CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id ecaade2023_439
id ecaade2023_439
authors Adelzadeh, Amin, Karimian-Aliabadi, Hamed, Ahlund, Karl and Robeller, Christopher
year 2023
title ReciprocalShell: A hybrid timber system for robotically-fabricated lightweight shell structures
doi https://doi.org/10.52842/conf.ecaade.2023.1.651
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 651–660
summary Reciprocal timber systems have been widely studied, however they have never been directly applied to the segmented timber shell structures as cross bracing of the polygonal topologies. For the first time, this paper presents an innovative hybrid timber system developed for design and construction of the robotically-fabricated lightweight timber shell structures. The paper integrates two configurations of wood beams: polygonal framing and reciprocal bracing. While, the polygonal topology of facets enables a constant distance offset for the thickness of the shell, the reciprocal configuration allows for cross bracing of polygonal frames where diagonals within the polygons cannot directly connect corners due to geometric constraints resulted by the free-form surface structure of shell shapes. Joining the cross-bracing elements in the center of the polygons with a reciprocal node reduces the complexity of the connection system at nodes while demonstrating the high load-bearing capacity of joints to withstand structural loads throughout the structure, compared to connecting 5, 6 or 7 beams in a single point. The article discusses the application and limitations of the timber system while presenting the design-to-assembly process of a case study of the small-scale shell demonstrator with the maximum span of 7.5 meters made of 144 wood elements for each polygonal and reciprocal configurations. The results show that the timber system has a great capacity for the rapid and precise assembly and disassembly of prefabricated timber structures. Generation of similar but different solid elements, allowed for the development of a custom CAD data interface for the automated production of numerous pieces, where simple joint details are applied for both alignment and attachment of beams, reducing the design complexity and facilitate the construction phase. As the result, the fabrication process was completely carried out with only a saw blade in a multi-axis robotic fabrication set up that enables the rapid, precise, and accurate cuts and grooves. Both timber configurations generate a uniform distribution of beam size, meaning that the production process created only a minimal amount of offcuts that allows for the use of simple and cost-efficient, short solid wood pieces.
keywords Hybrid Timber System, Reciprocal Shell, Robotic Fabrication, Timber Shell, Lightweight Structures
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_451
id ecaade2023_451
authors Karimian-Aliabadi, Hamed, Adelzadeh, Amin, Ahlund, Karl and Robeller, Christopher
year 2023
title Structural Efficiency of a Hybrid Construction System for a Lightweight Timber Shell Demonstrator: ReciprocalShell case study
doi https://doi.org/10.52842/conf.ecaade.2023.1.661
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 661–668
summary This paper evaluates the structural performance of an innovative hybrid timber system for design and construction of the robotically-fabricated shell structures. The timber system combines two configurations: hexagonal and reciprocal. While the first timber configuration generates the main skeleton of the shell based on the discretization of the input surface, the second configuration enables the cross-bracing within each hexagonal cassette. Joining the cross-bracing elements in the center of the cassettes with a reciprocal node not only resists the deformation of hexagonal cassettes and displacement of elements, but also allows for a more uniform distribution of loads that increases the structural capacity of the timber system, enabling the shell to withstand higher compression and tension forces. The joint system uses the wooden splines and screws to align and reinforce the edge connections, as well as the bolts to fasten the neighboring hexagonal cassettes. The construction system is applied to a case study of a medium-scale shell demonstrator with a maximum span of 7.5 meters that is structurally optimized by form-finding methods. The paper presents a detailed structural analysis including the Finite Element Method (FEM) results, as well as the experimental load test that is carried out to verify the validity and accuracy of the structural calculations.
keywords Hybrid Timber System, Reciprocal Shell, Structural Analysis, Experimental Load Test, RFEM
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_426
id ecaade2023_426
authors Adelzadeh, Amin, Karimian-Aliabadi, Hamed and Robeller, Christopher
year 2023
title Wave-edge Modeling Method for Segmented Timber Plate Shell Structures: A computational tool for optimizing the bonding area of CLT joints
doi https://doi.org/10.52842/conf.ecaade.2023.1.301
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 301–310
summary The paper presents an algorithmic modeling tool for segmented timber shell structures made of glued wave-edge CLT plates. The goal is to provide a larger bonding area and thereby higher adhesive strength between plates, especially where a higher tension-resistant capacity is required. In addition to a number of contemporary research for exploring stereotomic modules, the inspiration is taken from the long history of the traditional glued finger joints in carpentry where they are used for providing higher interlocking capacity and adhesive strength. The structural performance of regular and glued finger joints is directly proportional to the bonding area between adjoining elements where they are interlocked and glued. Hence, expanding the shared faces would intrinsically magnify the structural performance of the glued finger joints. The paper presents the modeling method of a material-efficient, grain-informed, and structurally-optimized wedge edge joint system for the multi-shaped shell structures where the wave pattern is chosen for generating smoother fabrication toolpaths compared to any sharp-cornered pattern. The algorithm developed by the authors can efficiently maximize the glue bond by optimizing the wave-edge properties dynamically with respect to the geometric design, material system, and structural analysis within a feedback loop. The wave-edge properties directly affect the material waste and fabrication time and cost; therefore, the production parameters could be directly considered and controlled within the design process. The algorithm is able to produce the structural data model for the direct RFEM structural analysis, and fabrication data for automated production of multitude elements. The paper argues the application possibilities and limitations of the joint system for multi-shaped timber plate shells made of a multitude of geometrically-differentiated timber plates.
keywords Algorithmic Design, Wave-edge Joint System, CLT, Shell Structure, Timber Prefabrication
series eCAADe
email
last changed 2023/12/10 10:49

No more hits.

HOMELOGIN (you are user _anon_126208 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002