and sustainable survival. At the same time, the development of contemporary technology and neuroscience has promoted the study of the impact of spatial environment on human emotion perception. This paper summarizes the research on the impact of the spatial environment on human emotion perception in recent years. First, 28 relevant studies were screened using the PRISMA framework. Then a set of research processes applicable to this study is proposed. Next, the physiological signals currently used to study the effects of the spatial environment on human emotions are summarized and analyzed, including electroencephalography (EEG), skin response (GSR), pulse (PR), and four other signals. The architectural features studied in the related literature are mainly building structural features, building spatial geometric features, and building spatial functional attributes. The study of urban space is divided into different parts, such as urban environment characteristics and urban wayfinding behavior. Finally, we point out the shortcomings and perspectives of studies related to the influence of spatial environment on human emotion perception.
keywords Architectural space environment, urban space, human emotional feelings, Physiological signals, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_157
id caadria2022_157
authors Liu, Sijie, Wei, Ziru and Wang, Sining
year 2022
title On-site Holographic Building Construction: A Case Study of Aurora
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 405-414
doi https://doi.org/10.52842/conf.caadria.2022.2.405
summary Geometrically complex building components‚ reliance on high-touch implementation often results in tedious information reprocessing. Recent use of Mixed Reality (MR) in architectural practices, however, can reduce data translation and potentially increase design-to-build efficiency. This paper uses Aurora, a single-story residential building for 2021 China‚s Solar Decathlon Competition, as a demonstrator to evaluate the performance of on-site holographic building construction. This paper firstly reviews recent studies of MR in architectural design and practice. It then describes an MR-aided construction process of Aurora's non-standard building envelope and rooftop mounting structure, where in-situ holographic registration, human-machine cooperation, and as-built analysis are discussed. This paper concludes by stating that MR technologies provide unskilled implementers with a handy approach to materialise complex designs. The research was guided by the UN Sustainable Development Goals, especially aligning with the GOAL 9 which seeks innovations in industry and infrastructure.
keywords Mixed Reality, Non-standard Architecture, Low-tech Construction, Solar Decathlon Competition, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_169
id caadria2022_169
authors Xu, Hang and Wang, Tsung-Hsien
year 2022
title An Integrated Parametric Generation and Computational Workflow to Support Sustainable City Planning
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 535-544
doi https://doi.org/10.52842/conf.caadria.2022.1.535
summary To examine how efforts in the built environment can contribute to global climate change mitigation at the urban scale, urban building energy modelling (UBEM) is one of the research areas gaining increasing interest in recent years. However, limited studies systematically illustrate a comprehensive UBEM workflow for most architects and urban planners considering available public datasets, particularly at the early conceptual design phase. In current UBEM studies, major challenges arise from the lack of fine-grained measured urban data and incompatibility between software. To address these challenges and support future sustainable cities and communities, this paper proposed a streamlined computational workflow of UBEM to facilitate sustainable urban design development. Through a case study of Sheffield in the UK, this paper demonstrated an automated and standardised computational workflow that can test the decarbonisation potential in built environments by evaluating energy demand and supply scenarios at an urban scale. This workflow is envisaged to be applicable at various scales of an urban region given an appropriate geographic information system (GIS) dataset.
keywords Parametric Design Generation, Urban Sustainability, Urban Building Energy Modelling, Building Performance Simulation, Renewable Energy, Decarbonisation, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_508
id caadria2022_508
authors Yousif, Shermeen and Bolojan, Daniel
year 2022
title Deep Learning-Based Surrogate Modeling for Performance-Driven Generative Design Systems
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 363-372
doi https://doi.org/10.52842/conf.caadria.2022.1.363
summary Within the context of recent research to augment the design process with artificial intelligence (AI), this work contributes by introducing a new method. The proposed method automates the design environmental performance evaluation by developing a deep learning-based surrogate model to inform the early design stages. The project is aimed at automating performative design aspects, enabling designers to focus on creative design space exploration while retrieving real-time predictions of environmental metrics of evolving design options in generative systems. This shift from a simulation-based to a prediction-based approach liberates designers from having to conduct simulation and optimization procedures and allows for their native design abilities to be augmented. When introduced into design systems, AI strategies can improve existing protocols, and enable attaining environmentally conscious designs and achieve UN Sustainable Development Goal 11.
keywords Deep Learning, Artificial Intelligence, Surrogate Modeling, Automating Building Performance Simulation, Generative Design Systems, SDG11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_503
id caadria2022_503
authors Yousif, Shermeen and Vermisso, Emmanouil
year 2022
title Towards AI-Assisted Design Workflows for an Expanded Design Space
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 335-344
doi https://doi.org/10.52842/conf.caadria.2022.2.335
summary The scope of this paper is to formulate and evaluate the structure of a viable design workflow that combines a variety of computational tools and uses artificial intelligence (AI) to enhance the designer‚s capacity to explore design options within an expanded design space. In light of the autonomous and progressively post-anthropocentric generative capability of recent AI strategies for architectural design, we are interested in investigating some of the challenges involved in the insertion of such AI strategies into a new generative design system, involving data curation and the placement of any AI-assisted model in the overall workflow, as well as its (AI‚s) reciprocity with other computational methods such as discrete assembly and agent-based modeling. The paper presents our interrogation of the proposed AI-assisted framework, demonstrated in experiments of formulating multiple design workflows following different strategies. The workflow strategies show that integrating AI networks into a framework with other computational tools affords a different kind of design exploration than other methods; the prospect of novel solutions is heavily dependent on the interconnectedness of such methods and the dataset curation process. Collectively, the work contributes to innovation in architectural education and practice through enhancing scientific research (in line with UN Sustainable Development Goal 9).
keywords Artificial Intelligence, Deep Learning, AI-assisted Design Workflows, Design Space Exploration, Generative Systems, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_325
id caadria2022_325
authors Cui, Qinyu, Zhang, Shuyu and Huang, Yiting
year 2022
title Retail Commercial Space Clustering Based on Post-carbon Era Context: A Case Study of Shanghai
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 515-524
doi https://doi.org/10.52842/conf.caadria.2022.1.515
summary In the post-carbon era, it has become a development and research trend on adjusting commercial locations to help achieve resource conservation by using big data. This paper uses multi-source urban data and machine learning to make reasonable evaluations and adjustments to commercial district planning. Many relevant factors are affecting urban commercial agglomeration, but how to select the appropriate ones among the many factors is a problem to be considered and studied, while there may be spatial differences in the strength of each influencing factor on commercial agglomeration. Therefore, this paper takes Shanghai, a city with a high economic and commercial development level in China, as an example and identifies the influencing factors through a literature review. Next, this paper uses the machine learning BORUTA algorithm of features selection to screen the influencing factors. It then uses multi-scale geographically weighted regression model (MGWR) to analyse the spatial heterogeneity of factors affecting retail spatial agglomeration. Finally, based on the background of the changing transportation modes and the unchanged social activities in the post-carbon era, the future spatial planning pattern of retail commercial space is discussed to provide particular suggestions for the future location adjustment of urban commerce.
keywords Business District Hierarchy, Agglomeration Effect, Spatial Variability, Multi-scale Geographically Weighted Regression Model, Machine Learning, Big Data Analysis, SDG 8, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_338
id caadria2022_338
authors Dias Guimaraes, Gabriela, Gu, Ning, Gomes da Silva, Vanessa, Ochoa Paniagua, Jorge, Rameezdeen, Rameez, Mayer, Wolfgang and Kim, Ki
year 2022
title Data, Stakeholders, and Environmental Assessment: A BIM-Enabled Approach to Designing-out Construction and Demolition Waste
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 587-596
doi https://doi.org/10.52842/conf.caadria.2022.2.587
summary Construction and Demolition waste has started to become a target in the path for a more sustainable industry mainly due to massive resource consumption, land depletion and emissions. As a substantial amount of waste originates due to inadequate decision-making during design, strategies to design-out waste are required. Accurate environmental impact of, not only the whole building, but construction materials and elements are crucial to the development of these strategies, but dependent on data availability, expert knowledge and proper sharing and storage of information. Hence, this study aims to investigate the relation between data, stakeholders and environmental assessment to properly build a design-out waste framework. An in-depth data collection from literature review and stakeholders' interviews guided the development of a conceptual framework to assist designers with information related to waste production and its reduction. After that, the necessary technical specifications for its adoption through a BIM environment were analysed. Its contribution is firstly on a shift of thinking during the design phase, as the goal is to provide environmental information so designers can take into consideration the long-term consequences of waste from different strategies and solutions; and secondly in the development of a computational tool that facilitates the design-out process.
keywords Construction and Demolition Waste, Design, BIM, Environmental Data, Stakeholders, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_166
id caadria2022_166
authors Eisenstadt, Viktor, Bielski, Jessica, Mete, Burak, Langenhan, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2022
title Autocompletion of Floor Plans for the Early Design Phase in Architecture: Foundations, Existing Methods, and Research Outlook
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 323-332
doi https://doi.org/10.52842/conf.caadria.2022.1.323
summary This paper contributes the current research state and possible future developments of AI-based autocompletion of architectural floor plans and shows demand for its establishment in computer-aided architectural design to facilitate decent work, economic growth through accelerating the design process to meet the future workload. Foundations of data representations together with the autocompletion contexts are defined, existing methods described and evaluated in the integrated literature review, and criteria for qualitative and sustainable autocompletion are proposed. Subsequently, we contribute three unique deep learning-based autocompletion methods currently in development for the research project metis-II. They are described in detail from a technical point of view on the backdrop of how they adhere to the proposed criteria for creating our novel AI.
keywords Artificial Intelligence, Architectural Design, Floor Plan, Autocompletion, SDG 8, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_223
id caadria2022_223
authors Kim, Jong Bum, Oprean, Danielle, Cole, Laura and Zangori, Laura
year 2022
title Net Zero Game: A Pilot Study of Game Development for Green Building Education in Rural Schools
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 455-464
doi https://doi.org/10.52842/conf.caadria.2022.2.455
summary The research investigates the design and development of a serious game to teach green building design and energy literacy in rural middle schools in the United States. The paper presents a pilot study, education mini-game development integrated with parametric BIM and energy simulations. The game scenario was built on the developed science curriculum modules in our funded research, teaching building energy technologies such as daylighting, artificial lighting, window configurations, building materials, solar panels, etc. The mini game presents a baseline science lab and a media library of typical public schools in the United States. The players have the opportunity to improve energy literacy in several ways: manipulating the building configurations and the energy options, reviewing energy cost and the emission level changes, and monitoring the performance from the dashboards. This paper presents background theory, curriculum design, the mini-game development framework, methods and tools for energy simulation and BIM visualization, and the findings and challenges.
keywords Serious Game, Energy Literacy, Green Building Education, Parametric BIM, Energy Simulation, SDG 4, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_431
id caadria2022_431
authors Sun, Ke Nan, Lo, Tian Tian, Guo, Xiangmin and Wu, Jinxuan
year 2022
title Digital Construction of Bamboo Architecture Based on Multi-Technology Cooperation: Constructing a New Parameterized Digital Construction Workflow of Bamboo Architecture From Traditional Bamboo Construction Technology
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 223-232
doi https://doi.org/10.52842/conf.caadria.2022.2.223
summary Limited by the non-standard nature of bamboo, bamboo has always been regarded as a traditional, restrictive, and time-consuming building material. Therefore, there is an urgent need for an enhanced parametric design system and digital construction workflow to upgrade the traditional bamboo construction process. In this paper, through the analysis of the bamboo pavilion "Diecui†Gallery" under the traditional construction method, five main factors restricting the development of bamboo architecture are obtained: difficult positioning of supporting structure, low efficiency of material selection and matching, the manual processing of materials, non-standard node and low utilization rate of non-standard waste materials. Then, through literature review, we proposed the technical means to improve these factors and put forward a multi-technology collaborative digital construction workflow. The workflow will comprise augmented reality, 3D scanning, robot-aided construction, 3D printing, and design rules. Moreover, by building parametric benches, we used augmented reality technology and new design rules to verify multi-technology collaborative fabrication workflow possibilities and effectiveness. This paper wants to explore a parametric design method based on bamboo material characteristics and multi-technology collaborative workflow, to improve the utilization rate of non-standard bamboo components in parametric design.
keywords Bamboo Material, Multi-technology Collaboration, Parametric Design System, Augmented Reality, Digital Construction Method, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_001
id caadria2022_001
authors van Ameijde, Jeroen, Gardner, Nicole, Hyun, Kyung Hoon and Luo, Dan
year 2022
title CAADRIA 2022: POST-CARBON - Volume 2
source CAADRIA 2022, POST-CARBON - Proceedings of the 27th CAADRIA Conference - vol. 2, Sydney, 9-15 April 2022, 774 p.
summary The annual Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) conference provides an international community of researchers and practitioners with a venue to exchange, to discuss and to publish their latest ideas and accomplishments. These proceedings, consisting of two volumes, contain the research papers that were accepted for presentation at the 27th International CAADRIA Conference, organised jointly by the University of New South Wales, The University of Sydney, and the University of Technology Sydney. The papers in this publication have been selected through a two-stage, double-blind peer review process. All reviews and papers have been evaluated by the Paper Selection Committee. After receiving an initial 488 abstract submissions, a final set of 150 full papers has been selected for publication, translating to an acceptance rate of 30.7%. The papers in these proceedings are specifically selected for their contribution to this year's conference theme, following the conference organisers' call for authors to position their work in relation to the United Nations Sustainable Development Goals (SDGs). As the world is experiencing the increasing impacts of climate change, there is an urgent need to reflect on the potential of the latest research in architecture, urbanism and construction to address these global challenges.
series CAADRIA
email
last changed 2022/05/23 12:05

_id caadria2022_000
id caadria2022_000
authors van Ameijde, Jeroen, Gardner, Nicole, Hyun, Kyung Hoon, Luo, Dan and Sheth, Urvi
year 2022
title CAADRIA 2022: POST-CARBON - Volume 1
source CAADRIA 2022, POST-CARBON - Proceedings of the 27th CAADRIA Conference - vol. 1, Sydney, 9-15 April 2022, 772 p.
summary The annual Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) conference provides an international community of researchers and practitioners with a venue to exchange, to discuss and to publish their latest ideas and accomplishments. These proceedings, consisting of two volumes, contain the research papers that were accepted for presentation at the 27th International CAADRIA Conference, organised jointly by the University of New South Wales, The University of Sydney, and the University of Technology Sydney. The papers in this publication have been selected through a two-stage, double-blind peer review process. All reviews and papers have been evaluated by the Paper Selection Committee. After receiving an initial 488 abstract submissions, a final set of 150 full papers has been selected for publication, translating to an acceptance rate of 30.7%. The papers in these proceedings are specifically selected for their contribution to this year's conference theme, following the conference organisers' call for authors to position their work in relation to the United Nations Sustainable Development Goals (SDGs). As the world is experiencing the increasing impacts of climate change, there is an urgent need to reflect on the potential of the latest research in architecture, urbanism and construction to address these global challenges.
series CAADRIA
email
last changed 2022/05/23 12:04

_id caadria2022_393
id caadria2022_393
authors Yu, Daniel, Irger, Matthias, Tohidi, Alex and Haeusler, Matthias Hank
year 2022
title Designing Out Heat ‚ Developing a Computer-Aided Street Layout Tool to Address Urban Heat in Existing Streets and Suburbs
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 739-748
doi https://doi.org/10.52842/conf.caadria.2022.2.739
summary As cities are getting hotter, the urban heat islands effect will become an increased concern for cities. While urban heat migration strategies are well researched and understood, some strategies of implementing urban heat mitigation focus on private land - thus depend on the owner's uptake. This research shifts mitigation strategies to the public land where governments have legislative control over the corridor between privately owned cadastral ‚ the street corridor. This paper asks the question how a computational tool could assist councils in redesigning streets to mitigate urban heat. Literature review confirmed a direct relationship between the magnitude of urban heat and street layout, vegetation and materials used, position of street to sun and wind direction - yet no tool that assists a designer exists - the focus of the research. We present first findings and the iterative development of our street design tool. Via our tool one can alter variables such as vegetation type, materials or street configuration until urban heat mitigation is optimized. This is a significant step towards cooling our cities as designers now have a process that translates expert knowledge on urban heat into a tool that lets them design as well as evaluate their design.
keywords Urban heat island, landscape architecture, urban design, traffic engineering, computational tools, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_251
id ecaade2022_251
authors Awan, Abeeha, Lombardi, Davide, Ruffino, Paolo and Agkathidis, Asterios
year 2022
title Efficacy of Gamification on Introductory Architectural Education: a literature review
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 553–564
doi https://doi.org/10.52842/conf.ecaade.2022.2.553
summary Due to their recent popularity and success in fields such as engineering and business, gamification and by extension game design principles demonstrate the ability to teach complex, multi-disciplinary skills in an engaging, entertaining, and effective way. Architectural education especially introductory architectural education is a foundational and fundamental part of a budding architecture student’s career and oftentimes requires the understanding of dynamic systems, spatial reasoning, and experiential learning. The paper posits that gamification and game design principles can utilize certain components such as augmented reality, narrative design, and fun in order to create tools, gamify existing curriculum, and increase retention, engagement, and mastery of the difficult high-tech skillsets required of introductory architects. The paper focuses on reviewing and systematically analyzing research on gamification in education. In particular, it focuses on systematically reviewing and analyzing data from multiple relevant case studies chosen based on the application of technology such as augmented reality, the integration of game design, and the feasibility of gamification in educational environments. This data is examined based on feasibility, accessibility, and effects on information retention and the findings are outlined in a comparative table of methods, tools, and technologies organized based on their suitability. Ultimately, the paper aims to establish a framework for gamifying introductory modules in architectural education and hopes to create a future architectural augmented reality game meant to utilize gamification to help new architectural students.
keywords Gamification, Game Design, Architectural Education, Educational Games, Retention, Learning
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_368
id ecaade2022_368
authors Das, Avishek, Brunsgaard, Camilla and Madsen, Claus Brondgaard
year 2022
title Understanding the AR-VR Based Architectural Design Workflow among Selected Danish Architecture Practices
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 381–388
doi https://doi.org/10.52842/conf.ecaade.2022.1.381
summary Virtual reality (VR) and augmented reality (AR) have been proposed to be additional architectural design mediums for at least 25 years (Dagit, 1993). Despite rapid technical and technological development, it has not been adopted into architectural design practices as compared to academia and research. Surveys from the American Institute of Architects (AIA) and Royal Institutes of British Architects (RIBA) demonstrate the state of architectural practices; 72% of architects and 65% of architects respectively are not using any kind of virtual, augmented, or mixed reality in their practices(RIBA and Microsoft, 2018; Hampson, 2020). In this paper, the authors investigate the state of practices, issues, challenges, and opportunities of the utilization of virtual, augmented, and mixed realities in six architectural practices in the Danish context. Three of the practices are large architectural practices, one medium-sized practice specializing in institutional, healthcare and cultural architecture, and one firm designing private family houses, kindergartens, daycares and places for people with disability and, one experimental design studio. All these practices have used VR/AR in their projects to various degrees. In recent years Danish architectural practices have been involved in various VR/AR-based exhibitions, demonstrations, and tool developments to promote the usage of the same in design practice. Through a set of qualitative interviews with personnel from key architectural practices, the authors would like to demonstrate the present state of practices. The investigation explores the usage of VR and AR in Danish architecture practices by identifying challenges and opportunities regarding skill levels, architectural typology, use cases, toolchains, and workflow and shows similarities and differences between traditional and VR-based design processes. The main findings show how VR/AR-based visualization helps architects to perceive spatiality and also ushers creativity through immersion and overlays.
keywords Virtual Reality, Augmented Reality, Architectural Design Practice, Denmark
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_284
id caadria2022_284
authors Hu, Huiyao, Bui, Do Phuong Tung and Janssen, Patrick
year 2022
title Continuous Adaptability: Web-Based Residential Participatory Design Using Modular Prefabricated Construction
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 495-504
doi https://doi.org/10.52842/conf.caadria.2022.2.495
summary High-rise residences are typically very homogeneous and only allow for very limited variability in apartment configurations. Since the 1960s, practitioners and researchers have been exploring alternative visions of adaptable housing solutions that involve residents in the design process. Recent research has proposed digital platforms for residential participatory design. However, methods of modifying apartment configurations after building construction have not yet been developed in detail. This paper suggests a high-rise housing system that supports continuous adaptation and a web application that facilitates participatory design. The proposed construction system leverages on the prefabricated building modules and the open building concept to allow constant renewal of its non-structural building parts. This is complimented by a preliminary prototype of an online platform developed to streamline the design, negotiation and transaction of apartments by the homebuyers. The research conceptually investigates the potential of modern technology in redefining the role of architects and the relationship between residents and their buildings.
keywords participatory design, modularity, prefabrication, open building, user-driven design, web application, self-renewal, SGD 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id caadria2022_490
id caadria2022_490
authors Li, Ce, Guo, Zhe, Cai, Chengzhi, Miao, Junyi, Cao, Xiaoyu, Li, Cong, Guo, Yefei, Cao, Qingning, Zheng, Zifei, Guo, Yuchen, Wu, Wanling, Xu, Zhiyan and Zhou, Xinyan
year 2022
title Softness and Hardness: What Does Concrete Want? Concrete Physical Form Finding Based on Computational Combined Formwork
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 233-242
doi https://doi.org/10.52842/conf.caadria.2022.2.233
summary This project proposes a physical form finding design method by generating concrete flexible formwork through digital algorithm, which aims to explore the potential formal correlation between real material as the medium of transmitting information in physical space and virtual data, so as to discuss the autonomy and intelligence of material under the support of digital design technology. The first part of this paper first discusses the current situation of the application and development of concrete materials in the field of digital construction in recent years, and then studies the adaptability of flexible formwork to the flowable characteristics of concrete materials; Then, the second part puts forward the moulding method of concrete physical shape finding through flexible and rigid composite formwork, and tries to explore the influence of formwork shape under the control of digital algorithm on this process; The third part of the paper records the process of concrete moulding experiment under this method to discuss the internal relationship between the physical form of concrete and combined formwork.
keywords Physical Form Finding, Textile Concrete Formwork, Material Attributes, Concrete Fabrication, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_85
id caadria2022_85
authors Reinhardt, Dagmar, Holloway, Leona, Silveira, Sue and Larkin, Nicole
year 2022
title Tactile Oceans - Enabling Inclusive Access to Ocean Pools for Blind and Low Vision Communities
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 709-718
doi https://doi.org/10.52842/conf.caadria.2022.2.709
summary This research explores implementing computation to enhance access to ocean pool and marine landscapes for the inclusion of people who are blind or have low vision (BLV). Constructing reliable representations, explanations and descriptions can support interactions with objects and participation in activities, particularly in these ocean environments. We discuss the adoption of a series of computational design strategies to leverage the impact of recent scanning technologies in information transfer. The paper introduces a background to touch access and universal design. It presents a case study of aerial photogrammetry for an ocean pool in NSW, Australia, and presents multi-scalar workflows and processes across computational design and advanced fabrication methods, including a) photogrammetry through drone-flight on a macro-scale and 3D-scanning to establish data-sets; b) parametric design and scale adaptations;†and c) 3D printing and robotic milling for touch access.
keywords Blind, Universal Design, Touch Access, Photogrammetry, 3D Printing, SDG 3, SDG 10, SDG 14
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_215
id caadria2022_215
authors Settimi, Andrea, Vestartas, Petras, Gamerro, Julien and Weinand, Yves
year 2022
title Cockroach: an Open-source Tool for Point Cloud Processing in CAD
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 325-334
doi https://doi.org/10.52842/conf.caadria.2022.2.325
summary In the architecture, engineering and construction (AEC) sector, the use of point cloud data is not a novelty. Usually employed to retrieve data for inspecting construction sites or retrofitting pre-existing buildings, sensors like LiDAR cameras have been known to practitioners such as architects and engineers for a while now. In recent years, the growing interest in 3D data acquisition for autonomous vehicles, robotic and extended reality (XR) applications has brought to the market new compact, performant, and more accessible hardware leveraging different technologies able to provide low-cost sensing systems. Nevertheless, point clouds obtained from such sensors must be processed to extract valuable data for any design or fabrication application. Unfortunately, most advanced point cloud processing tools are written in low-level languages and are hardly accessible to the average designer or maker. Therefore, we present Cockroach: a link between computer-aided design (CAD) modeling software and low-level point cloud processing libraries. The main objective is an adaptation to C# .NET via Grasshopper visual scripting interface and C++ single-line commands in native Rhinoceros workspaces. Cockroach has proved to be a handy design tool in integrating building components with unpredictable geometries such as raw wood or mineral scraps into new design and industrial fabrication processes.
keywords Computer-vision, Point-clouds, Data-processing, 3D modeling, CAD interface, Open-source tools, Quality education, Industry innovation and infrastructure, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_78716 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002