CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 499

_id ijac202220310
id ijac202220310
authors Castro Henriques, Goncalo; Pedro Maciel Xavier; Victor de Luca Silva; Luca Rédua Bispo; Joao Victor Fraga
year 2022
title Computation for Architecture, hybrid visual and textual language: Research developments and considerations about the implementation of structural imperative and object-oriented paradigms
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 673–687
summary In the fourth industrial revolution, programming promises to be a fundamental subject like mathematics, science, languages or the arts. Architects design more than buildings developing innovative methods and they are among the pioneers in visual programming development. However, after more than 10 years of visual programming in architecture, despite the fast-learning curve, visual programming presents considerable limitations to solve complex problems. To overcome limitations, the authors propose to associate the advantages of visual and textual languages in Python. The article addresses an ongoing research study to implement Computational Methods in Architectural Education. The authors began by describing the general goal of this project, and of this article in particular. This article focuses on the implementation of two disciplines ‘Computation for Architecture in Python’ I and II. The first discipline uses programming based on the construction of functions in the imperative language, implemented in the text editor, in visual programming, using Grasshopper methods. The second discipline, which is under development, intends to teach object-oriented programming. The results of the first discipline are encouraging; despite reported difficulties in programming fundamentals, such as lists, loops and recursion. The development of the second discipline, in object-oriented programming, deals with the concepts of classes and objects, and more abstract principles such abstraction, inheritance, polymorphism or encapsulation. This paradigm allows building robust programs, but requires a more in-depth syntax. The article reports this ongoing research on this new paradigm of object-oriented language, expanding the application of a hybrid visual-textual language in Architecture
keywords computation, textual programming, visual programming, imperative programming, object oriented programming
series journal
last changed 2024/04/17 14:30

_id caadria2024_186
id caadria2024_186
authors Huang, Jingfei and Tu, Han
year 2024
title Inconsistent Affective Reaction: Sentiment of Perception and Opinion in Urban Environments
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 395–404
doi https://doi.org/10.52842/conf.caadria.2024.2.395
summary The ascension of social media platforms has transformed our understanding of urban environments, giving rise to nuanced variations in sentiment reaction embedded within human perception and opinion, and challenging existing multidimensional sentiment analysis approaches in urban studies. This study presents novel methodologies for identifying and elucidating sentiment inconsistency, constructing a dataset encompassing 140,750 Baidu and Tencent Street view images to measure perceptions, and 984,024 Weibo social media text posts to measure opinions. A reaction index is developed, integrating object detection and natural language processing techniques to classify sentiment in Beijing Second Ring for 2016 and 2022. Classified sentiment reaction is analysed and visualized using regression analysis, image segmentation, and word frequency based on land-use distribution to discern underlying factors. The perception affective reaction trend map reveals a shift toward more evenly distributed positive sentiment, while the opinion affective reaction trend map shows more extreme changes. Our mismatch map indicates significant disparities between the sentiments of human perception and opinion of urban areas over the years. Changes in sentiment reactions have significant relationships with elements such as dense buildings and pedestrian presence. Our inconsistent maps present perception and opinion sentiments before and after the pandemic and offer potential explanations and directions for environmental management, in formulating strategies for urban renewal.
keywords Urban Sentiment, Affective Reaction, Social Media, Machine Learning, Urban Data, Image Segmentation.
series CAADRIA
email
last changed 2024/11/17 22:05

_id cdrf2022_199
id cdrf2022_199
authors Jingming Li
year 2022
title Using Text Understanding to Create Formatted Semantic Web from BIM
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_17
summary The application of BIM in the building life cycle needs to be continuous. The information collected and accumulated in the early stages should flow to the subsequent phases. However, BIM applications currently focus on collision inspection, compliance inspection, and engineering calculation, few models can be successively used in the following stages. Remodeling is required in the operation and maintenance period, resulting in waste. Meanwhile, some of the information accumulated by BIM might be frequently used in the operation and maintenance stage, while some data are relatively rarely used. The semantic web can help manage building information at all stages. But the generation of a semantic web is mostly manually completed. It is necessary to standardize the repeated semantic description in the model and convert BIM into a standard semantic model for information indexing, reducing the resource consumption of model loading and optimizing the efficiency of the operation and maintenance system. When the existing research transforms from BIM to the semantic web, there will be a lack of information and descriptions of the ownership relationship between entities due to the limitation of formats. To realize the standard transformation from BIM to the semantic web, this work proposes a method of using Natural Language Processing (NLP) to understand the text and infer the relationship between entities according to the knowledge map. First, the entities are extracted from BIM, such as air conditioning unit, electric lamp, fan, etc., if the name of the extracted entity is irregular, the names are translated with the help of NLP and Ontology (such as brick or haystack) to obtain the standard definition. By comparing the complete knowledge graph (such as the knowledge graph of the air conditioning system), the relationships can be deduced, and then a standardized semantic model can be generated.
series cdrf
email
last changed 2024/05/29 14:02

_id caadria2022_148
id caadria2022_148
authors Khajehee, Arastoo, Yabe, Taisei, Lu, Xuanyu, Liu, Jia and Ikeda, Yasushi
year 2022
title Development of an Affordable On-Site Wood Craft System: Interactive Fabrication via Digital Tools
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 31-40
doi https://doi.org/10.52842/conf.caadria.2022.2.031
summary This research aims to develop a craft system that simplifies the transition between design and fabrication. One of the main purposes of this system is to allow non-professionals to engage in craft with the aid of affordable digital fabrication tools. By removing the technical hurdles that prevent beginners from engaging in digital fabrication, the system aims to enable those who are interested in making things as a hobby or DIY projects to enjoy digital craft. The developed craft system provides a comprehensive workflow, starting from the initial shape to the final CNC milling machine G-Code generation. It is developed through Object-Oriented Programming, resulting in an interactive system that provides information about the fabricability of the final shelf structure to user/designer. The real-time design-to-fabrication aspect allows for some degree of simultaneous design changes, making the craft experience more center864108000enjoyable. In line with the UN Sustainable Development Goals, this research is an attempt to provide more opportunities for individuals to get into digital fabrication, enabling them to acquire skills within the rapidly growing industry. Furthermore, as demonstrated by other digital fabrication tools like 3D printers, DIY builds can potentially be economically beneficial for the users.
keywords Digital Fabrication, Real-Time Design to Fabrication, Affordable On-Site Craft, SDG 8, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_209
id cdrf2022_209
authors Yecheng Zhang, Qimin Zhang, Yuxuan Zhao, Yunjie Deng, Feiyang Liu, Hao Zheng
year 2022
title Artificial Intelligence Prediction of Urban Spatial Risk Factors from an Epidemic Perspective
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_18
summary From the epidemiological perspective, previous research methods of COVID-19 are generally based on classical statistical analysis. As a result, spatial information is often not used effectively. This paper uses image-based neural networks to explore the relationship between urban spatial risk and the distribution of infected populations, and the design of urban facilities. We take the Spatio-temporal data of people infected with new coronary pneumonia before February 28 in Wuhan in 2020 as the research object. We use kriging spatial interpolation technology and core density estimation technology to establish the epidemic heat distribution on fine grid units. We further examine the distribution of nine main spatial risk factors, including agencies, hospitals, park squares, sports fields, banks, hotels, Etc., which are tested for the significant positive correlation with the heat distribution of the epidemic. The weights of the spatial risk factors are used for training Generative Adversarial Network models, which predict the heat distribution of the outbreak in a given area. According to the trained model, optimizing the relevant environment design in urban areas to control risk factors effectively prevents and manages the epidemic from dispersing. The input image of the machine learning model is a city plan converted by public infrastructures, and the output image is a map of urban spatial risk factors in the given area.
series cdrf
email
last changed 2024/05/29 14:02

_id ecaade2022_175
id ecaade2022_175
authors Di Carlo, Raffaele, Mittal, Divyae and Vesely, Ondrej
year 2022
title Generating 3D Building Volumes for a Given Urban Context using Pix2Pix GAN
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 287–295
doi https://doi.org/10.52842/conf.ecaade.2022.2.287
summary Our ability to delegate the most intellectually demanding tasks to machines improves with each passing day. Even in the fields of architecture and design, which were previously thought to be exclusive domain of human creativity and flare, we are moving the first steps towards developing models that can capture the patterns, invisible to the naked eye, embedded in the creative process. These patterns reflect ideas and traditions, imprinted in the collective mind over the course of history, that can be improved upon or serve as a cautionary tale for the new generation of designers in their work of designing an equitable, more inclusive future. Generative Adversarial Networks (GANs) give us the opportunity to turn style and design into learnable features that can be used to automatically generate blueprints and layouts. In this study, we attempt to apply this technology to urban design and to the task of generating a building footprint and volume that fits within the surrounding built environment. We do so by developing a Pix2Pix model composed of a ResNet-6 generator and a Patch discriminator, applying it to satellite views of neighborhoods from across the Netherlands, and then turning the resulting 2D generated building footprint into a reusable 3D model. The model is trained using the national cadastral data and TU Delft 3D BAG dataset. The results show that it is possible to predict a building shape compatible in style and height with the surroundings. Although the model can be used for different applications, we use it as an evaluation tool to compare the design alternatives fitting the desired contextual patterns.
keywords Generative Adversarial Networks, Urban Design, Pix2Pix, Raster Vectorization, 3D Rendering
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_265
id ecaade2022_265
authors Won, Junghye, Kim, Taehoon, Yu, Jinhyeon and Choo, Seungyeon
year 2022
title Development of the IFC Schema Extension Methodology for Integrated BIM
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 339–346
doi https://doi.org/10.52842/conf.ecaade.2022.2.339
summary Although increasingly more projects and industries use Building Information Modeling (BIM) worldwide, the application of BIM is difficult and limited due to problems related to information exchange and interoperability. Accordingly, a neutral format called Industry Foundation Classes (IFC) was developed to enable information exchange between fields. However, it still has a gap with objects in various fields due to the nature of IFC structure. This study, therefore, presents an IFC Schema extension methodology applicable in each field by analyzing various cases and expanding the Entity so that the integrated BIM can be utilized. The case of extending Entity for the generation and extension of the current IFC Schema was analyzed. Through WBS analysis and specific establishment, the common point of extending Entity matched to IFC Schema was found. In addition, a methodology to extend Entity by matching with IFC Schema stage and general matching structure system were derived. This study is significant in that it can promote collaboration between the architecture field and other fields based on BIM through this methodology and matching structure system. The efficiency of using BIM is expected to be maximized.
keywords IFC, BIM, WBS, Methodology, Schema, Entity
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_47
id caadria2022_47
authors An, Yudi
year 2022
title Impact of Covid-19 on Associations between Land Use and Bike-Sharing Usage
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 605-614
doi https://doi.org/10.52842/conf.caadria.2022.1.605
summary Bike-sharing as a human-centred, zero-emission, sustainable, alternative, and easily accessible transport mode has been implemented globally and consistently contributing to communities and the environment by alleviating consumption of natural sources, traffic congestion, and air pollution, which is considered a solution for future cities. The appearance of Covid-19 significantly impacts public transportation modes, including the bike-sharing system. The intention of this study was to investigate the spatiotemporal impact of the Covid-19 pandemic on associations between urban factors and bike-sharing usage in Los Angeles, United States, by analysing a sizeable actual trip dataset and employing geographically weighted regression (GWR) models. GWR was conducted for examining the varying spatial association between bike infrastructure, public transport, and urban land use factors, and bike-sharing trip volume. The results indicated that bike-sharing usage significantly decreased during the pandemic and essential service as restaurant was found consistently and positively associated with bike-sharing use. GWR provided clear spatial patterns of bike usage based on urban land use and big user databases. The outcomes of this study could inspire policymakers and shared mobility operators to support these safe, sustainable transport alters (such as rebalancing bike stations), help city resilience, and shape a sustainable future of mobility in the post-Covid-19 era.
keywords Bike-Sharing, Covid-19, Land Use, Geographically Weighted Regression, Big Data, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_223
id caadria2022_223
authors Kim, Jong Bum, Oprean, Danielle, Cole, Laura and Zangori, Laura
year 2022
title Net Zero Game: A Pilot Study of Game Development for Green Building Education in Rural Schools
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 455-464
doi https://doi.org/10.52842/conf.caadria.2022.2.455
summary The research investigates the design and development of a serious game to teach green building design and energy literacy in rural middle schools in the United States. The paper presents a pilot study, education mini-game development integrated with parametric BIM and energy simulations. The game scenario was built on the developed science curriculum modules in our funded research, teaching building energy technologies such as daylighting, artificial lighting, window configurations, building materials, solar panels, etc. The mini game presents a baseline science lab and a media library of typical public schools in the United States. The players have the opportunity to improve energy literacy in several ways: manipulating the building configurations and the energy options, reviewing energy cost and the emission level changes, and monitoring the performance from the dashboards. This paper presents background theory, curriculum design, the mini-game development framework, methods and tools for energy simulation and BIM visualization, and the findings and challenges.
keywords Serious Game, Energy Literacy, Green Building Education, Parametric BIM, Energy Simulation, SDG 4, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2022_52
id ecaade2022_52
authors Nejur, Andrei and Balaban, Thomas
year 2022
title The A(fin)ne Pavilion - Pandemic adapted architectural studio fabrication
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 507–516
doi https://doi.org/10.52842/conf.ecaade.2022.2.507
summary This paper presents the didactical and research process of a pandemic-adapted digital fabrication, material-driven research master studio held at University of Montreal School of Architecture in early 2021 that concluded with the construction of a large-scale research pavilion assembled by the students with hand tools only. The paper focuses on the structure of the studio and how the research was re-oriented to permit material investigations using limited physical interaction between the participants, intermittent access to on-campus fabrication facilities, limited financial resources, and a cohort of students with near-zero computational design experience.
keywords DIY, Education, Pavilion, Construction, Folding, Pandemic, Digital Fabrication
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_139
id caadria2022_139
authors Ataman, Cem, Tuncer, Bige and Perrault, Simon
year 2022
title Asynchronous Digital Participation in Urban Design Processes: Qualitative Data Exploration and Analysis With Natural Language Processing
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 383-392
doi https://doi.org/10.52842/conf.caadria.2022.1.383
summary This paper aims to improve the usability of qualitative urban big data sources by utilizing Natural Language Processing (NLP) as a promising AI-based technique. In this research, we designed a digital participation experiment by deploying an open-source and customizable asynchronous participation tool, "Consul Project‚, with 47 participants in the campus transformation process of the Singapore University of Technology and Design (SUTD). At the end of the data collection process with several debate topics and proposals, we analysed the qualitative data in entry scale, topic scale, and module scale. We investigated the impact of sentiment scores of each entry on the overall discussion and the sentiment scores of each introduction text on the ongoing discussions to trace the interaction and engagement. Furthermore, we used Latent Dirichlet Allocation (LDA) topic modelling to visualize the abstract topics that occurred in the participation experiment. The results revealed the links between different debates and proposals, which allow designers and decision makers to identify the most interacted arguments and engaging topics throughout participation processes. Eventually, this research presented the potentials of qualitative data while highlighting the necessity of adopting new methods and techniques, e.g., NLP, sentiment analysis, LDA topic modelling, to analyse and represent the collected qualitative data in asynchronous digital participation processes.
keywords Urban Design, Digital Participation, Qualitative Urban Data, Natural Language Processing (NLP), Sentiment Analysis, LDA Topic Modelling, SDG 10, SDG 11.
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_044
id ascaad2022_044
authors Shah, Syed; Petzold, Frank
year 2022
title Research Data Management and a System Design to Semi-Automatically Complete Integrated Data Management Plans [Position Paper]
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 577-593
summary Data is an integral part of modern scientific work. Good research data management (RDM) and the communication of the related information is extremely an important matter. It is not only crucial for the ongoing research and its claims but also for the future uses of data. In recent years some guiding principles, e.g. FAIR principles and initiatives at the national and international level, e.g. NFDI, NFDI4Ing have also been founded to improve RDM. The data and its metadata are often handled in file system like structures which are versioned and logged. The information relating to the data handling are documented in data management plan (DMP). DMPs are also usually managed in similar file structures. These are made available in editable document formats as well as online free-text editable forms to which users are required to keep updating manually. These are isolated documents which have neither direct relation to data for verification nor are common to understand with consistency. In this paper, research data management of large-scale interdisciplinary projects is presented. On one hand it introduces, contemporary practices of RDM and on the other hand it helps researchers to determine the features of RDM system in the situations when it comes to select or develop a system for the same purpose. It further introduces a system design for semi-automatic completion of DMP functions in collaborative environment a.k.a. virtual research environment (VRE). It is assumed that the proposed system will assist and enable users to update semi-automatically integrated DMP during all phases of data life cycle. Direct relation to the data for verification, common understanding and consistency will also be maintainable.
series ASCAAD
email
last changed 2024/02/16 13:29

_id sigradi2022_220
id sigradi2022_220
authors Torreblanca-Díaz, David A.
year 2022
title Biodigital Product Design Through Additive Fabrication Technologies: Beer Tap Handles Project
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1225–1236
summary Biomimicry is a new transdisciplinary science that studies the models of nature to solve human problems with a systemic approach; design based on nature has had a significant evolution in recent decades thanks to digital technologies advantage, especially digital fabrication and parametric software. This text presents the process of design, experimentation and fabrication of beer tap handles series based on morphological patterns from nature. The project followed this methodological sequence (1) Design problem (2) Selection of biological referents (3) Morphologic synthesis (4) Analysis of thicknesses and stress (5) Detailed design (6) Fabrication of 1:1 scale prototype through Fused Deposition Modelling technology -FDM- (7) User testing (8) Conclusions and improvement proposal. The digital design and fabrication process were effective, the prototypes worked and reached the project goals, the users perceived that the beer tap handles are comfortable, functional and have an attractive appearance.
keywords Biomimicry, Bio-informed disciplines, Parametric design, Additive fabrication technologies, Fused deposition modelling technology
series SIGraDi
email
last changed 2023/05/16 16:57

_id ecaade2022_202
id ecaade2022_202
authors Acican, Oyku and Luyten, Laurens
year 2022
title Experiential Learning of Structural Systems - Comparison of design-based and experiment-based pedagogies
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 535–544
doi https://doi.org/10.52842/conf.ecaade.2022.2.535
summary This research aims to compare two experiential learning methods’ effectiveness for (1) a deeper understanding of structural behaviour, and (2) skills to design architectural forms that are structurally informed. A course was planned to investigate the effect of the type and order of the two teaching units: (1) guided experiments on a parametric design model, and (2) parametric design of a tower and custom experiments using Grasshopper and Karamba. Results indicate that the group that started with the experiments learned to ask the relevant questions by experimenting with the appropriate parameters that helped them to find the structural principles and apply them during their design phase. The group that started with the design were lost in the structural concepts and in identifying the meaningful parameters to test for. However, after the experiment was completed, this group could make a knowledge transfer. Acquisition of structures knowledge may require the experience of multiple situations while the application of this knowledge may involve selecting the relevant structural experience with the architectural form-finding process. In the future, a proposed experiential learning method will be compared with an instructive learning approach of structural systems for architecture students.
keywords Structures Education, Experiential Learning, Parametric Structural Analysis, Comparative Pedagogy
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_338
id caadria2022_338
authors Dias Guimaraes, Gabriela, Gu, Ning, Gomes da Silva, Vanessa, Ochoa Paniagua, Jorge, Rameezdeen, Rameez, Mayer, Wolfgang and Kim, Ki
year 2022
title Data, Stakeholders, and Environmental Assessment: A BIM-Enabled Approach to Designing-out Construction and Demolition Waste
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 587-596
doi https://doi.org/10.52842/conf.caadria.2022.2.587
summary Construction and Demolition waste has started to become a target in the path for a more sustainable industry mainly due to massive resource consumption, land depletion and emissions. As a substantial amount of waste originates due to inadequate decision-making during design, strategies to design-out waste are required. Accurate environmental impact of, not only the whole building, but construction materials and elements are crucial to the development of these strategies, but dependent on data availability, expert knowledge and proper sharing and storage of information. Hence, this study aims to investigate the relation between data, stakeholders and environmental assessment to properly build a design-out waste framework. An in-depth data collection from literature review and stakeholders' interviews guided the development of a conceptual framework to assist designers with information related to waste production and its reduction. After that, the necessary technical specifications for its adoption through a BIM environment were analysed. Its contribution is firstly on a shift of thinking during the design phase, as the goal is to provide environmental information so designers can take into consideration the long-term consequences of waste from different strategies and solutions; and secondly in the development of a computational tool that facilitates the design-out process.
keywords Construction and Demolition Waste, Design, BIM, Environmental Data, Stakeholders, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_226
id ecaade2022_226
authors Hardarson, Matthias K., Larsen, Niels M. and Aagaard, Anders K.
year 2022
title Kerf Guided Glulam - A novel way of creating curved glulam beams
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 85–90
doi https://doi.org/10.52842/conf.ecaade.2022.1.085
summary This paper proposes a novel way of producing curved glulam timber elements where the formwork is integrated into a glulam beam. The method proposed accomplishes this by placing kerf cuts on a timber profile that gets bent and then encased in a wood laminate, forming the glulam beam. The kerf placement allows the beam to be asymmetrically curved. The optimal placement for the kerf cuts is found by feeding an initial goal curve to a form-finding definition that subdivides it and places markers where cuts need to be made while manipulating the beam geometry, ensuring that it matches the initial input curve. The benefit of this method is that it is not reliant on large-scale glulam setups but can be fabricated with basic wood workshop tools in conjunction with a 5-axis CNC mill. The simplified production process enables smaller manufacturers and designers to produce dynamic wooden structures while saving on materials and labour that would have gone into producing formwork that eventually gets discarded.
keywords Digital Wood Workflows, Kerfs, Glulam, Parametric Design, Digital Fabrication, CNC, Design Democratisation
series eCAADe
email
last changed 2024/04/22 07:10

_id cdrf2022_263
id cdrf2022_263
authors Jiaqi Wang and Wanzhu Jiang
year 2022
title Demand-Driven Distributed Adaptive Space Planning Based on Reinforcement Learning
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_23
summary In the second digital turn, the architecture driven by big data logic is gradually shifting from a traditional static entity to an intellective living organism. This paper explores a space planning algorithm that applies reinforcement learning to the multi-agent system to achieve condition adaptability. This algorithm contains an inclusive environment and programmable agents that represent independent spaces. Through reinforcement learning, personalized space needs are quantified as the agent’s Space Schema, which can provide adaptive behavior strategies to adjust volumetric room boundaries. The spatial organization emerges in multi-agent competition, guided by the Negotiation Schema, realizing the dynamic equilibrium of spatial relations and the stable maximization of collective interests. Through real-time interaction and distributed decision-making, this bottom-up method defines a new architectural paradigm that continuously changes based on demands with its high degree of variability, adaptability and evolvability.
series cdrf
email
last changed 2024/05/29 14:02

_id caadria2022_157
id caadria2022_157
authors Liu, Sijie, Wei, Ziru and Wang, Sining
year 2022
title On-site Holographic Building Construction: A Case Study of Aurora
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 405-414
doi https://doi.org/10.52842/conf.caadria.2022.2.405
summary Geometrically complex building components‚ reliance on high-touch implementation often results in tedious information reprocessing. Recent use of Mixed Reality (MR) in architectural practices, however, can reduce data translation and potentially increase design-to-build efficiency. This paper uses Aurora, a single-story residential building for 2021 China‚s Solar Decathlon Competition, as a demonstrator to evaluate the performance of on-site holographic building construction. This paper firstly reviews recent studies of MR in architectural design and practice. It then describes an MR-aided construction process of Aurora's non-standard building envelope and rooftop mounting structure, where in-situ holographic registration, human-machine cooperation, and as-built analysis are discussed. This paper concludes by stating that MR technologies provide unskilled implementers with a handy approach to materialise complex designs. The research was guided by the UN Sustainable Development Goals, especially aligning with the GOAL 9 which seeks innovations in industry and infrastructure.
keywords Mixed Reality, Non-standard Architecture, Low-tech Construction, Solar Decathlon Competition, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_85
id sigradi2022_85
authors Mariano, Pedro Oscar Pizzetti; Sansao, Marcos Marciel; Vaz, Carlos Eduardo Verzola
year 2022
title Parametric modeling applied to landscape design: simulation as a tool for defining tree stratum
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 225–236
summary This experiment demonstrated how the use of a process aided with computational tools, similar to the multi-criteria performative model, contributes to the learning of architecture and urbanism students in the development of designing urban and landscape projects. The study seeks to bring students closer to multi-criteria analysis in project training activities. The method used is guided by a case study that allows simulated data referring to radiation, visual permeability, and percentage of visible sky. The results were collected through the analyzes and comparisons found in the final project of the discipline, verified through the observation of the design decisions based on the simulations. This allowed us to identify the potentialities of the process in the understanding of the students in using different criteria in the initial launch of the architectural project and also to recognize the points and negatives of the use of the process.
keywords Parametric Analysis, Simulation, Multicriteria Analysis, Landscape Design
series SIGraDi
email
last changed 2023/05/16 16:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_598701 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002