CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 99

_id sigradi2022_191
id sigradi2022_191
authors Hemmerling, Marco
year 2022
title INTERCOM 2.0 – A web-based platform for collaborative design processes
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 823–832
summary Next to the advantages of consistent 3D planning, the Building Information Modeling (BIM) method also places new demands on the actors and thus primarily causes a change in the way of working. Against this background the paper discusses the development of the web-based BIM platform INTERCOM for collaborative planning processes in academia and AEC that enables monitoring, processing and assessment in a location and time independent environment. In addition to the technical advantages, a deeper, active and flexible discussion is intended to be created, involving all project partners. As such, INTERCOM is based on the openBIM idea and provides open access for all participants with a high degree of networking for solving complex planning tasks. The research showcases a further development of a previously implemented prototype and discusses the findings from the first academic projects, focussing on the collaborative workflow and the decision making throughout the design process.
keywords Building Information Modeling (BIM), Collabroative Design Process, Common Data Environment (CDE), Architecture Curriculum
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_349
id caadria2022_349
authors Lopez Rodriguez, Alvaro, Jaramillo Pazmino, Pablo Isaac and Pantic, Igor
year 2022
title Augmented Active-Bending Formwork for Concrete, A Manufacturing Technique for Accessible Local Construction of Structural Systems
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 181-190
doi https://doi.org/10.52842/conf.caadria.2022.2.181
summary This research introduces Augmented Reality (AR) for manufacturing concrete structures through an open platform for autonomous construction. The study was developed under the following scopes: computational algorithms for bending simulations, materiality tests, system implementation, and a set of Augmented Reality (AR) tools. AR devices offer a technological tool that allows for a self-built environment through holographic guidance, allowing the untrained workforce to participate in the process. This technology can help users select the system to construct through an Open-Source platform, reducing the gap between complex computational geometries and construction processes. The research aims to investigate a building system that could benefit the UN Objectives SDG 10 by increasing the access to technology in undeveloped communities, SDG 11 and SDG 12 by promoting a self-sustainable method of construction based on local resources and material efficiency. In conjunction with the development of the AR Platform and augmented manufacturing, a 1:1 prototype was built in Quito, Ecuador, with the help of seven people with no previous knowledge of digital tools or construction. Presenting a novel, fast, and affordable concrete formwork connected with AR assisted assembly methods that facilitate access to more efficient and advanced building technology.
keywords Mixed Reality, Distributed Manufacturing, Online Platforms, Affordability, Local Communities, SDG 10, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_293
id cdrf2022_293
authors Amal Algamdey, Aleksander Mastalski, Angelos Chronis, Amar Gurung, Felipe Romero Vargas, German Bodenbender, and Lea Khairallah
year 2022
title AI Urban Voids: A Data-Driven Approach to Urban Activation
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_26
summary With the development of digital technologies, big urban data is now readily available online. This opens the opportunity to utilize new data and create new relationships within multiple urban features for cities. Moreover, new computational design techniques open a new portal for architects and designers to reinterpret this urban data and provide much better-informed design decisions. The “AI Urban Voids'' project is defined as a data-driven approach to analyze and predict the strategic location for urban uses in the addition of amenities within the city. The location of these urban amenities is evaluated based on predictions and scores followed by a series of urban analyses and simulations using K-Means clustering. Furthermore, these results are then visualized in a web-based platform; likewise, the aim is to create a tool that will work on a feedback loop system that constantly updates the information. This paper explains the use of different datasets from Five cities including Melbourne, Sydney, Berlin, Warsaw, and Sao Paulo. Python, Osmx libraries and K-means clustering open the way to manipulate large data sets by introducing a collection of computational processes that can override traditional urban analysis.
series cdrf
email
last changed 2024/05/29 14:02

_id caadria2022_42
id caadria2022_42
authors Chen, Jielin and Stouffs, Rudi
year 2022
title Robust Attributed Adjacency Graph Extraction Using Floor Plan Images
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 385-394
doi https://doi.org/10.52842/conf.caadria.2022.2.385
summary Architectural design solutions are intrinsically structured information with a broad range of interdependent scopes. Compared to conventional 2D Euclidean data such as orthographic drawings and perspectives, non-Euclidean data (e.g., attributed adjacency graphs) can be more effective and accurate for representing 3D architectural design information, which can be useful for numerous design tasks such as spatial analysis and reasoning, and practical applications such as floor plan parsing and generation. Thus, getting access to a matching attributed adjacency graph dataset of architectural design becomes a necessity. However, the task of conveniently acquiring attributed adjacency graphs from existing architectural design solutions still remains an open challenge. To this end, this project leverages state-of-the-art image segmentation techniques using an ensemble learning scheme and proposes an end-to-end framework to efficiently extract attributed adjacency graphs from floor plan images with diverse styles and varied levels of complexity, aiming at addressing generalization issues of existing approaches. The proposed graph extraction framework can be used as an innovative tool for advancing design research infrastructure, with which we construct a large-scale attributed adjacency graph dataset of architectural design using floor plan images retrieved in bulk. We have open sourced our code and dataset.
keywords attributed adjacency graph, floor plan segmentation, ensemble learning, architectural dataset, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_272
id sigradi2022_272
authors Fernandez Gonzalez, Alberto; Ng, Provides
year 2022
title Round The Table, Education without the 2d frame constraints: a WebVR experience from a glocal perspective
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1017–1028
summary Round-the-Table, as a researcher-led initiative, was an experimental virtual roundtable in a 3D format that invited twenty-one organisations worldwide from education, research, and technology to open a broad dialogue about a more sustainable, inclusive, interactive, and accessible educational environment, which may help pedagogical communication beyond the 2D frame. This was made possible by the implementation of a Web-VR platform supported by Mozilla, by which each participant had the opportunity to co-create with the organisers, a collaborative immersive sensory experience, together with the simultaneous dialogue between Local and Global. Participants were asked two critical questions: ‘decentralised education’ and ‘phygital exchanges’ : how can we work beyond the 2d frame and how to distribute tasks between physical and digital. The responses were by far diverse, but it was indeed possible to map a cohesive picture from this cloudy but colourful panorama.
keywords Hybrid Education, volumetric roundtable, planetary classroom, virtual reality, phygital exchange
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_284
id caadria2022_284
authors Hu, Huiyao, Bui, Do Phuong Tung and Janssen, Patrick
year 2022
title Continuous Adaptability: Web-Based Residential Participatory Design Using Modular Prefabricated Construction
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 495-504
doi https://doi.org/10.52842/conf.caadria.2022.2.495
summary High-rise residences are typically very homogeneous and only allow for very limited variability in apartment configurations. Since the 1960s, practitioners and researchers have been exploring alternative visions of adaptable housing solutions that involve residents in the design process. Recent research has proposed digital platforms for residential participatory design. However, methods of modifying apartment configurations after building construction have not yet been developed in detail. This paper suggests a high-rise housing system that supports continuous adaptation and a web application that facilitates participatory design. The proposed construction system leverages on the prefabricated building modules and the open building concept to allow constant renewal of its non-structural building parts. This is complimented by a preliminary prototype of an online platform developed to streamline the design, negotiation and transaction of apartments by the homebuyers. The research conceptually investigates the potential of modern technology in redefining the role of architects and the relationship between residents and their buildings.
keywords participatory design, modularity, prefabrication, open building, user-driven design, web application, self-renewal, SGD 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_399
id ecaade2022_399
authors Johanes, Mikhael and Huang, Jeffrey
year 2022
title Deep Learning Spatial Signature - Inverted GANs for Isovist representation in architectural floorplan
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 621–629
doi https://doi.org/10.52842/conf.ecaade.2022.2.621
summary The advances of Generative Adversarial Networks (GANs) have provided a new experimental ground for creative architecture processes. However, the analytical potential of the latent representation of GANs is yet to be explored for architectural spatial analysis. Furthermore, most research on GANs for floorplan learning in architecture uses images as its main representation medium. This paper presents an experimental framework that uses one-dimensional periodic isovist samples and GANs inversion to recover its latent representation. Access to GANs’ latent space will open up a possibility for discriminative tasks such as classification and clustering analysis. The resulting latent representation will be investigated to discover its analytical capacity in extracting isovist spatial patterns from thousands of floorplans data. In this experiment, we hypothetically conclude that the spatial signature of the architectural floor plan could be derived from the degree of regularity of isovist samples in the latent space structure. The finding of this research will enable a new data-driven strategy to measure spatial quality using isovist and provide a new way for indexing architectural floorplan.
keywords Machine Learning, Isovist, Latent Representation, GANs Inversion, Spatial Signature
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_424
id caadria2022_424
authors May, Kieran, Walsh, James, Smith, Ross, Gu, Ning and Thomas, Bruce
year 2022
title UnityRev - Bridging the gap between BIM Authoring platforms and Game Engines by creating a Real-Time Bi-directional Exchange of BIM data
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 527-536
doi https://doi.org/10.52842/conf.caadria.2022.2.527
summary We present UnityRev: An open-source software package that enables a workflow designed to facilitate a real-time bi-directional and synchronous exchange of Building Information Modelling (BIM) data, by creating a direct link between a BIM authoring platform (i.e. Autodesk Revit) and a game engine (i.e. Unity 3D). Although previous works have explored the integration of BIM with game engines, the currently available tools are limited to a non-synchronous or uni-directional exchange of BIM data, and they do not address specific design issues required to make a BIM authoring platform and game engine compatible (i.e. parametric modelling). This paper describes our software which consists of a compact overview of the system, including design decisions, implementation details, and system capabilities. Two example applications are presented as concept demonstrators to -10795864108000showcase practical collaborative use-case scenarios between BIM authoring platforms and game engines which were not previously achievable without a real-time bi-directional workflow. This work will expand future Computer Aided Architectural Design (CAAD) research, and more specifically, Virtual Reality (VR)/Augmented Reality (AR) based BIM development and integration, by providing new possibilities and bridging the gap between BIM authoring platforms and game engines. The application of the system as demonstrated in the paper for real-time lighting performance simulation contributes to achieving the UN Sustainable Development Goal 11: Sustainable Cities and Communities.
keywords building information modelling, game engines, revit, unity, virtual reality, augmented reality, lighting performance simulation, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_125
id sigradi2022_125
authors Mechler, Cintia; Paraizo, Rodrigo
year 2022
title Visualization of architecture design collection using image subsets: the case of FAU-UFRJ media library
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 65–76
summary This paper presents part of a research carried out as a graduation project which investigated new approaches for viewing the digital collection of graduation projects of the School of Architecture and Urbanism at the Federal University of Rio de Janeiro - the “Portal Midiateca”. In addition to visualization, the objective is also to survey open source tools and document the process, enabling other researchers to have access to instruments for analysis and visualization of cultural collections. The visualizations and analysis used as data the images (hue, saturation, brightness, similarity) and metadata (themes and year of publication) of the graduation projects sent by the students. They were made using VIKUS Viewer to examine the collection in a dynamic website with timeline and similarity visualization tools; and ivpy in a notebook environment to produce static mosaics from different groups of images according to their color measurements.
keywords Data analytics, Information visualization, Visual rhetoric, Cultural analytics, ETL
series SIGraDi
email
last changed 2023/05/16 16:55

_id sigradi2023_427
id sigradi2023_427
authors Trujillo, Juliana and Tramontano, Marcelo
year 2023
title Culture Cartography Platform: collaborative process of mapping and debate
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1609–1620
summary This article presents the implementation of the Cartografia da Cultura online collaborative platform in the city of Campo Grande, MS, Brasil, which sought to expand participation and collaboration in the processes of building public policies.The platform is the main experiment of the doctoral research entitled From the participatory city to the collaborative city: sharing decisions on on-line platforms, defended in September 2022. We present the criteria that guided us in the design and construction of the platform, supported by a collective work that lasted 20 months, whose main collaborator was the Municipal Cultural Forum of Campo Grande. The main functionalities of the platform are the mapping of cultural agents, dissemination of the agenda of events and environment for debate and decision-making, all with data fed by registered collaborators. Over 10 months, we observed the appropriation and use of the platform by the local community, in which the systematization of data allowed revealing the results and contributing to discussions related to online platforms for citizen participation.
keywords Open source, Citizen participation, Online digital platform, Collaborative process, Social networks.
series SIGraDi
email
last changed 2024/03/08 14:09

_id ecaade2022_146
id ecaade2022_146
authors Yin, Zihan, Wang, Likai and Ji, Guohua
year 2022
title Wind-driven Design Optimization of Building Layouts - A case study of the residential building neighborhoods
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 629–638
doi https://doi.org/10.52842/conf.ecaade.2022.1.629
summary As one of the most important factors for urban microclimate, the wind environment is crucial for conserving energy, reducing carbon emissions, diluting pollutants, and improving human comfort. This paper attempts to explore wind-driven design optimization of building layouts, and a residential neighborhood in Nanjing China is chosen as a case study. The workflow combines parametric modeling, FFD simulation, and optimization tool on the Rhino-Grasshopper platform. To increase the diversity of layout design variants, three design strategies are integrated into the parametric modeling. In particular, the disposition of the open space is taken into account because it plays an important role in the outdoor wind environment. GH_Wind and Octopus plug-ins are used for FFD solving and optimization respectively. The optimization process is carried out under two different wind conditions. The results provide optimal configurations of the building layout parameters for improving the outdoor wind environment.
keywords Design Optimization, Building Layout, Wind Environment, Fast Fluid Dynamics, Open Space
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_497
id caadria2022_497
authors Varinlioglu, Guzden, Vaez Afshar, Sepehr, Eshaghi, Sarvin, Balaban, Ozgun and Nagakura, Takehiko
year 2022
title GIS-Based Educational Game Through Low-Cost Virtual Tour Experience- Khan Game
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 69-78
doi https://doi.org/10.52842/conf.caadria.2022.1.069
summary The pandemic brought new norms and techniques of pedagogical strategies in formal education. The synchronous/ asynchronous video streaming brought an emphasis on virtual and augmented realities, which are rapidly replacing textbooks as the main medium for learning and teaching. This transformation requires more extensive online and interactive content with simpler user interfaces. The aim of this study is to report on the design, implementation, and testing of a game based on low-cost and user-friendly content for digital cultural heritage. In this project, a game aimed at inclusive and equitable education was developed using 360 images of the targeted architectural heritage geographically distributed in a pilot site. We promote lifelong learning opportunities for all, following the SDG4, aiming for quality education with the easy-to-use online platform and easy access to immersive education through mobile platforms. Towards a post-carbon future without the need for travel, computational design methods such as using 360 videos and images in combination with virtual reality (VR) headsets allow a low-cost approach to remotely experiencing cultural heritage. We propose developing and testing a GIS-based educational game using a low-cost 360 virtual tour of architectural heritage, more specifically, caravanserais of Anatolia.0864108000
keywords digital heritage, 360 images, educational games, caravanserais, SDG 4
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_18
id ecaade2022_18
authors Morales-Beltran, Mauricio and Mostafavi, Sina
year 2022
title Topology Optimization in Architectural Design: a Technique for Obtaining Discrete Structures from Continuum Typologies
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 589–598
doi https://doi.org/10.52842/conf.ecaade.2022.1.589
summary This study explores the advantages of setting a two-dimension continuum topology optimization whose output resembles structures to be assembled from discrete members, within one integrated procedure. The proposed Skeleton Sketch method uses algorithms that connect virtual centers of gravity found in the continuum matrices of the well-known Solid Isotropic Material with Penalization (SIMP) optimization method. The connecting lines are further upgraded to steel profiles through matching required and available cross- sectional areas, obtaining a discrete version of the topology optimized system. Examples of the algorithm’s application on the parametric structural design of three case studies are provided. Results show that the method provides the designer with several layout alternatives through the process, proving to be a versatile and feasible design tool for practical realization of the outcomes of topology optimization.
keywords Topology Optimization, Parametric Design, Algorithms, Steel Structures
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2024_186
id caadria2024_186
authors Huang, Jingfei and Tu, Han
year 2024
title Inconsistent Affective Reaction: Sentiment of Perception and Opinion in Urban Environments
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 395–404
doi https://doi.org/10.52842/conf.caadria.2024.2.395
summary The ascension of social media platforms has transformed our understanding of urban environments, giving rise to nuanced variations in sentiment reaction embedded within human perception and opinion, and challenging existing multidimensional sentiment analysis approaches in urban studies. This study presents novel methodologies for identifying and elucidating sentiment inconsistency, constructing a dataset encompassing 140,750 Baidu and Tencent Street view images to measure perceptions, and 984,024 Weibo social media text posts to measure opinions. A reaction index is developed, integrating object detection and natural language processing techniques to classify sentiment in Beijing Second Ring for 2016 and 2022. Classified sentiment reaction is analysed and visualized using regression analysis, image segmentation, and word frequency based on land-use distribution to discern underlying factors. The perception affective reaction trend map reveals a shift toward more evenly distributed positive sentiment, while the opinion affective reaction trend map shows more extreme changes. Our mismatch map indicates significant disparities between the sentiments of human perception and opinion of urban areas over the years. Changes in sentiment reactions have significant relationships with elements such as dense buildings and pedestrian presence. Our inconsistent maps present perception and opinion sentiments before and after the pandemic and offer potential explanations and directions for environmental management, in formulating strategies for urban renewal.
keywords Urban Sentiment, Affective Reaction, Social Media, Machine Learning, Urban Data, Image Segmentation.
series CAADRIA
email
last changed 2024/11/17 22:05

_id ecaade2022_234
id ecaade2022_234
authors Afsar, Secil, Estévez, Alberto T., Abdallah, Yomna K., Turhan, Gozde Damla, Ozel, Berfin and Doyuran, Aslihan
year 2022
title Activating Co-Creation Methodologies of 3D Printing with Biocomposites Developed from Local Organic Wastes
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 215–224
doi https://doi.org/10.52842/conf.ecaade.2022.1.215
summary Compared to the take-make-waste-oriented linear economy model, the circular model has been studied since the 1980s. Due to consumption-oriented lifestyles along with having a tendency of considering waste materials as trash, studies on sustainable materials management (SMM) have remained at a theoretical level or created temporary and limited impacts. To ensure SMM supports The European Green Deal, there is a necessity of developing top-down and bottom-up strategies simultaneously, which can be metaphorized as digging a tunnel from two different directions to meet in the middle of a mountain. In parallel with the New European Bauhaus concept, this research aims to create a case study for boosting bottom-up and data-driven methodologies to produce short-loop products made of bio-based biocomposite materials from local food & organic wastes. The Architecture departments of two universities from different countries collaborated to practice these design democratization methodologies using data transfer paths. The 3D printable models, firmware code, and detailed explanation of working with a customized 3D printer paste extruder were shared using online tools. Accordingly, the bio-based biocomposite recipe from eggshell, xanthan gum, and citric acid, which can be provided from local shops, food & organic wastes, was investigated concurrently to enhance its printability feature for generating interior design elements such as a vase or vertical gardening unit. While sharing each step from open-source platforms with adding snapshots and videos allows further development between two universities, it also makes room for other researchers/makers/designers to replicate the process/product. By combining modern manufacturing and traditional crafting methods with materials produced with DIY techniques from local resources, and using global data transfer platforms to transfer data instead of products themselves, this research seeks to unlock the value of co-creative design practices for SMM.
keywords Sustainable Materials Management, Co-Creation, Food Waste, 3D Printing, New European Bauhaus
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_133
id sigradi2022_133
authors Ambrósio Faria, Igor; Carmo Pena Martínez, Andressa
year 2022
title Wikihouse: a parametric approach to generate different spatial arrangements
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 139–150
summary Wikihouse is an open-source, modular, digitally fabricated building system. Despite being the object of many studies in different countries, most of these experiences present a sequence of frames that generate only linear forms without formal variations. In this sense, this study aims to develop a geometry that allows more variations through the repetition of the same module. For this purpose, the research uses visual algorithmic modeling in Grasshopper to generate the geometry. As a result, we inserted the frames into a trapezium and mirrored the main profile, which kept the number of pieces. In future research, we intend to optimize the number of parts, reduce the cost and production time, and build a 1:1 module for validating its constructive stability.
keywords Generative Design, Digital Fabrication, Open Design
series SIGraDi
email
last changed 2023/05/16 16:55

_id caadria2022_139
id caadria2022_139
authors Ataman, Cem, Tuncer, Bige and Perrault, Simon
year 2022
title Asynchronous Digital Participation in Urban Design Processes: Qualitative Data Exploration and Analysis With Natural Language Processing
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 383-392
doi https://doi.org/10.52842/conf.caadria.2022.1.383
summary This paper aims to improve the usability of qualitative urban big data sources by utilizing Natural Language Processing (NLP) as a promising AI-based technique. In this research, we designed a digital participation experiment by deploying an open-source and customizable asynchronous participation tool, "Consul Project‚, with 47 participants in the campus transformation process of the Singapore University of Technology and Design (SUTD). At the end of the data collection process with several debate topics and proposals, we analysed the qualitative data in entry scale, topic scale, and module scale. We investigated the impact of sentiment scores of each entry on the overall discussion and the sentiment scores of each introduction text on the ongoing discussions to trace the interaction and engagement. Furthermore, we used Latent Dirichlet Allocation (LDA) topic modelling to visualize the abstract topics that occurred in the participation experiment. The results revealed the links between different debates and proposals, which allow designers and decision makers to identify the most interacted arguments and engaging topics throughout participation processes. Eventually, this research presented the potentials of qualitative data while highlighting the necessity of adopting new methods and techniques, e.g., NLP, sentiment analysis, LDA topic modelling, to analyse and represent the collected qualitative data in asynchronous digital participation processes.
keywords Urban Design, Digital Participation, Qualitative Urban Data, Natural Language Processing (NLP), Sentiment Analysis, LDA Topic Modelling, SDG 10, SDG 11.
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_299
id ecaade2022_299
authors Bauscher, Erik, Philipp, Klaus Jan, Reisinger, Stefanie and Wortmann, Thomas
year 2022
title Reimagining Gego: Geometrical Reconstruction of Nubes, an Undocumented and Lost Sculpture from 1974
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 217–226
doi https://doi.org/10.52842/conf.ecaade.2022.2.217
summary This paper describes a method to understand and digitally reconstruct two sculptures by Gertrud Goldschmidt, a German-born, Venezuelan artist also called Gego. Gego is best known for her series of works called “Reticuláres”. These three-dimensional and open installations, mostly hanging freely in space, are playing with the concept and perception of space as well as challenging the definition of the traditional sculpture. The paper aims to generate information about two specific structures called “Nubes” (Clouds for Spanish) to assist in a physical reconstruction for a larger exhibition about Gego and to contribute to understanding Gego’s work process. Originally, the structures were suspended from a building's ceiling as an art installation in Caracas, 1974. There are three main challenges for this reconstruction: (1) The installations exhibit a complex three-dimensional geometry. (2) Scant drawings and photographs exist. (3) Gego might not have followed her initial drawings completely when building Nubes physically, because of the mentioned complexity and due to the light and bendable material properties of the employed material. The paper describes a computational process that recreates the object’s geometry in four steps: (1) Analyse all existing media of the structure. (2) Translate found information to the digital environment of Grasshopper. (3) Use a physical simulation to derive the end state of the hanging structure. (4) Optimize and tune the simulation with an optimization algorithm for better results. This paper demonstrates the usefulness of computational tools for reconstructing lost sculptures with little documentation. In this case, these tools allow a more accurate reconstruction and contribute to a fuller understanding of the design and realization process of Gego's Nubes.
keywords Geometry Reconstruction, Lost Art, Computational Design, Physics Simulation
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_205
id caadria2022_205
authors Bielski, Jessica, Langenhan, Christoph, Ziegler, Christoph, Eisenstadt, Viktor, Dengel, Andreas and Althoff, Klaus-Dieter
year 2022
title Quantifying the Intangible, A Tool for Retrospective Protocol Studies of Sketching During the Early Conceptual Design of Architecture
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 403-411
doi https://doi.org/10.52842/conf.caadria.2022.1.403
summary Sketching is a craft supporting the development of ideas and design intentions, as well as an effective tool for communication during the early architectural design stages by making them tangible. Even though sketch-based interaction is a promising approach for Computer-Aided Architectural Design (CAAD) systems, it remains a challenge for computers to recognise information in a sketch. Design protocol studies conducted to deconstruct the sketch and sketching process collect solely qualitative data so far. However, the 'metis' projects aim to create an intelligent design assistant, using an artificial neural network (ANN), in the manner of Negroponte‚s Architecture Machine. By assimilating to the user's idiosyncrasies, the system suggests further design steps to the architect to improve the design decision making process for economic growth, qualitative self-education through the dialogue and reducing stress. For training such ANN quantitative data is needed. In order to produce quantifiable results from such a study, we propose our open-source web-tool ‚Sketch Protocol Analyser‚. By correlating different parameters (i.e. video, transcript and sketch built) through the same labels and their timestamps, we create quantitative data for further use.
keywords Design Protocol Studies, Sketching, Data Collection, Architectural Design Process, ANN, SDG 3, SDG 4, SDG 8, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_235
id sigradi2022_235
authors Costa de Jesus, Christian; Chokyu, Margaret; Gomes, Rafael
year 2022
title School Grammar: An Exploration on Computational Processes in Architecture
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 359–370
summary Standard design for schools in underdeveloped countries seems to be the key to lowering the cost of the whole building process, from design to construction. But since it might not be suitable for different situations, the range of each design is limited. This paper presents a parametric algorithm intended to provide mass customized Architectural solutions for school buildings. A Shape Grammar based methodology for customized school designs is proposed. A set of rules is defined based on chosen characteristics in a corpus of analysis and then is implemented in an open-source modeling software. The algorithm proposed is able to provide solutions for different lots and number of students assisted.
keywords Shape Grammars, School Architecture, Mass Customized Design, Design Methods, Open-Source Software
series SIGraDi
email
last changed 2023/05/16 16:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4HOMELOGIN (you are user _anon_684343 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002