CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 676

_id caadria2022_208
id caadria2022_208
authors Bielski, Jessica, Langenhan, Christoph, Ziegler, Christoph, Eisenstadt, Viktor, Petzold, Frank, Dengel, Andreas and Althoff, Klaus-Dieter
year 2022
title The What, Why, What-If and How-To for Designing Architecture, Explainability for Auto-Completion of Computer-Aided Architectural Design of Floor Plan Layouting During the Early Design Stages
doi https://doi.org/10.52842/conf.caadria.2022.2.435
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 435-444
summary In the next thirty years, the world's population is expected to increase to ten billion people, posing major challenges for the construction industry. To meet the growing demands for residential housing in the future, architects need to work faster, more efficiently, and more sustainably, while increasing architectural quality. The hypothetical intelligent design assistant WHITE BRIDGE, based on the methods of the 'metis' projects, suggests further design steps to support the architectural design decision-making processes of the early design phases. This facilitates faster and better decisions early in the process for a more responsible resource consumption, better mental well-being, and ultimately economic growth. Through a case study we investigate if additional information supports the understanding of these suggestions to reduce the cognitive workload of architectural design decisions on the backdrop of their respective representation. The paper contributes an approach for visualising explanations of an intelligent design assistant, their integration into paper prototypes for case studies, and a workflow for data collection and analysis. The results suggest that the cognitive horizon of the architects is broadened by the explanations, while the visualisation methods significantly influence the usefulness and use of the conveyed information within the explanations.
keywords Explainability, Artificial intelligence, XAI, SDG 3, SDG 8, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_271
id sigradi2022_271
authors Dong, Siyu; Yan, Jingjing; Yang, Shunyi; Cui, Xiangguo
year 2022
title Light Transmittance Ceramic Design-Computation with Robotics
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 515–526
summary Building envelope design incorporates a range of light-related analyses, often providing an essential feedback loop for shaping an envelope’s performance, geometry, or components. This is true for solar radiation studies of envelopes, calculated irrespective of building material or assembly. Extending our light-related analysis to include diffuse lighting effects on a building interior presents an opportunity to explore the translucency, porosity, and forms of materials. Glazed architectural ceramic components fabricated using adaptive robotic manufacturing provide an opportunity to exploit material dynamics within the design and alleviate fabrication waste from molds, ultimately accelerating the production manufacturing system. In addition to analyzing the solar radiation on the building facade design, lighting effects can be engaged in profoundly different ways depending on the degree of design-production agency. The production process can be extended beyond automatic routines using robotic fabrication with levels of autonomous involvement that allow for alternative form expressions of the dynamic clay material. In addition to negotiating several design criteria, the design research will develop an aesthetic character originating from customized clay materials and robotic manufacturing processes for lighting transmittance architectural ceramics.
keywords Digital Fabrication, Light Transmittance, Data-Driven Fabrication, Computer Vision
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2022_458
id caadria2022_458
authors Gong, Pixin, Huang, Xiaoran, Huang, Chenyu and White, Marcus
year 2022
title Machine Learning-Based Walkability Modeling in Urban Life Circle
doi https://doi.org/10.52842/conf.caadria.2022.1.645
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 645-654
summary With China's fast urbanization, the study of the walkability of residents' life circles has become critical to improve people's quality of life. Traditional walkability calculations are based on Lawrence Frank's theory. However, the weighted calculation method cannot be adapted to ever-changing and complicated scenarios as the scope and topic of research transforming. This study investigated walkability at the community level by combining machine learning techniques with multi-source data. Feature indicators affecting walkability were estimated from multi-source data. Machine learning was used to refine the weighting calculation under the previous indicator framework. We compared the performance of 20 regression models from 6 different machine learning algorithms for estimating the walkability of 14578 communities in downtown Shanghai. It is concluded that the Bagged Tree Model (R2=0.86, RMSE=0.36862) achieves the best performance, which is used to revise the initial walkability index values. The workflow proposed in this paper allows for rapid application of expert empirical consensus to comprehensive urban design and detailed urban governance in the future.
keywords Life Circle, Walkability Indicator, Multi-source Data, Machine Learning, Refined Urban Design, SDG 3, SDG 10, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_92
id sigradi2022_92
authors Vaez Afshar, Sepehr; Aytaç, Gülºen; Eshaghi, Sarvin; Vaez Afshar, Sana
year 2022
title Online Footprint - A serious game for reducing digital carbon emission
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1043–1052
summary Life is getting digital more than ever as technology improves. While the Internet is responsible for two percent of global greenhouse gas emissions, it is underestimated as a pollutant. Since public awareness is one of the most important preservation methods, it can contribute to protecting the environment from carbon emissions by raising people's understanding. In this regard, serious games, as a type of gamification transmitting educational content besides entertainment, immerse the player in enjoyment while teaching them a specific topic or enhancing their skills in a field. This study proposes a serious game, taking the digital unseen carbon footprint and its effects on the landscape into the topic. The game considers SDG goals provided by the United Nations Department of Economic and Social Affairs. In this regard, the research uses SDGs 4 and 7 by providing quality education for all and access to sustainable energy by changing people's everyday habits.
keywords Online learning, Internet footprint, Climate change, Serious games, SDGs
series SIGraDi
email
last changed 2023/05/16 16:57

_id acadia22_001
id acadia22_001
authors Akbarzadeh, Masoud; Aviv, Dorit; Jamelle, Hina; Stuart-Smith, Robert
year 2022
title ACADIA 2022: Hybrids and Haecceities [Projects Catalog]
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 240p.
summary Hybrids & Haecceities seeks novel approaches to design and research that dissolve binary conditions and inherent hierarchies in order to embrace new modes of practice. Haecceities describe the qualities or properties of objects that define them as unique. Concurrently, Hybrids are entities with characteristics enhanced by the process of combining two or more elements with different properties. In concert, these terms offer a provocation toward more inclusive and specific forms of computational design. Hybrids & Haecceities aligns with a fundamental shift away from abstract generalized models of production toward greater degrees of customization at unprecedented scales, made possible by the Fourth Industrial Revolution. With greater reliance on cyber-physical systems, this shift supports more diverse and considered forms of embodiment and participation in the built environment. Conversely, the design and construction industries have profound global effects with significant political, economic, and environmental impacts. The urgent need to decarbonize buildings, and at the same time, provide equitable infrastructure to communities at risk, places responsibility on the design disciplines to form new collaborations in the effort to address today’s social and ecological crises.
series ACADIA
type projects catalog
email
last changed 2024/02/06 14:00

_id acadia22_000
id acadia22_000
authors Akbarzadeh, Masoud; Aviv, Dorit; Jamelle, Hina; Stuart-Smith, Robert
year 2022
title ACADIA 2022: Hybrids and Haecceities [Proceedings]
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 839p.
summary Hybrids & Haecceities seeks novel approaches to design and research that dissolve binary conditions and inherent hierarchies in order to embrace new modes of practice. Haecceities describe the qualities or properties of objects that define them as unique. Concurrently, Hybrids are entities with characteristics enhanced by the process of combining two or more elements with different properties. In concert, these terms offer a provocation toward more inclusive and specific forms of computational design. Hybrids & Haecceities aligns with a fundamental shift away from abstract generalized models of production toward greater degrees of customization at unprecedented scales, made possible by the Fourth Industrial Revolution. With greater reliance on cyber-physical systems, this shift supports more diverse and considered forms of embodiment and participation in the built environment. Conversely, the design and construction industries have profound global effects with significant political, economic, and environmental impacts. The urgent need to decarbonize buildings, and at the same time, provide equitable infrastructure to communities at risk, places responsibility on the design disciplines to form new collaborations in the effort to address today’s social and ecological crises.
series ACADIA
type proceedings
email
last changed 2024/02/06 14:00

_id ecaade2022_251
id ecaade2022_251
authors Awan, Abeeha, Lombardi, Davide, Ruffino, Paolo and Agkathidis, Asterios
year 2022
title Efficacy of Gamification on Introductory Architectural Education: a literature review
doi https://doi.org/10.52842/conf.ecaade.2022.2.553
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 553–564
summary Due to their recent popularity and success in fields such as engineering and business, gamification and by extension game design principles demonstrate the ability to teach complex, multi-disciplinary skills in an engaging, entertaining, and effective way. Architectural education especially introductory architectural education is a foundational and fundamental part of a budding architecture student’s career and oftentimes requires the understanding of dynamic systems, spatial reasoning, and experiential learning. The paper posits that gamification and game design principles can utilize certain components such as augmented reality, narrative design, and fun in order to create tools, gamify existing curriculum, and increase retention, engagement, and mastery of the difficult high-tech skillsets required of introductory architects. The paper focuses on reviewing and systematically analyzing research on gamification in education. In particular, it focuses on systematically reviewing and analyzing data from multiple relevant case studies chosen based on the application of technology such as augmented reality, the integration of game design, and the feasibility of gamification in educational environments. This data is examined based on feasibility, accessibility, and effects on information retention and the findings are outlined in a comparative table of methods, tools, and technologies organized based on their suitability. Ultimately, the paper aims to establish a framework for gamifying introductory modules in architectural education and hopes to create a future architectural augmented reality game meant to utilize gamification to help new architectural students.
keywords Gamification, Game Design, Architectural Education, Educational Games, Retention, Learning
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_54
id sigradi2022_54
authors Balci, Ozan; Alaçam, Sema
year 2022
title Zone-sensitive RIZOBots in Action: Examining the Behavior of Mobile Robots In a Heterogeneous Environment
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 397–408
summary This study proposes a framework for the use of mobile robots namely RIZOBots in form studies in the early phases of design. The proposed framework was tested in two experiments. An agent-based model was utilized for the movement of mobile robots, a drawing task was defined as the task. In particular, rule sets for agent-agent and agent-environment interaction were used. Light-sensitivity rules were utilized to achieve agent-environment interaction, apart from obstacle detection. This study focuses on the effects of two different zone-related states on the behavior of RIZOBot which is a configurable differential-drive wheeled robot developed by authors using off-the-shelf products and 3D printed body parts. Two zone types with very basic features are used to define environmental conditions. The traces left on the canvas, the irregularities in the movement of the robots, and the robot-environment interaction will be evaluated in the study. The results and analysis of the two selected experiments are presented and the potential of the proposed framework is discussed.
keywords Robotics, Swarm robotics, Swarm behaviour, Mobile agents, Zone-sensitivity
series SIGraDi
email
last changed 2023/05/16 16:56

_id ecaade2022_299
id ecaade2022_299
authors Bauscher, Erik, Philipp, Klaus Jan, Reisinger, Stefanie and Wortmann, Thomas
year 2022
title Reimagining Gego: Geometrical Reconstruction of Nubes, an Undocumented and Lost Sculpture from 1974
doi https://doi.org/10.52842/conf.ecaade.2022.2.217
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 217–226
summary This paper describes a method to understand and digitally reconstruct two sculptures by Gertrud Goldschmidt, a German-born, Venezuelan artist also called Gego. Gego is best known for her series of works called “Reticuláres”. These three-dimensional and open installations, mostly hanging freely in space, are playing with the concept and perception of space as well as challenging the definition of the traditional sculpture. The paper aims to generate information about two specific structures called “Nubes” (Clouds for Spanish) to assist in a physical reconstruction for a larger exhibition about Gego and to contribute to understanding Gego’s work process. Originally, the structures were suspended from a building's ceiling as an art installation in Caracas, 1974. There are three main challenges for this reconstruction: (1) The installations exhibit a complex three-dimensional geometry. (2) Scant drawings and photographs exist. (3) Gego might not have followed her initial drawings completely when building Nubes physically, because of the mentioned complexity and due to the light and bendable material properties of the employed material. The paper describes a computational process that recreates the object’s geometry in four steps: (1) Analyse all existing media of the structure. (2) Translate found information to the digital environment of Grasshopper. (3) Use a physical simulation to derive the end state of the hanging structure. (4) Optimize and tune the simulation with an optimization algorithm for better results. This paper demonstrates the usefulness of computational tools for reconstructing lost sculptures with little documentation. In this case, these tools allow a more accurate reconstruction and contribute to a fuller understanding of the design and realization process of Gego's Nubes.
keywords Geometry Reconstruction, Lost Art, Computational Design, Physics Simulation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_249
id ecaade2022_249
authors Carrasco Hortal, Jose, Hernandez Carretero, Sergi, Abellan Alarcon, Antonio and Bermejo Pascual, Jorge
year 2022
title Algae, Gobiidae Fish and Insects that inspire Coastal Custodian Entities - Digital models for a real-virtual space using TouchDesigner
doi https://doi.org/10.52842/conf.ecaade.2022.1.361
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 361–370
summary At the beginning of the twenty-first century, a discipline at the intersection of digital art and science explores how natural and artificial species are affected, coexist, and feed back to humans based on multi-scalar hybrid models. They embody types of surveillance entities or non-human custodians, and serve as inspiration for another generation of designs produced ten years later, the case studies that are presented here. This paper explains the design and parametric fundamentals of a digital architecture installation at the University of Alicante (Spain 2021) using CNC models and the TouchDesigner programming environment. The installation contains a clan of technological-virtual hybrid species, non-human custodians, which: (a) strengthen the Proposal’s discourse on the recognition of legal identity of the Mar Menor lagoon (Southeast Spain); (b) incorporate reactive designs; (c) help raise awareness of the effect of human actions on the lagoon’s ecology and nearby streams. The viewpoint is not anthropocentric, because it adopts the perspective of the foraging fish species or the oxygen-seeking algae species, among others, in order to reveal the deterioration processes. In most cases, the result is a sort of synaesthetic conversation that interweaves light, sound, movement and data.
keywords Human-Machine Interaction, TouchDesigner, Non-Human Custodian, Responsive Interface, Ethnography of Things
series eCAADe
email
last changed 2024/04/22 07:10

_id ascaad2022_086
id ascaad2022_086
authors Chehab, Aya; Nakhal, Bilal
year 2022
title Exploring Virtual Reality as an Approach to Resurrect Destroyed Historical Buildings: An Approach to Revive the Destroyed "Egg Building" through VR
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 609-631
summary An important part of a city, that gives it a sense of community and character, is its history. One way of acknowledging this heritage is by preserving historic building and structures. Old buildings are witnesses to the aesthetic and cultural history of a city, helping to give people a sense of place and connection to the past. Unfortunately, despite their importance within the city, historical buildings are most of the time subject to demolition and to be replaced- leaving behind stories told and untold of what use to be. The paper, therefore, aims to explore the capability of the metaverse, using virtual reality touring, to revive the memory of historical buildings that are subject to fade. Where preserving historical buildings can not only act as a symbol of grandeur but is also vital for reviving the community’s collective memory. The case study focused upon in the research paper shows a first step in the development of an immersive virtual tour for the significant building of “The Egg” or “Beirut City Center” in Downtown- which is a building that witnessed a series of unfortunate events that lead to destruction, erasure, and demolition of the building. Therefore, examining the recovery and revival of this unique historic site in an unconventional way which is in the metaverse, specifically the Virtual Reality (VR). The paper assumes that virtual reality, as the main metaverse approach, would help people ‘remember’ and ‘mentally revive’ the destroyed historical buildings that once acted as the building blocks in the impacted city. To prove this hypothesis, two different methodologies will be used, by theorical analysis and literature review, such as analyzing the main keyword, and analyzing datum from previous works. The second method will rely on the physical methodology, where virtual 3D Models will be built in a computer software, Autodesk Revit, then imported within a VR experience for an enhanced experience within the historical site to preserve the historic buildings and revive the collective memory within the community, enabling people to view how these historic sites once were and how they have now become.
series ASCAAD
email
last changed 2024/02/16 13:29

_id caadria2022_427
id caadria2022_427
authors Ding, Xinyue, Guo, Xiangmin, Lo, Tian Tian and Wang, Ke
year 2022
title The Spatial Environment Affects Human Emotion Perception-Using Physiological Signal Modes
doi https://doi.org/10.52842/conf.caadria.2022.2.425
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 425-434
summary In the past, spatial design was mainly from the perspective of designers. With the increasing demand for quality spaces, contemporary architecture has gradually shifted from focusing on form creation to human well-being, once again advocating the concept of "human-centered" spatial design. Exploring how the spatial environment affects human emotions and health is conducive to quantifying the emotional perception characteristics of space and promoting the improvement of human quality of life and sustainable survival. At the same time, the development of contemporary technology and neuroscience has promoted the study of the impact of spatial environment on human emotion perception. This paper summarizes the research on the impact of the spatial environment on human emotion perception in recent years. First, 28 relevant studies were screened using the PRISMA framework. Then a set of research processes applicable to this study is proposed. Next, the physiological signals currently used to study the effects of the spatial environment on human emotions are summarized and analyzed, including electroencephalography (EEG), skin response (GSR), pulse (PR), and four other signals. The architectural features studied in the related literature are mainly building structural features, building spatial geometric features, and building spatial functional attributes. The study of urban space is divided into different parts, such as urban environment characteristics and urban wayfinding behavior. Finally, we point out the shortcomings and perspectives of studies related to the influence of spatial environment on human emotion perception.
keywords Architectural space environment, urban space, human emotional feelings, Physiological signals, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_000
id ascaad2022_000
authors El-Bastawissi, Ibtihal Y.; Abdelmohsen, Sherif
year 2022
title ASCAAD 2022: Hybrid Spaces of the Metaverse
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, 743 p.
summary The ASCAAD 2022 theme focuses on Hybrid Spaces of the Metaverse, with the aim of unraveling the opportunities and potentials of architecture in the age of the Metaverse. Historically space was always the container of people’s activities and memories; it is the collective reflection of their life styles. Walls, floors and ceilings of architectural spaces witnessed the moments of joy and happiness, as well as moments of misery that changed human history, from the signing of the United Nations Declaration post WWII, to the first I-phone sold in the Apple store; history is written inside architectural spaces. The new era of the 4th industrial revolution, which is associated with digital transformation, will unlock new opportunities for architects, interior designers and whoever will enter the domain of the metaverse. The metaverse will not only serve as a portal to a new world, but also as an extension to new activities such as commercial, social, educational and business activities that will thrive in the new virtual realm. The metaverse will act as the natural transcendence of technological advancements carrying new potentials to the architectural profession. Active Worlds, Second Life, Roblox and Fortnite are all early versions of what we will witness in the next few years, shifting from entertainment to full commercial, official and governmental activities; all will be hosted inside virtual and hybrid spaces. A new era will start inside virtual realms; real economy will rise inside virtual architecture but without the multiple physical or structural constraints that limit physicality anymore such as gravity, and day and night cycles; no oxygen is needed anymore. But this time, human activities will not only be recorded and saved but also attended and lived in real time. Computational design will continue to thrive and even evolve into new forms aligning with new changes and challenges of the metaverse. Hybrid spaces are the spaces that will be built as a virtual extension of real spaces. They will be in connection to real spaces and reflecting their activities on a real time basis. On the other hand, pure virtual spaces will occur, trespassing time zones and geographical barriers. The importance of hybrid experiences was most realized after the pandemic lockdowns; and now is the time to invent new design methodologies and new theories as a natural transcendence of architecture profession. Hyperlinks portals replacing staircases and elevators, physically impossible structures, open budget interiors, teleportation are all new notions emerging with the new domain. Today, virtual spaces are hosted on various cloud services and registered as Non-Fungible Tokens (NFTs). They are experienced as immersed spaces using headsets or semi immersed spaces presented through laptops and/or mobile screens. With the new accelerating pace of technology, there is high possibility for integration within our neural networks to be experienced in our minds with just closing our eyes in the near future.
series ASCAAD
email
last changed 2024/02/16 13:24

_id caadria2022_129
id caadria2022_129
authors Fukuda, Tomohiro, Nagamachi, Shiho, Nakamura, Hoki, Yamauchi, Yuji, Ito, Nao and Shimizu, Shunta
year 2022
title Web-Based Three-Dimensional Augmented Reality of Digital Heritage for Nighttime Experience
doi https://doi.org/10.52842/conf.caadria.2022.1.737
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 737-746
summary Digital heritage is a sustainable medium that allows people to understand the historical shape and context of cities and architecture, leading to visions for the future. Opportunities for the public to experience life-size representations of digital heritage in three-dimensional augmented reality (3D-AR) at outdoor sites are still limited, especially at night. Therefore, the objective of this study is to develop a web-based 3D-AR method to digitally reconstruct a heritage site. A prototype system was developed using the five-storey pagoda of Tango Kokubunji Temple, which was built around 1330 AD and later destroyed, as a digital heritage reconstruction. An interactive initial positioning method was developed to display the five-storey pagoda on real historical foundation stones by tapping a crosshair button, under the condition that the artificial lighting is insufficient at night and the distance between the viewpoint and the 3D model of the pagoda is large. Combining the lighting effects of the real and virtual worlds at night was also demonstrated. We held an event where the general public could experience 3D-AR on their own mobile devices, and conducted a usability evaluation to verify the system.
keywords digital heritage, digital restoration, augmented reality (AR), web system, lighting design, virtual and real worlds, SDG 4, SDG 8
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_273
id sigradi2022_273
authors He, Isa; Song, Humbi; Seibold, Zach; Ibrahim, Ibrahim; Sayegh, Allen
year 2022
title Mental Breadcrumbs: Developing biometric methods to understand how emotions and sensory cues affect wayfinding
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 869–880
summary How do one’s emotions, mental state, and the spatial environment interact? Interdisciplinary research methods in architecture and neuroscience can be used to examine the interrelated factors of mental load, sensory cues, emotions, and memory in wayfinding. The objective is to propose a biometric methodology for quantifying the emotional and cognitive experience of wayfinding, and to present a pilot experiment on the impact of mental load on wayfinding. The methodology collected biometric (electrodermal activity, electroencephalogram, heart rate, accelerometer), visuospatial (GPS, camera), and interview data. The pilot study revealed a new category of sensory cues used by individuals to wayfind. Identified as “breadcrumbs” and associated with subjective emotions, researchers propose an addition to Kevin Lynch’s elements of the built environment that contribute to cognitive mapping. The aim is to invite a rethinking of the typically precedent-based nature of spatial design, bolstering the discussion with individual experience data to encourage evidence-based design.
keywords Interdisciplinary Design, Biometric, Wayfinding, Sensory Cues, Mental Load
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_496
id caadria2022_496
authors Lim, Chor-Kheng
year 2022
title Presence Stickers: A Seamlessly Integrated Smart Living System at a Solitary Elderly Home
doi https://doi.org/10.52842/conf.caadria.2022.1.445
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 445-454
summary This research develops Presence Stickers, the capacitive sensing module that can be easily affixed to the existing space element surfaces (such as a wall, door, stairs), and daily objects or home furniture (such as a chair, cabinet, table, sofa, etc.). These 30*30 cm Presence Stickers can actively sense people‚s physical behaviors and body movements in spaces. From the preliminary analysis of observing the 80-year-old elderly subject‚s daily activities, the movement trajectory of the ‚Move-Stop‚ pattern is found. There will be a Touch (T) and Touchless (TL) relationship between the body and the space elements or objects. Furthermore, the touchless, or non-contact, intimate relationship can also be divided into two types: 1. The body that ‚Passes by‚ (P) the spatial elements or objects, and 2. The body that ‚Stays‚ (S) in front of the object and performs activities. These three types of the intimate relationship between bodies and objects, i.e., T, TL-P, and TL-S, were used as the main sensing conditions to develop the Presence Stickers sensor module. We affixed 8 Presence Stickers on 9 objects in six spaces and finally, the life pattern can be analyzed and the sensors provide the customized intelligent application function for the elderly.
keywords Intuitive Interaction Design, Capacitive Sensor, Daily Object, Touchless, Body Movement, Smart Home, SDG 3
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_464
id caadria2022_464
authors Liu, Xinyu and van Ameijde, Jeroen
year 2022
title Data-driven Research on Street Environmental Qualities and Vitality Using GIS Mapping and Machine Learning, a Case Study of Ma On Shan, Hong Kong
doi https://doi.org/10.52842/conf.caadria.2022.1.485
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 485-494
summary In a post-carbon framework, data-driven methods can be used to assess the environmental quality and sustainability of urban streetscape. Streets are an important part of people's daily lives and provide places for social interaction. Therefore, in this study, the relationship between street quality and street vibrancy is measured using the new town of Ma On Shan, Hong Kong as a study area. Firstly, machine learning was used to identify the physical features of streets through geographic information collection and streetscape image acquisition. Secondly, previous measurement algorithms are combined to calculate the greenness, walkability, safety, imageability, enclosure, and complexity of streets. Thirdly, secondary calculations and visualisations were carried out on a Geographic Information System (GIS) platform to observe the current distribution of street qualities. Finally, the relationship between street quality and vibrancy was analysed using SPSS statistical analysis software. The results show that walkability has a positive effect on street vitality, whereas safety and complexity have a negative effect on street vitality. This study demonstrates how the quantitative assessment of urban street environments can be used as a reference for building a green, low-carbon, healthy, and walkable city.
keywords Street Quality, Geographic Information Systems, Machine Learning, Image Segmentation, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_296
id sigradi2022_296
authors Lãcãtusu, Alexandra Adelina; Cruz, Marcos; Parker, Brenda; Salmane, Anete Krista
year 2022
title Biocentric Design: Mapping Optimal Environmental Variables for Moss Propagation on Urban Bioreceptive Surfaces
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1251–1262
summary The biocolonisation of urban building surfaces by mosses is a ubiquitous and naturally occurring phenomenon that encapsulates immense ecological value for both current and future challenges of life in cities. The miniature ecosystems facilitated by mosses capture atmospheric pollutants and maintain local biodiversity by providing shelter and nutrients for a highly diverse set of organisms across all kingdoms of life. Early establishment and growth of bryophyte communities appear to be influenced by a dynamic mix of biotic and abiotic factors, while environmental cues modulate physiological responses and biochemical exchanges. A prototype monitoring device was designed to measure carbon dioxide uptake under variable light, humidity, and temperature conditions during a 3-week experiment. By providing a non-destructive tool for understanding and visualising the impact of environmental variables on photosynthetic behaviour, the device contributes to a biocentric design practice, where an organism’s ecological needs begin to drive the development of bioreceptive micro-environments.
keywords Living things, Bioreceptive design, Moss ecophysiology, Photosynthetic behaviour, Environmental monitoring
series SIGraDi
email
last changed 2023/05/16 16:57

_id ascaad2022_087
id ascaad2022_087
authors Mallasi, Zaki
year 2022
title A Pixels-Based Design Approach for Parametric Thinking in Patterning Dynamic Facades
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 654-673
summary In today’s Architectural design process, there has been considerable advancements in design computation tools that empowers designer to explore and configure the building façades schemes. However, one could formally argue that some processes are prescribed, lacks automation and are only for the purpose of visualizing the aesthetic design concepts. As a result, these design concept explorations are driven manually to exhibit variations between schemes. To overcome such limitations, the development presented here describes a proactive approach to incorporate parametric design thinking process and Building Information Modeling (BIM). This paper reports on an ongoing development in computational design and its potential application in exploring an interactive façade pattern. The objective is to present the developed approach for exploring façade patterns that responds parametrically to design-performance attractors. Examples of these attractors are solar exposure, interior privacy importance, and aesthetics. It introduces a paradigm-shift in the development of design tools and theory of parameterization in architecture. This work utilizes programming script to manipulate the logic behind placement of faced panels. The placement and sizes for the building facade 3D parametric panels react to variety of Analytical Image Data (AID) as a source for the design-performance data (e.g.: solar exposure, interior privacy importance, and aesthetics). Accordingly, this research developed the PatternGen(c) add-on in Autodesk ® Revit that utilizes a merge (or an overlay) of AID images as a source to dynamically pattern the building façade and generate the facade panels arrangement rules panels on the building exterior. This work concludes by a project case study assessment, that the methodology of applying AID would be an effective dynamic approach to patterning façades. A case-study design project is presented to show the use of the AID pixel-gradient range from Red, Green and Blue as information source value. In light of the general objectives in this study, this work highlights how future designers may shift to a hybrid design process.
series ASCAAD
email
last changed 2024/02/16 13:29

_id ascaad2022_022
id ascaad2022_022
authors Marey, Ahmed; Goubran, Sherif
year 2022
title Low-cost Portable Wireless Electroencephalography to Detect Emotional Responses to Visual Cues: Validation and Potential Applications
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 139-154
summary This paper validates the using a low-cost EEG headset – Emotiv Insight 2.0 – for detecting emotional responses to visual stimuli. The researchers detected, based on brainwave activity, the viewer’s emotional states in reference to a series of visuals and mapped them on valance and arousal axes. Valence in this research is defined as the viewer’s positive or negative state, and arousal is defined as the intensity of the emotion or how calm or excited the viewer is. A set of thirty images – divided into two categories: Objects and Scenes – was collected from the Open Affective Standard Image Set (OASIS) and used as a reference for validation. We collected a total of 720 data points for six different emotional states: Engagement, Excitement, Focus, Interest, Relaxation, and Stress. To validate the emotional state score generated by the EEG headset, we created a regression model using those six parameters to estimate the valence and arousal level, and compare them to values reported by OASIS. The results show the significance of the Engagement parameter in predicting the valence level in the Objects category and the significance of the Excitement parameter in the Scenes category. With the emergence of personal EEG headsets, understanding the emotional reaction in different contexts will help in various fields such as urban design, digital art, and neuromarketing. In architecture, the findings can enable designers to generate more dynamic and responsive design solutions informed by users’ emotions.
series ASCAAD
email
last changed 2024/02/16 13:24

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_626845 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002