CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 676

_id ecaade2022_154
id ecaade2022_154
authors Ferretti, Maddalena, Di Leo, Benedetta, Quattrini, Ramona and Vasic, Iva
year 2022
title Creativity and Digital Transition in Central Apennine - Innovative design methods and digital technologies as interactive tools to enable heritage regeneration and community engagement
doi https://doi.org/10.52842/conf.ecaade.2022.2.187
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 187–196
summary This contribution proposes strategies of reactivation of the central Apennine of Marche Region in Italy through creative design methods and virtual technologies. The research activities are connected to two related PhD projects: one focusing on architectural and urban design, the other one on heritage digitalization and new technologies and to other research activities of our interdisciplinary team. Cagli, a small town of 8.000 inhabitants, is currently undergoing socio-economic transformations that need to be addressed strategically with a cultural and spatial perspective. The research explores regenerative solutions and local development strategies to enhance the city and its cultural landscape. Participatory processes aided by digital tools and innovative design methods are tested in Cagli’s living lab. The final output of the overall research is a “Reactive Map” combining a trans-scalar and multidisciplinary territorial analysis with visions to identify “potential spaces”. The map is a design tool to define a shared strategy of enhancement of the city and its heritage. With this paper we present one of the methodological steps of the research, a WEB-APP built upon a point clouds database and assessed through a preliminary user test. The highly descriptive 3D environment is able to collect analysis and to be enriched in a participatory way during planned activities of co-thinking. The 3D environment, improved with interviews, plans, historical pictures and other media contents, is also paired with a virtual tour to offer a different representation of the “potential spaces”. The fully boosting 3D digital technology thus represents a viable and effective solution to involve citizens and an innovative and interdisciplinary tool for knowledge advancement in the fields of architectural and urban design and heritage regeneration.
keywords Tangible and Intangible Heritage, Co-Thinking, Trans-Scalar Approach, Narrative, Point Clouds Exploitation, Interactive Annotation, Virtual Reality
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_388
id caadria2022_388
authors Leong, Siew Leng and Janssen, Patrick
year 2022
title Participatory Planning: Heritage Conservation Through Co-design and Co-decision
doi https://doi.org/10.52842/conf.caadria.2022.2.505
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 505-514
summary Citizen participation in urban planning and architectural design has been long discussed and experimented with since the 1960s. With existing participatory design approaches, two key challenges can be identified. First, the power of citizens to directly affect the decision-making processes is typically quite limited. Second, the use of traditional face-to-face design workshop results in low levels of participation. This paper proposes an innovative participatory design approach with a focus on co-design and co-decision. The co-design stage provides citizens with a tool that empowers them to think critically of their built environment and to initiate design development in their own city. The co-decision stage gives citizens real power in determining the future changes to their city by embedding the participatory design approach into the planning permission system. This participatory design approach is implemented through a web application that allows participants to view design proposals within the existing site context from a birds-eye views and from multiple immersive views, leading to a better understanding of the design proposal‚s scale and impact. The design proposal viewer has been demonstrated on a heritage site in Singapore, showing its potential to be used as evidence for supporting or rejecting design proposals.
keywords Participatory Planning, Co-design and Co-decision, Citizen Power, Visualisation Method, Bird's-eye View, Immersive View, Web Application, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ijac202220109
id ijac202220109
authors Ortner, F. Peter; Jing Zhi Tay
year 2022
title Resilient by design: Informing pandemic-safe building redesign with computational models of resident congestion
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 129–144
summary This paper describes a computational design-support tool created in response to safe-distancing measures enforced during the COVID-19 pandemic. The tool was developed for a specific use case: understanding congestion in crowded migrant worker dormitories that experienced high rates of COVID-19 transmission in 2020. Building from agent-based and network-based computational simulations, the tool presents a hybrid method for simulating building resident movements based on known or pre-determined schedules and likely itineraries. This hybrid method affords the design tool a novel approach to simultaneous exploration of spatial and temporal design scenarios. The paper demonstrates the use of the tool on an anonymised case study of a high-density migrant worker dormitory, comparing results from a baseline configuration against design variations that modify dormitory physical configuration and schedule. Comparisons between the design scenarios provide evidence for reflections on pandemic-resilient design and operation strategies for dor- mitories. A conclusions section considers the extent to which the model and case study results are applicable to other dense institutional buildings and describes the paper’s contributions to general understanding of configurational and operational aspects of resilience in the built environment.
keywords Design for resilience, evidence-based design, design support, agent-based model, schedule-based model, network analysis
series journal
last changed 2024/04/17 14:29

_id ascaad2023_042
id ascaad2023_042
authors Žigmundová, Viktória; Suchánková, Kateøina; Stretavská, Antónia; Míèa, Jakub; Rayne, Taylor; Tsikoliya, Shota ; ,
year 2023
title Additive Manufacturing of Mycelium Composites for Sustainable Landscape Architecture
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 863-877.
summary This study explores the potential of mycelium composites as a sustainable and eco-friendly material for landscape architecture in the context of today's global climate and environmental crisis. Mycelium, the vegetative part of fungi, has shown promising properties such as acoustic and thermal insulation, biodegradability, and environmental performance (Vasatko et al., 2022). The central remit of this research is in proposing bespoke computational and robotic fabrication methods and workflows for investigating the performance of mycelial materials and observing their properties and growth response. Taken together, the topic of this paper is to illustrate the application and composition of such fabrication techniques as an integrated multi-material system, capable of combining the complex, organic relationships between clay, lignocellulosic substrate, and fungi with a focus on the potential of such composite materials for implementation within the built environment. Outlined here are the processes and procedures essential to this multi-material fabrication framework, including a detailed account of a series of substrate material mixtures and printed clay scaffold geometries, both of which exhibit properties informed by the material synthesis and fabrication process. We foremost propose the strategic mixing of different substrate types to be 3D printed with clay as a strategy for probing the optimization of mycelial overgrowth and binding to the 3D printed geometries. Subsequently, we proceed in detailing the study’s approach and process of 3D printing the mixtures of recycled material, drying the geometry, and sterilizing the final design once inoculated with the mycelium. Ultimately, we motivate this research in pursuit of further understanding of mycelium's material and mycoremediation capacities in service of more environmentally responsive and responsible architectural applications.
series ASCAAD
email
last changed 2024/02/13 14:34

_id ijac202220108
id ijac202220108
authors Alsalman, Osama; Halil Erhan
year 2022
title D-ART for collaboration in evaluating design alternatives
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 114–128
summary Evaluating design ideas is an integral part of designing built environments. It involves multiple stakeholders with diverse backgrounds reviewing design solutions by studying their form and performance data. Although there are computational systems for supporting evaluation tasks, they are either highly specialised for designers or configured for a particular workflow with limited functions. We developed a Design Analytics method aiming at a collaborative and data-driven evaluation of alternatives in the design-evaluate-feedback cycle. Adopting this approach, we introduce D-ART as a prototype system composed of customisable Web interfaces for presenting design alternatives, enabling stakeholders to participate in data-informed discourse on alternatives and providing feedback to the design team. Its system design considers requirements gathered through literature review, critical analysis of the existing systems and collaboration with our industry partners. Finally, we assessed D-ART’s design through an expert review evaluation, which generally reported positive results on the system’s goals.
keywords Data-driven design, participatory design, design analytics, design alternatives, visual analytics, design evaluation
series journal
last changed 2024/04/17 14:29

_id cdrf2022_150
id cdrf2022_150
authors Ana Zimbarg
year 2022
title Mapping Plant Microclimates on Building Envelope Using Environmental Analysis Tools
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_13
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Can we build our cities not only for humans but also for all living systems? How can we consider other species occupants of the built environment? Planning cities as an element of the natural domain can reshape our relationship with nature and help redefine sustainability in architecture. Although current design strategies of reducing energy use does not rectify past/continuing im-balances in the natural environment. Landscape architect John Tillman Lyle expanded the regenerative design concept based on a range of ecological concepts. The environment's complexity, and the urge to use resources smartly, encouraged him to think about architecture and the environment as a whole system. John Lyle's regenerative design strategies scaffold a conceptual framework of treating the building as part of the landscape. Environmental tools such as Ladybug can map out the different conditions surrounding the building's envelope. This information can assist in selecting and populating a building façade with suitable plant species. The framework presents the building as a feature in the landscape, creating microclimatic conditions for various plant habitats. This conceptual workflow has the potential to become a tool to include regenerative principles in the urban context.
series cdrf
email
last changed 2024/05/29 14:02

_id caadria2022_205
id caadria2022_205
authors Bielski, Jessica, Langenhan, Christoph, Ziegler, Christoph, Eisenstadt, Viktor, Dengel, Andreas and Althoff, Klaus-Dieter
year 2022
title Quantifying the Intangible, A Tool for Retrospective Protocol Studies of Sketching During the Early Conceptual Design of Architecture
doi https://doi.org/10.52842/conf.caadria.2022.1.403
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 403-411
summary Sketching is a craft supporting the development of ideas and design intentions, as well as an effective tool for communication during the early architectural design stages by making them tangible. Even though sketch-based interaction is a promising approach for Computer-Aided Architectural Design (CAAD) systems, it remains a challenge for computers to recognise information in a sketch. Design protocol studies conducted to deconstruct the sketch and sketching process collect solely qualitative data so far. However, the 'metis' projects aim to create an intelligent design assistant, using an artificial neural network (ANN), in the manner of Negroponte‚s Architecture Machine. By assimilating to the user's idiosyncrasies, the system suggests further design steps to the architect to improve the design decision making process for economic growth, qualitative self-education through the dialogue and reducing stress. For training such ANN quantitative data is needed. In order to produce quantifiable results from such a study, we propose our open-source web-tool ‚Sketch Protocol Analyser‚. By correlating different parameters (i.e. video, transcript and sketch built) through the same labels and their timestamps, we create quantitative data for further use.
keywords Design Protocol Studies, Sketching, Data Collection, Architectural Design Process, ANN, SDG 3, SDG 4, SDG 8, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_201
id ecaade2022_201
authors Buš, Peter, Sridhar, Nivedita, Zhao, Yige, Yang, Chia-Wei, Chen, Chenrui and Canga, Darwin
year 2022
title Kit-of-Parts Fabrication and Construction Strategy of Timber Roof Structure - Digital design-to-production workflow for self-builders
doi https://doi.org/10.52842/conf.ecaade.2022.1.449
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 449–458
summary This project builds upon a premise that complex double-curved geometries can be built out of simple, planar, and straight elements. As such, it is possible to simplify manufacturing, construction, and assembly processes, as well as decrease the delivery time and cost. When operating with planar and simple components in the form of Kit-of- Parts there is an assumption that such components can be easily used by self-builders, not necessarily building experts. This can empower participatory activities leading to a more sustainable and resilient engaged community. This hypothesis is evaluated through the process of design for manufacture and assembly project of the timber shell, supported by proposed advanced computational design-to-production workflow utilising digital fabrication technologies such as CNC machining and robotic milling. The assembled and erected structure is evaluated in the scope of constructability, deliverability, and operability. Therefore, the focus of this project is to test, observe, experiment with, and learn from those aspects from the perspective of a fabricator, maker, and self-builder of the double-curved timber roof structure, while operating with smaller-scale components and smaller sub-assemblies, convenient for hands-on operations. The paper also discusses the limitations of such an approach.
keywords Design-to-Production Workflow, Robotic Digital Fabrication, Self-Builders, Structural Performance, Advanced Labelling
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_221
id ecaade2022_221
authors Delikanli, Burak and Gül, Leman Figen
year 2022
title Towards to the Hyperautomation - An integrated framework for Construction 4.0: a case of Hookbot as a distributed reconfigurable robotic assembly system
doi https://doi.org/10.52842/conf.ecaade.2022.2.389
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 389–398
summary Almost every technological and industrial concept changes the built environment around us and our understanding of the architectural practice. Recently, Hyperautomation, an all-encompassing digital transformation with the help of advanced techniques, has been presented as a game-changing concept that can affect any industry. Despite this promising concept, the Architecture, Engineering, and Construction (AEC) industry seems far behind the latest technological breakthroughs and automation of processes compared to other industries. Therefore, this study provides a better understanding of adopting the novel Hyperautomation paradigm in the AEC industry by focusing on Industry 4.0. In this context, the first section introduces the Construction 4.0 concept, its counterpart in the AEC industry, briefly mentions fundamental approaches and indicates the need for a framework. The second section introduces an integrated framework throughout the entire building life-cycle for design and construction processes and exemplifies the stages in an autonomous system and their interrelationships. The third section presents a hypothetical case, a distributed reconfigurable robotic assembly system, and the assembler ‘HookBot’ to understand the relationships in an autonomous system better. The last section discusses the place of the Hyperautomation paradigm in architecture.
keywords Autonomy, Autonomous Systems, Construction 4.0, Assembly Robotics
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_152
id caadria2022_152
authors Deshpande, Rutvik, Nisztuk, Maciej, Cheng, Cesar, Subramanian, Ramanathan, Chavan, Tejas, Weijenberg, Camiel and Patel, Sayjel Vijay
year 2022
title Synthetic Machine Learning for Real-time Architectural Daylighting Prediction
doi https://doi.org/10.52842/conf.caadria.2022.1.313
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 313-322
summary "Synthetic Machine Learning‚ offers a revolutionary leap in real-time environmental analysis for conceptual architectural design. By integrating automatic synthetic data generation, artificial neural network (ANN) training and online deployment, Synthetic Machine Learning offers two main advantages over conventional simulation; First, it reduces the analysis time for a reference simulation from minutes to seconds; Second, it is possible to deploy ANN as a web service in an online design environment, which therein increases accessibility, significantly reducing simulation costs and setup time. The application of Synthetic Machine Learning to perform Daylight Autonomy (DA) and Spatial Daylight Autonomy (sDA) studies to maximise building daylighting for a given use, window to wall ratio, and floorplan arrangement is showcased through a preliminary demonstration work. Comparatively the use of algorithmically generated synthetic data versus real-world data is becoming ubiquitous in other disciplines, the advantages of this approach to the building design process are further discussed.
keywords Daylight Autonomy, machine learning, building energy performance, synthetic data-sets, SDG 7, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_175
id ecaade2022_175
authors Di Carlo, Raffaele, Mittal, Divyae and Vesely, Ondrej
year 2022
title Generating 3D Building Volumes for a Given Urban Context using Pix2Pix GAN
doi https://doi.org/10.52842/conf.ecaade.2022.2.287
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 287–295
summary Our ability to delegate the most intellectually demanding tasks to machines improves with each passing day. Even in the fields of architecture and design, which were previously thought to be exclusive domain of human creativity and flare, we are moving the first steps towards developing models that can capture the patterns, invisible to the naked eye, embedded in the creative process. These patterns reflect ideas and traditions, imprinted in the collective mind over the course of history, that can be improved upon or serve as a cautionary tale for the new generation of designers in their work of designing an equitable, more inclusive future. Generative Adversarial Networks (GANs) give us the opportunity to turn style and design into learnable features that can be used to automatically generate blueprints and layouts. In this study, we attempt to apply this technology to urban design and to the task of generating a building footprint and volume that fits within the surrounding built environment. We do so by developing a Pix2Pix model composed of a ResNet-6 generator and a Patch discriminator, applying it to satellite views of neighborhoods from across the Netherlands, and then turning the resulting 2D generated building footprint into a reusable 3D model. The model is trained using the national cadastral data and TU Delft 3D BAG dataset. The results show that it is possible to predict a building shape compatible in style and height with the surroundings. Although the model can be used for different applications, we use it as an evaluation tool to compare the design alternatives fitting the desired contextual patterns.
keywords Generative Adversarial Networks, Urban Design, Pix2Pix, Raster Vectorization, 3D Rendering
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_338
id caadria2022_338
authors Dias Guimaraes, Gabriela, Gu, Ning, Gomes da Silva, Vanessa, Ochoa Paniagua, Jorge, Rameezdeen, Rameez, Mayer, Wolfgang and Kim, Ki
year 2022
title Data, Stakeholders, and Environmental Assessment: A BIM-Enabled Approach to Designing-out Construction and Demolition Waste
doi https://doi.org/10.52842/conf.caadria.2022.2.587
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 587-596
summary Construction and Demolition waste has started to become a target in the path for a more sustainable industry mainly due to massive resource consumption, land depletion and emissions. As a substantial amount of waste originates due to inadequate decision-making during design, strategies to design-out waste are required. Accurate environmental impact of, not only the whole building, but construction materials and elements are crucial to the development of these strategies, but dependent on data availability, expert knowledge and proper sharing and storage of information. Hence, this study aims to investigate the relation between data, stakeholders and environmental assessment to properly build a design-out waste framework. An in-depth data collection from literature review and stakeholders' interviews guided the development of a conceptual framework to assist designers with information related to waste production and its reduction. After that, the necessary technical specifications for its adoption through a BIM environment were analysed. Its contribution is firstly on a shift of thinking during the design phase, as the goal is to provide environmental information so designers can take into consideration the long-term consequences of waste from different strategies and solutions; and secondly in the development of a computational tool that facilitates the design-out process.
keywords Construction and Demolition Waste, Design, BIM, Environmental Data, Stakeholders, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_662
id acadia22_662
authors Furgiuele, Antonio; Ergezer, Mehmet; Zaman, Cagri Hakan
year 2022
title Towards an Adversarial Architecture
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 662-671.
summary A key technological weakness of artificial intelligence (AI) is adversarial images, a constructed form of image-noise added to an image that can manipulate machine learning algorithms but is imperceptible to humans. Adversarial Architecture explores the application of adversarial images to the built environment and develops a new method of design agency to directly engage artificial intelligence. Embedding a layer of information to physical surfaces that is only perceptible to machines has many potential applications, such as uniquely identifying and tracking objects, embedding accessibility features directly to surfaces, and counter-surveillance systems in different scales.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id ecaade2022_197
id ecaade2022_197
authors Giglio, Andrea, Gorbet, Rob and Beesley, Philip
year 2022
title Hybrid Soundscape: Human and non-human sounds interactions for a collective installation
doi https://doi.org/10.52842/conf.ecaade.2022.1.441
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 441–447
summary The paper describes a site-specific architectural soundscape installation created during a workshop in August 2021 at the Domaine de Boisbuchet in France. Far from urban noise, participants were attuned to natural, artificial, and human sound spheres, placing them in dialog and interweaving them through emulation, voice recording, and electro-acoustic devices including piezoceramic sensors, small motors, speakers, and embedded electronics. This expository paper includes qualitative descriptions of the spatial sound compositions, the technology that supported them, and the performance into which they were integrated. The results of this event were described by participants as trance-like, with phasing of multiple periodically organized emergent sound phenomena creating a deeply immersive distributed environment. In describing in detail, the tools, processes, outcomes and implications of the workshop, this paper offers an example of a design approach and model that can contribute immersive distributed architectural soundscape design through human and non-human sound interaction.
keywords Spatial Sound, Hybrid Soundscape, Acoustic Responsive Devices, Human-Nonhuman Sound Interaction, Collective Installation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_278
id ecaade2022_278
authors Gopalakrishnan, Srilalitha, Srikanth, Anjanaa, Hablani, Chirag and Schroepfer, Thomas
year 2022
title Measuring Impacts of Vertically Integrated Pedestrian Network Configurations on Urban Space Use in Dense Built Environments
doi https://doi.org/10.52842/conf.ecaade.2022.2.307
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 307–316
summary Integrated mixed-use developments are increasingly taking the form of vertical extensions of urban spaces on the ground. The spatial networks within the evolving vertical neighbourhoods, their relationships with the larger urban fabric, and the user interactions within these complex multi-layered urban built environments are numerous and varied. This paper presents an analytical framework to map and analyse the pedestrian connectivity within the vertically integrated urban open space network and its interactions with the ground level urban fabric using a Network Science-based approach. The research uses Kampung Admiralty, a first-of-its-kind building site scale 'vertical city' prototype in Singapore, as a case study. A 3d pedestrian network link model mapping the pedestrian connectivity within the development is generated and analysed to understand the flows and accessibility to the vertically distributed urban open spaces. This 3d pedestrian link model is further combined with the 2d urban walking network at the ground level to generate an integrated neighbourhood-level walkability analysis. Analysing the two-dimensional connectivity at the ground level and comparing the influence of linking the three-dimensional vertical connectivity to the ground network generates valuable design insights into the spatial performance of vertically integrated developments in their immediate urban context.
keywords Network Science, sDNA, Urban Pedestrian Network, Vertical Urban Environments, Vertical Connectivity
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_456
id acadia22_456
authors Gupta, Pragya; Cupkova, Dana
year 2022
title Discretizing Low-tech Adaptive Rammed Earth Formwork
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 456-467.
summary Rooted in a hybrid material and climate-based approach to design, this study proposes a computational design framework for low-tech rammed earth adaptable formwork that allows for variable surface figuration, related to thermal and aesthetic design parameters. Built as vertical panel prototypes, as in-situ vertical construction, this study proposes to couple thermal performance with sequenced constructability of varied surface geometries through an adaptable repetitive kit-of-parts formwork that can be constructed with limited advanced manufacturing capabilities.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id sigradi2022_273
id sigradi2022_273
authors He, Isa; Song, Humbi; Seibold, Zach; Ibrahim, Ibrahim; Sayegh, Allen
year 2022
title Mental Breadcrumbs: Developing biometric methods to understand how emotions and sensory cues affect wayfinding
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 869–880
summary How do one’s emotions, mental state, and the spatial environment interact? Interdisciplinary research methods in architecture and neuroscience can be used to examine the interrelated factors of mental load, sensory cues, emotions, and memory in wayfinding. The objective is to propose a biometric methodology for quantifying the emotional and cognitive experience of wayfinding, and to present a pilot experiment on the impact of mental load on wayfinding. The methodology collected biometric (electrodermal activity, electroencephalogram, heart rate, accelerometer), visuospatial (GPS, camera), and interview data. The pilot study revealed a new category of sensory cues used by individuals to wayfind. Identified as “breadcrumbs” and associated with subjective emotions, researchers propose an addition to Kevin Lynch’s elements of the built environment that contribute to cognitive mapping. The aim is to invite a rethinking of the typically precedent-based nature of spatial design, bolstering the discussion with individual experience data to encourage evidence-based design.
keywords Interdisciplinary Design, Biometric, Wayfinding, Sensory Cues, Mental Load
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_157
id caadria2022_157
authors Liu, Sijie, Wei, Ziru and Wang, Sining
year 2022
title On-site Holographic Building Construction: A Case Study of Aurora
doi https://doi.org/10.52842/conf.caadria.2022.2.405
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 405-414
summary Geometrically complex building components‚ reliance on high-touch implementation often results in tedious information reprocessing. Recent use of Mixed Reality (MR) in architectural practices, however, can reduce data translation and potentially increase design-to-build efficiency. This paper uses Aurora, a single-story residential building for 2021 China‚s Solar Decathlon Competition, as a demonstrator to evaluate the performance of on-site holographic building construction. This paper firstly reviews recent studies of MR in architectural design and practice. It then describes an MR-aided construction process of Aurora's non-standard building envelope and rooftop mounting structure, where in-situ holographic registration, human-machine cooperation, and as-built analysis are discussed. This paper concludes by stating that MR technologies provide unskilled implementers with a handy approach to materialise complex designs. The research was guided by the UN Sustainable Development Goals, especially aligning with the GOAL 9 which seeks innovations in industry and infrastructure.
keywords Mixed Reality, Non-standard Architecture, Low-tech Construction, Solar Decathlon Competition, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_104
id ascaad2022_104
authors Marey, Ahmed; AlSabbagh, Nihal
year 2022
title Simulating Human Senses to Improve Thermal Comfort
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 689-702
summary Between the synergies of environmental perception and technological advancement evolves the parallel world of the metaverse. Evolutionary virtuality intends to aid humanity in envisioning the threatened future of cities under environmental risks through tailored features. Traditionally, the sense of sight – which is the focus of virtual reality – has dominated the architectural practice. However, architects and urban designers have begun incorporating other senses into their work over the recent decade. The expanding understanding of the multimodal nature of the human mind that has evolved from cognitive neuroscience research has received little attention so far in the architecture field. This paper investigates the role of synthesized sensory experiences – such as visual, auditory, olfactory, gustatory, and thermal sensations – in designing revolutionary settings that aim to improve people’s interactions with their surrounding environments. A 15-minute experiment of an immersive experience in an office setting using virtual reality headsets is utilized to explore the role of multimodal sensory integration towards tolerance to the thermal environment. The findings revealed significant potential in using multiple senses – especially gustatory – to design thermally comfortable spaces. It is hoped that architectural design practice would progressively include our developing understanding of human senses and how they interact. This holistic approach ought to lead to the development of multisensory-inclusive workspaces that promote rather than hinder our social, cognitive, and emotional development.
series ASCAAD
email
last changed 2024/02/16 13:38

_id caadria2022_360
id caadria2022_360
authors McMeel, Dermott and Petrovic, Emina K.
year 2022
title Architecture Value Change in Response to the Anthropocene: The Contribution of Digital Innovation
doi https://doi.org/10.52842/conf.caadria.2022.2.415
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 415-424
summary The confluence of different interests‚the Anthropocene, productivity, sustainability, economics‚calls for a need to re-think how the professions evaluate the built environment. There is a myriad of different strands of work under this umbrella which‚broadly‚point to a shift in the value framework for those people and professions who have agency in, and are responsible for, the creation of the built environment. This paper has two objectives. First, by drawing from the writing of architectural theorist Juhani Pallasmaa it teases out themes useful to conceptualise the value change. The goal is to delineate particular views around the creation of and our relation to the built environment. Second, it presents three projects: (1) tracking chemical composition of construction materials, (2) an app that encourages e-commerce in building multi-species environments, and (3) a concept for an economy in construction waste leveraging possibilities presented by blockchain technology. The aim is to shed light on how the emerging blockchain technology might alter values and organisational systems of the built environment in response to the Anthropocene and climate crisis.
keywords Design, Anthropocene, Value Change, Blockchain, System Design, SDG 9, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_88973 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002