CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 676

_id acadia22_4
id acadia22_4
authors Gandia, Augusto; Gramazio, Fabio; Kohler, Matthias
year 2022
title Tolerance-Aware Design of Robotically Assembled Spatial Structures
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 4-23.
summary This paper presents a computational design method that integrates capabilities to manage material and fabrication tolerances occurring during the robotic assembly of spatial timber structures with tight-fit connections. This is achieved by building a data-base of tolerances measured during the robotic assembly process, which then allow for tolerance simulation as part of an assembly sequence planning method based on the Kruskal algorithm. Through a combination of optimization and linear regression techniques, the developed method enables designers to minimize deviations of their designs and diminish the risks of misfits during fabrication. In consequence, it allows for tolerance-aware designs.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ecaade2022_303
id ecaade2022_303
authors Papandreou, Marielena, Baseta, Efilena, Mathe, Arpan, Blackburn, Robert Michael and Murugesan, Libish
year 2022
title Programming Twist - Exploring the geometric affordances of aluminum through flexible robotic workflows
doi https://doi.org/10.52842/conf.ecaade.2022.2.399
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 399–408
summary This paper explores the geometric affordances of aluminium through flexible robotic workflows. The geometric abundance of the discussed workflows goes beyond what the state-of-the-art industrial metal forming processes offer, and is achieved with simpler means. Two fabrication methodologies, folding and pressing, were explored in order to convert flat, straight panels into twisted, 3-dimensional shapes. The design method for both fabrication strategies was based on physics simulation, where several geometrical constraints force a real time deformation while maintaining the properties of a developable strip. In the first fabrication approach, directionality of the rulings is first engraved into the material while the folding angle is controlled by the robotic setup with two gripping stations. The second fabrication approach refers to a forming process. This has been achieved by installing a wheel cutter on a small workshop hydraulic press and a robot feeding the material into the forming station. The design-to-production pipelines are automated and designed for a small payload robot that allows for a large variety of geometric possibilities. Fabrication challenges of both processes have been documented and assessed, while workflow optimization scenarios and future improvements are proposed in the outlook.
keywords Developable Strips, Physics Simulation, Design-to-Production Pipelines, Robotic Bending, Metal Forming
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_69
id caadria2022_69
authors Rogeau, Nicolas, Rezaei Rad, Aryan, Vestartas, Petras, Latteur, Pierre and Weinand, Yves
year 2022
title A Collaborative Workflow to Automate the Design, Analysis, and Construction of Integrally-Attached Timber Plate Structures
doi https://doi.org/10.52842/conf.caadria.2022.2.151
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 151-160
summary This paper introduces a computational framework that fosters collaboration between architects, engineers, and contractors by bridging the gap between architectural design, structural analysis, and digital construction. The present research is oriented toward the formulation of an automatic design-to-construction pipeline for Integrally-Attached Timber Plate Structures (IATPS). This construction system is based on assembling timber panels through the sole interlocking of wood-wood connections inspired by traditional Japanese joinery. Prior research focused on developing distinct computational workflows and dealt with the automation of 3D modelling, numerical simulation, fabrication, and assembly separately. In the current study, a single and interactive design tool is presented. Its versatility is demonstrated through two case studies, as well as the assembly of a physical prototype with a robotic arm. Results indicate that efficiency in terms of data flow and stakeholder synergy is considerably increased. The proposed approach contributes to the†Sustainable Development Goal (SDG) 11 by facilitating the collaborative design of sustainable timber structures. Besides, the research also contributes to SDG 9 as it paves the way for sustainable industrialisation of the timber construction sector through streamlined digital fabrication and robotic assembly processes. This reduces manufacturing time and associated costs while leveraging richer design possibilities.
keywords Timber plate structures, Timber joints, Collaborative design, Interdisciplinary design, Structural performance assessment, Robotic assembly, SDG 11, SDG 9.
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_110
id cdrf2022_110
authors Wei Ye, Xiayu Zhao, and Weiguo Xu
year 2022
title Simulation Algorithm Based on Weathered Rock Morphology and Optimization Algorithm for Design Applications
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_10
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The rich organic pore spaces of weathered rocks bring inspiration to architectural design. Based on the existing research on the natural formation mechanism of weathered rocks, this paper proposes two algorithms that achieve natural formation mechanism simulation and morphology simulation. Firstly, this study deeply explores the intrinsic characteristics of weathered rocks; secondly, the basic framework of iterative cyclic calculation by multiple weathering forces is built to make the calculation results of 3D point cloud close to the real morphology of weathered rocks; subsequently, this study innovatively introduces a 2D stacked layer algorithm for optimization while maintaining the morphological characteristics; finally, the architecture design application of the optimization algorithm is verified. Compared with the 3D point cloud simulation algorithm, the 2D layered algorithm can greatly reduce the computational time complexity and control the generated space's utilization.
series cdrf
email
last changed 2024/05/29 14:02

_id cdrf2022_304
id cdrf2022_304
authors Anni Dai
year 2022
title Co-creation: Space Reconfiguration by Architect and Agent Simulation Based Machine Learning
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_27
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary This research is a manifestation of architectural co-creation between agent simulation based machine learning and an architect’s tacit knowledge. Instead of applying machine learning brains to agents, the author reversed the idea and applied machine learning to buildings. The project used agent simulation as a database, and trained the space to reconfigure itself based on its distance to the nearest agents. To overcome the limitations of machine learning model’s simplified solutions to complicated architectural environments, the author introduced a co-creation method, where an architect uses tacit knowledge to overwatch and have real-time control over the space reconfiguration process. This research combines both the strength of machine learning’s data-processing ability and an architect’s tacit knowledge. Through exploration of emerging technologies such as machine learning and agent simulation, the author highlights limitations in design automation. By combining an architect’s tacit knowledge with a new generation design method of agent simulation based machine learning, the author hopes to explore a new way for architects to co-create with machines.
series cdrf
email
last changed 2024/05/29 14:02

_id ecaade2022_201
id ecaade2022_201
authors Buš, Peter, Sridhar, Nivedita, Zhao, Yige, Yang, Chia-Wei, Chen, Chenrui and Canga, Darwin
year 2022
title Kit-of-Parts Fabrication and Construction Strategy of Timber Roof Structure - Digital design-to-production workflow for self-builders
doi https://doi.org/10.52842/conf.ecaade.2022.1.449
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 449–458
summary This project builds upon a premise that complex double-curved geometries can be built out of simple, planar, and straight elements. As such, it is possible to simplify manufacturing, construction, and assembly processes, as well as decrease the delivery time and cost. When operating with planar and simple components in the form of Kit-of- Parts there is an assumption that such components can be easily used by self-builders, not necessarily building experts. This can empower participatory activities leading to a more sustainable and resilient engaged community. This hypothesis is evaluated through the process of design for manufacture and assembly project of the timber shell, supported by proposed advanced computational design-to-production workflow utilising digital fabrication technologies such as CNC machining and robotic milling. The assembled and erected structure is evaluated in the scope of constructability, deliverability, and operability. Therefore, the focus of this project is to test, observe, experiment with, and learn from those aspects from the perspective of a fabricator, maker, and self-builder of the double-curved timber roof structure, while operating with smaller-scale components and smaller sub-assemblies, convenient for hands-on operations. The paper also discusses the limitations of such an approach.
keywords Design-to-Production Workflow, Robotic Digital Fabrication, Self-Builders, Structural Performance, Advanced Labelling
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_242
id caadria2022_242
authors Cheng, Chung-Chieh, Sheng, Yu-Ting and Wang, Shih-Yuan
year 2022
title Robotic Fabrication Process of Glued Laminated Bamboo for Material Efficient Construction
doi https://doi.org/10.52842/conf.caadria.2022.2.213
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 213-222
summary This paper aims to introduce the development of a new-style glue-laminated bamboo (GLB) board structure and evaluating computational technologies aiming to enhance the performance of fibre materials and a set of digital manufacturing processes. Specifically, this paper develops a method to introduce the concept of topology optimisation into the properties of fibre materials. At the same time, it explains the unique structure optimisation design and manufacturing process (including the design process, digital tools and auxiliary equipment system). To test the design, this paper compares the data obtained via the gravity suspension test of the physical model and the simulation. Through digital manufacturing methods, the project aims to establish structural elements that could improve material efficiency. Furthermore, it may establish a GLB floor structure system in line with the material economy.
keywords Digital fabrication, Robotic Assembly, Glued Laminate Bamboo, SDG 11, SDG 12, SDG 15
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_170
id ecaade2022_170
authors Colonneau, Téva, Chenafi, Sabrina and Mastrorilli, Antonella
year 2022
title Digital Intervention Methodologies and Robotic Manufacturing for the Conservation and the Restoration of 20th-Century Concrete Architecture Damaged by Material Loss
doi https://doi.org/10.52842/conf.ecaade.2022.2.197
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 197–206
summary This article deals with the characterisation of robotic manufacturing systems and digital interventions adapted for the conservation and the restoration of 20th-century concrete buildings. By exploiting the potential for analysis and implementation of robotic manufacturing technologies used in the field of heritage science, two associated non- invasive, non-destructive and integrated intervention solutions are presented here, using two research approaches. Through the use of digital recording tools, digital modelling / simulation and additive manufacturing techniques, the first approach develops a direct repair process by adding material with the help of aerial robots. The second focuses on printing recyclable plastic mouldings in order to reproduce partially degraded or completely destroyed architectural details. The results of these two diverse and complementary researches, as well as their experimental approaches applied to conservation and restoration practices, aim to test the proposed robotic manufacturing- based method, regarding the criteria of transferability and methodological feasibility.
keywords 20th-Century Concrete Built Heritage, Conservation and Restoration Practices, Digital Modelling, Robotic Manufacturing, Democratisation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_221
id ecaade2022_221
authors Delikanli, Burak and Gül, Leman Figen
year 2022
title Towards to the Hyperautomation - An integrated framework for Construction 4.0: a case of Hookbot as a distributed reconfigurable robotic assembly system
doi https://doi.org/10.52842/conf.ecaade.2022.2.389
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 389–398
summary Almost every technological and industrial concept changes the built environment around us and our understanding of the architectural practice. Recently, Hyperautomation, an all-encompassing digital transformation with the help of advanced techniques, has been presented as a game-changing concept that can affect any industry. Despite this promising concept, the Architecture, Engineering, and Construction (AEC) industry seems far behind the latest technological breakthroughs and automation of processes compared to other industries. Therefore, this study provides a better understanding of adopting the novel Hyperautomation paradigm in the AEC industry by focusing on Industry 4.0. In this context, the first section introduces the Construction 4.0 concept, its counterpart in the AEC industry, briefly mentions fundamental approaches and indicates the need for a framework. The second section introduces an integrated framework throughout the entire building life-cycle for design and construction processes and exemplifies the stages in an autonomous system and their interrelationships. The third section presents a hypothetical case, a distributed reconfigurable robotic assembly system, and the assembler ‘HookBot’ to understand the relationships in an autonomous system better. The last section discusses the place of the Hyperautomation paradigm in architecture.
keywords Autonomy, Autonomous Systems, Construction 4.0, Assembly Robotics
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_271
id sigradi2022_271
authors Dong, Siyu; Yan, Jingjing; Yang, Shunyi; Cui, Xiangguo
year 2022
title Light Transmittance Ceramic Design-Computation with Robotics
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 515–526
summary Building envelope design incorporates a range of light-related analyses, often providing an essential feedback loop for shaping an envelope’s performance, geometry, or components. This is true for solar radiation studies of envelopes, calculated irrespective of building material or assembly. Extending our light-related analysis to include diffuse lighting effects on a building interior presents an opportunity to explore the translucency, porosity, and forms of materials. Glazed architectural ceramic components fabricated using adaptive robotic manufacturing provide an opportunity to exploit material dynamics within the design and alleviate fabrication waste from molds, ultimately accelerating the production manufacturing system. In addition to analyzing the solar radiation on the building facade design, lighting effects can be engaged in profoundly different ways depending on the degree of design-production agency. The production process can be extended beyond automatic routines using robotic fabrication with levels of autonomous involvement that allow for alternative form expressions of the dynamic clay material. In addition to negotiating several design criteria, the design research will develop an aesthetic character originating from customized clay materials and robotic manufacturing processes for lighting transmittance architectural ceramics.
keywords Digital Fabrication, Light Transmittance, Data-Driven Fabrication, Computer Vision
series SIGraDi
email
last changed 2023/05/16 16:56

_id ecaade2022_38
id ecaade2022_38
authors Klemmt, Christoph, Aghaei Meibodi, Mania, Beaucage, Gregory and Mcgee, Wes
year 2022
title Large-scale Robotic 3D Printing of Plant Fibre and Bioplastic Composites
doi https://doi.org/10.52842/conf.ecaade.2022.1.009
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 9–18
summary This paper presents a methodology for the robotic 3D printing of cellulose and wood shavings with bioplastics for applications in architecture, moulds, or furniture design. The material composition consists of plant fibre, binders, solvents and additives. All of the ingredients are either biodegradable or biocompatible, as in, they naturally occur in the environment. Different material compositions have been explored and tested for their extrusion behaviour, drying and curing behaviour, buildability and final product qualities, resulting in the manufacture of several case-study prototypes as a proof of concept.
keywords 3D Printing, Wood, Cellulose, Bioplastic, Robot, Growth Simulation
series eCAADe
email
last changed 2024/04/22 07:10

_id architectural_intelligence2022_14
id architectural_intelligence2022_14
authors Philip F. Yuan, Xinjie Zhou, Hao Wu, Liming Zhang, Lijie Guo, Yun Shi, Zhe Lin, Jinyu Bai, Youhai Yu & Shanglu Yang
year 2022
title Robotic 3D printed lunar bionic architecture based on lunar regolith selective laser sintering technology
doi https://doi.org/https://doi.org/10.1007/s44223-022-00014-9
source Architectural Intelligence Journal
summary The lunar base is not only an experimental station for extraterrestrial space exploration but also a dwelling for humans performing this exploration. Building a lunar base presents numerous obstacles and requires environmental perception, feedback design, and construction methods. An integrated fabrication process that incorporates design, 3D printing workflow, and construction details to build a bionic, reconfigurable and high-performance lunar base prototype is presented in this paper. The research comprises the study of the lunar regolith 3D printing mechanism, the real-time control of powder laying and compaction procedure, and the development of a 3D printing tool end system. In this paper, many scientific questions regarding in situ fabrication on the lunar surface are raised and addressed with the proposal of a progressive optimization design method, the molding principle, and gradation strategy of lunar soil-polyaryletherketone (PAEK) hybrid powder, and the principle of dual-light field 3D laser printing. The feasibility of the technical strategy proposed in this paper is verified by the presented empirical samples.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id cdrf2022_385
id cdrf2022_385
authors Yang Song, Asterios Agkathidis, and Richard Koeck
year 2022
title Augmented Bricks an Onsite AR Immersive Design to Fabrication Framework for Masonry Structures
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_33
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The Augmented Bricks research project aims to develop an immersive design to fabrication framework for the assembly of masonry building components by incorporating robotic fabrication and augmented reality (AR) technologies. Our method incorporates two main phases: firstly, the design phase in which users’ gestures and interactions are being identified in AR for the immersive design and simulation process; secondly, an innovative robotic assembly phase in which users can control a robotic arm for assembly by interacting with the AR user interface (UI). Our framework is validated by the design and assembly of four brick-based columns. Our findings highlight that the proposed design to fabrication framework offers a novel, intuitive design inspiration and experience beyond the traditional design methods. It returns the task of assembling parametric structures with high-tech equipment back to the designers, allowing them to master and participate in the entire design to the fabrication process. The impact of this practice-based research will allow architects and designers to modify and construct their designs more simply and intuitively through the AR environment.
series cdrf
email
last changed 2024/05/29 14:03

_id ecaade2022_76
id ecaade2022_76
authors Zboinska, Malgorzata A., Mjörnell, Isac, Oguz, Sebastian, Rudin, Rebecka and Skanberg Dahlstedt, Toste
year 2022
title Non-Standard Robotic 3D Printing for Architects - A comprehensive digital fabrication lab pedagogy integrating non-programmable material effects
doi https://doi.org/10.52842/conf.ecaade.2022.1.019
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 19–28
summary The study presents a pedagogical framework familiarizing architecture students with explorations of non-programmable material effects through non-standard robotic 3D printing. The purpose of integrating such explorations in education is to train architects- to-be in embracing the challenges related to working close with architectural materials and production, requiring new stances toward the dichotomies between drawing and building, material agency and error as well as precision and lack of full control over the design outcome. The framework was evaluated in an architectural course on artistic robotic 3D printing. The results show that it achieves the aim of supporting students in addressing, in an informed and creative manner, the uncertainties of digitally aided materialization. The students explored refined material effects while acquiring practical digital manufacturing skills and critically engaging with theories and discourses on new materiality and non-standard production. Hence, the proposed pedagogy can be employed to complement the current education curricula, providing architecture students with a broader outlook necessary for fully embracing opportunities and challenges at the crossing between new materials and digital production.
keywords Architectural Education, Digital Fabrication Laboratory, Non-Standard Robotic 3D Printing, Non-Programmable Material Effects
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_5
id ecaade2022_5
authors Zhao, Jiangyang, Lombardi, Davide, Chen, Hanmei and Agkathidis, Asterios
year 2022
title Reinterpreting the Dougong Joint by Using Parametric Design Methods and Robotic Fabrication Technologies: a Critical Review
doi https://doi.org/10.52842/conf.ecaade.2022.2.159
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 159–167
summary The paper finds its roots in our previous research, which explored the application of robotic technologies for the fabrication of traditional Chinese timber joints and the reinterpretation of the Dougong joint (bucket arch joint) by using parametric tools and robotic fabrication techniques. It investigates which existing robotic technologies are suitable for the automated assembly and production of the Dougong joint through reviewing relevant research. The paper systematically reviews and comparatively analyses ten articles filtered through 1,756 publications searched by using the keywords ‘timber’, ‘digital fabrication’, and ‘robot’ in the databases Scopus, CumlnCAD, ScienceDirect, Engineer village and IEEE (Institute of Electrical and Electronics Engineers). Our findings include a comparative analysis chart evaluating workflows, tools and technologies on their suitability for the robotic reinterpretation of the Dougong as well as the proposal of a novel design to fabrication workflow for that particular purpose.
keywords Dougong Joint, Timber Structures, Parametric Design, Robotic Fabrication, Optimization Algorithm
series eCAADe
email
last changed 2024/04/22 07:10

_id cdrf2022_326
id cdrf2022_326
authors Zidong Liu, Yan Li, and Xiao Xiao
year 2022
title Predicting the Vitality of Stores Along the Street Based on Business Type Sequence via Recurrent Neural Network
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_29
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The rational planning of store types and locations to maximize street vitality is essential in real estate planning. Traditional business planning relies heavily on the subjective experience of developers. Currently, developers have access to low-resolution urban data to support their decision making, and researchers have done much image-based machine learning research from the scale of urban texture. However, there is still a lack of research on the functional layout with shop-level accuracy. This paper uses a sequence-based neural network (RNN) to explore the relationship between the sequence of store types along a street and its commercial vitality. Currently, the use of RNNs in the architectural and urban fields is very rare. We use customer review data of 80streets from O2O platforms to represent the store vitality degree. In the machine learning model, the input is the sequence of store types on the street, and the output is the corresponding sequence of business vitality indexes. After training and evaluation, the model was shown to have acceptable accuracy. We further combined this evaluation model with a genetic algorithm to develop a business planning optimization tool to maximize the overall street business value, thus guiding real estate business planning at a high resolution.
series cdrf
email
last changed 2024/05/29 14:03

_id ascaad2023_042
id ascaad2023_042
authors Žigmundová, Viktória; Suchánková, Kateøina; Stretavská, Antónia; Míèa, Jakub; Rayne, Taylor; Tsikoliya, Shota ; ,
year 2023
title Additive Manufacturing of Mycelium Composites for Sustainable Landscape Architecture
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 863-877.
summary This study explores the potential of mycelium composites as a sustainable and eco-friendly material for landscape architecture in the context of today's global climate and environmental crisis. Mycelium, the vegetative part of fungi, has shown promising properties such as acoustic and thermal insulation, biodegradability, and environmental performance (Vasatko et al., 2022). The central remit of this research is in proposing bespoke computational and robotic fabrication methods and workflows for investigating the performance of mycelial materials and observing their properties and growth response. Taken together, the topic of this paper is to illustrate the application and composition of such fabrication techniques as an integrated multi-material system, capable of combining the complex, organic relationships between clay, lignocellulosic substrate, and fungi with a focus on the potential of such composite materials for implementation within the built environment. Outlined here are the processes and procedures essential to this multi-material fabrication framework, including a detailed account of a series of substrate material mixtures and printed clay scaffold geometries, both of which exhibit properties informed by the material synthesis and fabrication process. We foremost propose the strategic mixing of different substrate types to be 3D printed with clay as a strategy for probing the optimization of mycelial overgrowth and binding to the 3D printed geometries. Subsequently, we proceed in detailing the study’s approach and process of 3D printing the mixtures of recycled material, drying the geometry, and sterilizing the final design once inoculated with the mycelium. Ultimately, we motivate this research in pursuit of further understanding of mycelium's material and mycoremediation capacities in service of more environmentally responsive and responsible architectural applications.
series ASCAAD
email
last changed 2024/02/13 14:34

_id ecaade2022_299
id ecaade2022_299
authors Bauscher, Erik, Philipp, Klaus Jan, Reisinger, Stefanie and Wortmann, Thomas
year 2022
title Reimagining Gego: Geometrical Reconstruction of Nubes, an Undocumented and Lost Sculpture from 1974
doi https://doi.org/10.52842/conf.ecaade.2022.2.217
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 217–226
summary This paper describes a method to understand and digitally reconstruct two sculptures by Gertrud Goldschmidt, a German-born, Venezuelan artist also called Gego. Gego is best known for her series of works called “Reticuláres”. These three-dimensional and open installations, mostly hanging freely in space, are playing with the concept and perception of space as well as challenging the definition of the traditional sculpture. The paper aims to generate information about two specific structures called “Nubes” (Clouds for Spanish) to assist in a physical reconstruction for a larger exhibition about Gego and to contribute to understanding Gego’s work process. Originally, the structures were suspended from a building's ceiling as an art installation in Caracas, 1974. There are three main challenges for this reconstruction: (1) The installations exhibit a complex three-dimensional geometry. (2) Scant drawings and photographs exist. (3) Gego might not have followed her initial drawings completely when building Nubes physically, because of the mentioned complexity and due to the light and bendable material properties of the employed material. The paper describes a computational process that recreates the object’s geometry in four steps: (1) Analyse all existing media of the structure. (2) Translate found information to the digital environment of Grasshopper. (3) Use a physical simulation to derive the end state of the hanging structure. (4) Optimize and tune the simulation with an optimization algorithm for better results. This paper demonstrates the usefulness of computational tools for reconstructing lost sculptures with little documentation. In this case, these tools allow a more accurate reconstruction and contribute to a fuller understanding of the design and realization process of Gego's Nubes.
keywords Geometry Reconstruction, Lost Art, Computational Design, Physics Simulation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_367
id ecaade2022_367
authors Doumpioti, Christina and Huang, Jeffrey
year 2022
title Field Condition - Environmental sensibility of spatial configurations with the use of machine intelligence
doi https://doi.org/10.52842/conf.ecaade.2022.2.067
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 67–74
summary Within computational environmental design (CED), different Machine Learning (ML) models are gaining ground. They aim for time efficiency by automating simulation and speeding up environmental performance feedback. This study suggests an approach that enhances not the optimization but the generative aspect of environmentally driven ML processes in architectural design. We follow Stan Allen's (2009) idea of 'field conditions' as a bottom-up phenomenon according to which form and space emerge from local invisible and dynamic connections. By employing parametric modeling, environmental analysis data, and conditional Generative Adversarial Networks [cGAN] we introduce a generative approach in design that reverses the typical design process of going from formal interpretation to analysis and encourages the emergence of spatial configurations with embedded environmental intelligence. We call it Intensive-driven Environmental Design Computation [IEDC], and we employ it in a case study on a residential building typology encountered in the Mediterranean. The paper describes the process, emphasizing dataset preparation as the stage where the logic of field conditions is established. The proposed research differentiates from cGAN models that offer automatic environmental performance predictions to one that spatial predictions stem from dynamic fields.
keywords Field Architecture, Environmental Design, Generative Design, Machine Learning, Residential Typologies
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_392
id ecaade2022_392
authors Karimian-Aliabadi, Hamed, Adelzadeh, Amin and Robeller, Christopher
year 2022
title A Computational Workflow for Design-to-Assembly of Shingle Covering Systems for Multi-Curved Surface Structures
doi https://doi.org/10.52842/conf.ecaade.2022.1.659
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 659–666
summary Shingle covering of multi-curved surfaces is usually a manual process with no precise plan for the arrangement and assembly of shingle elements. Such processes lack the computational capacity of algorithmic methods for modeling, analysis, and optimization of shingle systems within a seamless digital workflow. As a solution, this paper presents an algorithmic procedure for the design and assembly of shingle covering systems for multi-curved surface structures. The proposed algorithm evaluates the reference surface curvatures to generate an efficient layout of shingles of identical size. The proposed model generates the arrangement of shingles based on given input parameters including the shingle dimensions and overlapping domains. For a precise and quick on-site assembly the corresponding nailing strips are also automatically generated on which the shingles could be installed. The applications and limitations of the proposed algorithm are discussed through a detailed analysis of various case studies.
keywords Shingle Covering, Algorithmic Design, Concave Surface, Multi-Curvature Surface, Overlapping Domain, Curvature Dependent Spacing, Timber Strips
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_879055 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002