CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 658

_id caadria2022_175
id caadria2022_175
authors Farr, Marcus
year 2022
title Bio-Synthetic Assemblages: Computational Assembly of Synthetic Bio-Sand Units Made From Dune Sand
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 293-302
doi https://doi.org/10.52842/conf.caadria.2022.2.293
summary Biomineralization is the process by which living organisms produce minerals to harden or stiffen exoskeletons and existing tissues. Mineralization is a widespread phenomenon among all taxonomic animal kingdoms. The material used in this project attempts to replicate the process of hardening and mineralizing dune sand found in the Sahara and Arabian deserts. This material is found in vast quantities but thought to be of little use in modern construction. The new bio-synthetic material used in this study is paired with the process of augmented construction and computational placement of tectonic units. The paper overlays a broad question of how organizational systems might integrate architecturally with regionally appropriate bio-material composed of dune sand and, more specifically, how this material process creates a consistent, viable architectural outcome with dune sand as a primary ingredient for architectural material. As the material agenda reaches maturity, we ask how the production of this bio-material can be combined with computation to articulate consistent architectural outcomes within a desert-specific environment. The role of this computational and material process adds to the current dialogue of designing in extreme environments and aligns with the UN Sustainable Development Goals for sustainable communities, responsible consumption and production, climate action, and life living on land.
keywords Performance-based design, Bio-material, Computational design, Innovative material use, Augmented Construction, SDG 11, SDG 12, SDG 13, SDG 15
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia23_v1_92
id acadia23_v1_92
authors Fishman, Cynthia
year 2023
title BiomimicReality: An Interactive VR Environment Based on Biomimicry
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 92-97.
summary Climate change is not a theoretical construct that might affect future generations; it is happening now. Wildfires, drought, and extreme temperatures are occurring throughout the world, and are projected to get worse. These environmental changes affect all species on this planet. Due to the overwhelming, depressing, and complex subject matter that is climate change, people can feel apathetic or tune out when it is being discussed, in addition to having feelings of hopelessness surrounding the future. These feelings are categorized as eco-anxiety (Ágoston et al. 2022, 1-3).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2022_82
id caadria2022_82
authors Globa, Anastasia, Reinhardt, Dagmar, Keane, Adrienne and Davies, Peter
year 2022
title Building Resilience - Using Parametric Modelling and Game Engines to Simulate the Impacts of Secondary Structures in Bushfire Events
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 749-758
doi https://doi.org/10.52842/conf.caadria.2022.2.749
summary Bushfires are a global phenomenon, closely connected to climate change and safety, resilience and sustainability of cities and human settlements. Government agencies, architects and researchers across institutions are committed to improving Australia‚s resilience to bushfires yet grappling with ways to further mitigate risks. ‚Build back better‚ is the often-used phrase to support bushfire resilience, yet there remains a limited understanding of how secondary structures, such as storage sheds, garages, and fences contribute to or mitigate fire loss. These secondary structures are integral to properties yet fall, largely, outside land use planning approval processes and other regulations. Computational modelling can be adapted to deliver visualisations that increase awareness. We developed several simulation approaches which addressed distances, relationship to and the construction materials of secondary structures, terrain slopes and environmental forces. We conclude that gaming engines may offer the optimal immersive opportunity for residents and others to visualise fire risks related to secondary structures to increase awareness and improve bushfire readiness behaviours.
keywords bushfire, auxiliary structures, game engine, visualisation modelling, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_506
id acadia22_506
authors Ozarisoy, Bertug; Altan, Hasim
year 2022
title Passive Cooling Strategies for Thriving in a Changing Climate
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 506-523.
summary This paper investigates the thermal performance of 288 flats in three different nationally representative collective housing archetypes in the southeastern Mediterranean island of Cyprus, where the climate is subtropical (Csa) and partly semi-arid (Bsh), as designated in the Köppen climate classification system. The participants’ experiences and thermal sensation votes were assessed to predict individual aspects of adaptive thermal comfort, and the relevance thereof on overheating, and in situ measurements—including indoor air temperatures, thermal imaging survey, recorded building-fabric-element heat fluxes, on-site environmental conditions monitoring, and review of household energy bills to accurately determine actual energy use—were collected
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id acadia22_536
id acadia22_536
authors Tian, Hui; Yao, Jiali; Tu, Shimin
year 2022
title The Potential of Mitigating Urban Heat Island with Vacant Lands in Philadelphia
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 536-545.
summary Under the context of climate change, the urban heat island (UHI) is a challenging problem in Philadelphia as the number of days with extreme heat every year keeps increasing. Taking into account limited green space but a considerable amount of vacant lands in Philadelphia, we would test the cooling effect of greening vacant lands in UHI by exploring the quantitative relationship between land covers and Land Surface Temperature (LST) with novel machine learning technologies.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id sigradi2022_92
id sigradi2022_92
authors Vaez Afshar, Sepehr; Aytaç, Gülºen; Eshaghi, Sarvin; Vaez Afshar, Sana
year 2022
title Online Footprint - A serious game for reducing digital carbon emission
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1043–1052
summary Life is getting digital more than ever as technology improves. While the Internet is responsible for two percent of global greenhouse gas emissions, it is underestimated as a pollutant. Since public awareness is one of the most important preservation methods, it can contribute to protecting the environment from carbon emissions by raising people's understanding. In this regard, serious games, as a type of gamification transmitting educational content besides entertainment, immerse the player in enjoyment while teaching them a specific topic or enhancing their skills in a field. This study proposes a serious game, taking the digital unseen carbon footprint and its effects on the landscape into the topic. The game considers SDG goals provided by the United Nations Department of Economic and Social Affairs. In this regard, the research uses SDGs 4 and 7 by providing quality education for all and access to sustainable energy by changing people's everyday habits.
keywords Online learning, Internet footprint, Climate change, Serious games, SDGs
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_277
id caadria2022_277
authors Akbar, Zuardin, Wood, Dylan, Kiesewetter, Laura, Menges, Achim and Wortmann, Thomas
year 2022
title A Data-Driven Workflow for Modelling Self-Shaping Wood Bilayer, Utilizing Natural Material Variations with Machine Vision and Machine Learning
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 393-402
doi https://doi.org/10.52842/conf.caadria.2022.1.393
summary This paper develops a workflow to train machine learning (ML) models with a small dataset from physical samples to predict the curvatures of self-shaping wood bilayers based on local variations in the grain. In contrast to state-of-the-art predictive models, specifically 1.) a 2D Timoshenko model and 2.) a 3D numerical model with a rheological model, our method accounts for natural and unavoidable material variations. In this paper, we only focus on local grain variations as the main driver for curvatures in small-scale material samples. We extracted a feature matrix from grain images of active and passive layers as a Grey Level Co-Occurrence Matrix and used it as the input for our ML models. We also analysed the impact of grain variations on the feature matrix. We trained and tested several tree-based regression models with different features. The models achieved very accurate predictions for curvatures in each sample (R;0.9) and extend the range of parameters that is incalculable by a Timoshenko model. This research contributes to the material-efficient design of weather-responsive shape-changing wood structures by further leveraging the use of natural material features and explainable data-driven modelling and extends the topic in ML for material behaviour-driven design among the CAADRIA community.
keywords data-driven model, machine learning, material programming, smart material, timber structure, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_33
id caadria2022_33
authors Alva, Pradeep, Mosteiro-Romero, Martin, Miller, Clayton and Stouffs, Rudi
year 2022
title Digital Twin-Based Resilience Evaluation of District-Scale Archetypes
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 525-534
doi https://doi.org/10.52842/conf.caadria.2022.1.525
summary District-scale energy demand models can be powerful tools for understanding interactions in complex urban areas and optimising energy systems in new developments. The process of coupling characteristics of urban environments with simulation software to achieve accurate results is nascent. We developed a digital twin through a web map application for a 170ha district-scale university campus as a pilot. The impact on the built environment is simulated with pandemic (COVID-19) and climate change scenarios. The former can be observed through varying occupancy rates and average cooling loads in the buildings during the lockdown period. The digital twin dashboard was built with visualisations of the 3D campus, real-time data from sensors, energy demand simulation results from the City Energy Analyst (CEA) tool, and occupancy rates from WiFi data. The ongoing work focuses on formulating a resilience assessment metric to measure the robustness of buildings to these disruptions. This district-scale digital twin demonstration can help in facilities management and planning applications. The results show that the digital twin approach can support decarbonising initiatives for cities.
keywords Digital twin, City Information Modelling, Planning Support System, energy demand model, SGD 11, SGD 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_59
id caadria2022_59
authors Banihashemi, Farzan, Reitberger, Roland and Lang, Werner
year 2022
title Investigating Urban Heat Island and Vegetation Effects Under the Influence of Climate Change in Early Design Stages
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 679-688
doi https://doi.org/10.52842/conf.caadria.2022.2.679
summary Different criteria need to be considered for optimal strategies in the early design stages of urban developments. Under the influence of climate change, the urban heat island effect (UHI) is a phenomenon that gains importance in the early design stages. Here, different parameters, for instance, vegetation ratio in the city district and building density, play a significant role in the UHI effect. These parameters need to be quantified through different simulation tools for optimal climate adaptation and mitigation measures on the urban district scale. However, not all parameters and their influence are clear to the decision-makers and actors in the early design stages. Hence, we propose a Monte Carlo based sensitivity analysis (SA) and uncertainty analysis (UA) to show the significance of different parameters and quantify them. The SA aims to identify the major influencing parameters, whereas the UA quantifies the effect on the energy performance and indoor thermal comfort of occupants. The workflow is integrated into a collaborative design platform and applied in a case study to support decision-makers in the early design stages for new developments, densification, or refurbishment scenarios.
keywords Monte Carlo Simulation, Sensitivity Analysis, Uncertainty Analysis, Building Energy Simulation, SDG 13, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_145
id caadria2022_145
authors Duering, Serjoscha, Fink, Theresa, Chronis, Angelos and Konig, Reinhard
year 2022
title Environmental Performance Assessment - The Optimisation of High-Rises in Vienna
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2022.1.545
summary Our cities are facing different kinds of challenges - in parallel to the urban transformation and densification, climate targets and objectives of decision-makers are on the daily agenda of planning. Therefore, the planning of new neighbourhoods and buildings in high-density areas is complex in many ways. It requires intelligent processes that automate specific aspects of planning and thus enable impact-oriented planning in the early phases. The impacts on environment, economy and society have to be considered for a sustainable planning result in order to make responsible decisions. The objective of this paper is to explore pathways towards a framework for the environmental performance assessment and the optimisation of high-rise buildings with a particular focus on processing large amounts of data in order to derive actionable insights. A development area in the urban centre of Vienna serves as case study to exemplify the potential of automated model generation and applying ML algorithm to accelerate simulation time and extend the design space of possible solutions. As a result, the generated designs are screened on the basis of their performance using a Design Space Exploration approach. The potential for optimisation is evaluated in terms of their environmental impact on the immediate environment.
keywords simulation, prediction and evaluation, machine learning, computational modelling, digital design, high-rises, SGD 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_004
id ascaad2022_004
authors Falih, Zahraa; Mahdavinejad, Mohammadjavad; Tarawneh, Deyala; Al-Mamaniori, Hamza
year 2022
title Solar Energy Control Strategy using Interactive Modules
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 117-138
summary The concept of interactive canopy emerged as a notable manifestation of smart buildings in architectural endeavors, using artificial intelligence applications in computational architecture, interactive canopies came as a potential response for living organisms to combat external environmental changes as well as reduce energy consumption in buildings. This research aims to explore architecture with higher efficiency through the impact of environmentally technological factors on the design form by introducing solar energy into the design process through the implementation of interactive curtains that interact with the sun in the form of an umbrella. The main objective of the umbrellas is to protect the users from the sun's harmful rays. After designing an interactive cell using Grasshopper, the methodology follows an analytical and experimental approach, the analytical section is summarized by conducting a case study of multiple models and analyzing the techniques used in these models to discover the significant advantages and disadvantages of the design. While the experimental section demonstrates the mechanism for implementing the interactive modules. The research suggests that by designing an interactive canopy that responds to external changes and senses solar radiation in ways that when the intensity of solar radiation increases and the sun is perpendicular to the dynamic units, will lead to maintaining a more balanced level of illumination. The work efficiency is studied by simulating it by Climate Studio.
series ASCAAD
email
last changed 2024/02/16 13:24

_id ecaade2022_366
id ecaade2022_366
authors Geropanta, Vasiliki, Karagianni, Anna, Parthenios, Panagiotis, Ampatzoglou, Triantafyllos, Fatouros, Loukas, Simantiraki, Vasiliki, Brokos-Melissaratos, Orestis and Eleftheriadis, Dimitris
year 2022
title Digitalization of Participatory Greening - The case of UnionYouth in Chania
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 469–478
doi https://doi.org/10.52842/conf.ecaade.2022.1.469
summary The contemporary climate crisis pushed communities of actors, cities and citizens to use smart technology, digital platforms, and data-based intelligence to steer creative solutions for greening in their urban ecosystems. This phenomenon brought about an increasing imperative for citizen participation and inclusion, in the co-design of green infrastructures, suggesting alternative ways to deal with the lack or misuse of public space. In this framework, this paper analyzes the case of ''UnionYouth in Chania'', a project that aims a) to build an environmental awareness strategy for Generation Z, b) to promote capacity-building processes related to climate change and environmental protection, c) actually transform the city public space through participatory processes. Specifically, the project describes the creation of a digital platform and a mobile app consisting of several engagement tools that allow interaction between the digital community of youth, the city's decision-makers, and city greening actors. Therefore, the first part of the paper talks about the necessity of promoting today's participatory processes in the city for climate change mitigation through a literature review that emerged in the last decade. The second part of the paper examines a case study, namely UnionYouth in Chania, a digital collaborative platform that promotes methods for greening the city through district-based, activity-based, and network-based redesign solutions. The third part of the paper brings about interesting reflections on the relationship between the analog and digital world, and how bottom-up processes may be an important tool in city planning. The overall scope of the analysis of the specific case study is to bring insights into the architectural world, as a means to create more bridges with citizens and communities and contribute to their greening understanding.
keywords Climate Change, Generation Z, Green Infrastructure, Raise Awareness, Mobile Application, Participatory Design, Smart City
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_456
id acadia22_456
authors Gupta, Pragya; Cupkova, Dana
year 2022
title Discretizing Low-tech Adaptive Rammed Earth Formwork
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 456-467.
summary Rooted in a hybrid material and climate-based approach to design, this study proposes a computational design framework for low-tech rammed earth adaptable formwork that allows for variable surface figuration, related to thermal and aesthetic design parameters. Built as vertical panel prototypes, as in-situ vertical construction, this study proposes to couple thermal performance with sequenced constructability of varied surface geometries through an adaptable repetitive kit-of-parts formwork that can be constructed with limited advanced manufacturing capabilities.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id ascaad2022_032
id ascaad2022_032
authors Ibrahim, Aly; Omar, Walid; Ebrahim, Sherif; Abdelmohsen, Sherif
year 2022
title Moisture-Harvesting Lizard Skins as an Inspiration for Performative Building Envelopes in Arid Climates
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 515-528
summary Research on shape-shifting adaptive architectural skins has recently focused on bio-inspired programmable materials. Only a few studies however examine the microstructure of living organisms, especially in terms of morphological adaptation in harsh climatic conditions. This paper explores the microstructure of moisture-harvesting lizard skins, specifically the Trapelus species of the Agamidae family in North-East Africa, as an inspiration for programmable materials in adaptive building skins in the arid climate of Egypt. The paper investigates the ability to improve the durability and morphological capabilities of programmable materials based on surface formation, utilizing digital fabrication techniques. A series of physical experiments were conducted on different samples of 3D printed wood filament under several humidity conditions, as a single layer, with textured patterns, and with the addition of potassium chloride as a moisture-harvesting chemical composite. The paper concluded that materials composed of textured patterns and moisture-harvesting chemical composites exhibited the highest moisture retention, therefore leading to advantages in its use in adaptive building skins in arid climates, through a wide variety of design possibilities for performative building envelopes.
series ASCAAD
email
last changed 2024/02/16 13:24

_id caadria2022_286
id caadria2022_286
authors Khean, Nariddh, During, Serjoscha, Chronis, Angelos, Konig, Reinhard and Haeusler, Matthias Hank
year 2022
title An Assessment of Tool Interoperability and its Effect on Technological Uptake for Urban Microclimate Prediction with Deep Learning Models
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 273-282
doi https://doi.org/10.52842/conf.caadria.2022.1.273
summary The benefits of deep learning (DL) models often overshadow the high costs associated with training them. Especially when the intention of the resultant model is a more climate resilient built environment, overlooking these costs are borderline hypocritical. However, the DL models that model natural phenomena‚conventionally simulated through predictable mathematical modelling‚don't succumb to the costly pitfalls of retraining when a model's predictions diverge from reality over time. Thus, the focus of this research will be on the application of DL models in urban microclimate simulations based on computational fluid dynamics. When applied, predicting wind factors through DL, rather than arduously simulating, can offer orders of magnitude of improved computational speed and costs. However, despite the plethora of research conducted on the training of such models, there is comparatively little work done on deploying them. This research posits: to truly use DL for climate resilience, it is not enough to simply train models, but also to deploy them in an environment conducive of rapid uptake with minimal barrier to entry. Thus, this research develops a Grasshopper plugin that offers planners and architects the benefits gained from DL. The outcomes of this research will be a tangible tool that practitioners can immediately use, toward making effectual change.
keywords Deep Learning, Technological Adoption, Fluid Dynamics, Urban Microclimate Simulation, Grasshopper, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_344
id caadria2022_344
authors Krezlik, Adrian
year 2022
title Considering Energy, Materials and Health Factors in Architectural Design, Two Renovation Strategies for the Portuguese Building Stock
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 619-628
doi https://doi.org/10.52842/conf.caadria.2022.2.619
summary According to the Intergovernmental Panel on Climate Change, the built environment has a significant share in global final energy use, greenhouse gases emission, land-system change, and biodiversity loss to list some indicators. In Europe, the biggest challenge is to regenerate existing building stock to create a positive impact on Nature. The Portuguese housing stock is old: 56% is more than 30 years old, and it has a low level of thermal comfort and energy efficiency. The first thermal regulations appeared in 1990 and therefore most of the houses need urgent renovation to meet EU decarbonization goals, and to improve energy efficiency, as well as well-being and comfort of residents. This paper presents a method that aims to verify existing solutions known from vernacular architecture as complementary to existing strategies. It employs digital simulation to verify whether they could be used for renovation, measuring their impact on human and planetary health. The paper shows that there is a wide spectrum of parameters that influence the renovation process and that it is possible to enhance building performance using vernacular knowledge.
keywords Building Energy Modelling, Life Cycle Assessment, Occupant Health, Energy Renovation, Vernacular Mimicry, SDG 3, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ijac202220301
id ijac202220301
authors Martins, Iago Longue; Ana Paula Lyra
year 2022
title Development and application of an algorithmic-parametric tool to assess the contribution of urban forestry to mitigate floods
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 496–510
summary As an impact of climate change, water-related disasters, such as floods, are becoming more frequent. In this context, there is an increasing demand to improve the resiliency of urban settlements, using multiple approaches and techniques. This paper assesses one of those techniques, by developing an algorithmicparametric tool to quantify how urban forestry reduces flood impacts from rainfall runoff. The assessment was comprised by three main methodological steps: (#1) observing the scientific literature on “the sponge effect” observed in green infrastructures; (#2) developing an algorithmic-parametric tool using the Grasshopper application to estimate rainfall runoff, considering the influence of urban forestry design factors; and (#3) performing digital simulations with this parametric tool using a Rhinoceros-Grasshopper interface. Results indicate this method is effective in assessing the efficacy of green interventions to mitigate urban flood damage and also in foreseeing how different design strategies impact urban hydrological dynamics.
keywords parametric analysis, urban forestry, climate change, urban planning, water-resilient cities
series journal
last changed 2024/04/17 14:29

_id caadria2022_360
id caadria2022_360
authors McMeel, Dermott and Petrovic, Emina K.
year 2022
title Architecture Value Change in Response to the Anthropocene: The Contribution of Digital Innovation
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 415-424
doi https://doi.org/10.52842/conf.caadria.2022.2.415
summary The confluence of different interests‚the Anthropocene, productivity, sustainability, economics‚calls for a need to re-think how the professions evaluate the built environment. There is a myriad of different strands of work under this umbrella which‚broadly‚point to a shift in the value framework for those people and professions who have agency in, and are responsible for, the creation of the built environment. This paper has two objectives. First, by drawing from the writing of architectural theorist Juhani Pallasmaa it teases out themes useful to conceptualise the value change. The goal is to delineate particular views around the creation of and our relation to the built environment. Second, it presents three projects: (1) tracking chemical composition of construction materials, (2) an app that encourages e-commerce in building multi-species environments, and (3) a concept for an economy in construction waste leveraging possibilities presented by blockchain technology. The aim is to shed light on how the emerging blockchain technology might alter values and organisational systems of the built environment in response to the Anthropocene and climate crisis.
keywords Design, Anthropocene, Value Change, Blockchain, System Design, SDG 9, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_276
id caadria2022_276
authors Mondal, Tushar
year 2022
title Autonomous Transhumance
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 253-262
doi https://doi.org/10.52842/conf.caadria.2022.2.253
summary The Arctic is a zone of confluent resources where climate change has begun disrupting the once stable ecological and transhumant lifestyles. Encroachment on pastureland by oil, gas and mining facilities limit reindeer herding activity, and the presence of such infrastructure continues to alter their sensory perceptions and consequently their capacity to read and navigate their environment. Parallel to this, thawing permafrost results in the release of gaseous methane, causing landforms called pingos to explode without detectable warning. This paper proposes a strategy for adapting to these rapid changes by implementing an autonomous system to balance the Arctic ecology through two mutual dependent interventions- (1) Regenerating the pingos to prevent explosion and create new pastoral lands. (2) Seasonally herding the reindeer to these new pastures. The project uses primary data, physical tests, and current technological tools to inform the discourse and suggest a derivative solution. Advanced computational tools like machine learning, robotics, and simulations are used to speculate upon the post-carbon Arctic ecology. The project performs through a strategy of local interventions, networking the living and non-living agents in a tight rope act that balances the Arctic ecology.
keywords Arctic, Pingo, Regenerated Landscape, Reindeer, Autonomous Herding, SDG 13, SDG 15
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_505
id caadria2022_505
authors Nanasca, James and Beebe, Aaron G.
year 2022
title Dynamic Projection
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 39-48
doi https://doi.org/10.52842/conf.caadria.2022.1.039
summary Rarely are technologies of projection mapping (PM) and mixed reality (MR) used together with an architectural agenda. Dynamic Projection imagines the confluence of accessible PM and MR technologies and asks "How might we leverage the strengths of both technologies while obviating their weaknesses?‚ And then "How might this technology be of use in making architecture from within the Climate Movement?‚ First, we will examine the dormant potential of Projected MR by augmenting a physical model in an exhibition setting. The exhibition set-up deploys Unity and Vuforia to generate MR, and Mad Mapper to generate a projection mapped background space. Using this set-up reveals strengths in both technologies, which we can evaluate with a Cybernetically Enhanced Mixed Reality Framework. We can leverage this Projected MR as a suite of tools to make architecture a more active participant in the Climate Movement: for example, by augmenting buildings with statistics that could help reduce energy consumption or through the augmentation of the construction process, helping facilitate waste reduction through efficient construction. Our initial research is being expanded through development of a more versatile Projected MR platform with Dynamic Projection 02, in which we are utilizing better MR tools, more responsive PM tools, and an industrial robot to simulate various dynamic feedback systems. This expanded research design speculates on a 3-part exhibition that can respond with low latency via Projected MR controls during a public and private interactive experience.
keywords Projection Mapping, Augmented Reality, Projected Augmented Reality, Cybernetics, Mixed Reality, Responsible Consumption and Production, Climate Action, SDG 12, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_31644 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002