CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 709

_id ecaade2023_54
id ecaade2023_54
authors Abdulmajeed, Abdulwahab, Agkathidis, Asterios, Dounas, Theo and Lombardi, Davide
year 2023
title Mass-customisation of dwellings in the Middle East:developing a design-to-fabrication framework to resolve the housing crisis in Saudi Arabia
doi https://doi.org/10.52842/conf.ecaade.2023.2.157
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 157–164
summary The Saudi government is taking the initiative to modernise the country and address critical challenges. One of its primary goals is to relieve the housing deficit. One of the challenges in supplying the houses is that potential inhabitants have denied and refused to accept them due to their design failing to meet their demands. Furthermore, the government suffers from providing high-quality housing in line with people’s needs because only a few enterprises can meet the client’s needs, but only at the price of lengthy planning and building times, in addition to increased construction expenses. This research aims to propose a mass customisation design-to-fabrication workflow, which targets environmental optimisation, reduction of construction time and reduced cost and incorporates client involvement. Our research method includes conducting a survey with Saudi Arabian architecture firms to collect data about contemporary clients’ needs, analysing and reviewing mass-customisation tools & techniques, developing a bespoke algorithm capable of mass-customising housing and evaluating the algorithm through design experiments. Our findings present the advantages and challenges of our tool as well as a shape grammar of mass customised floor plan solutions.
keywords Mass Customisation, Parametric Design, Housing Design
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_112
id ecaade2023_112
authors Aguilera, Andrea V., Zhang, Yu and Shea, Kristina
year 2023
title Mobile Augmented Reality for Aided Manual Assembly of Compressed Earth Block Dwellings
doi https://doi.org/10.52842/conf.ecaade.2023.2.019
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 19–28
summary This paper investigates how augmented reality (AR) can instruct and assist in assembling an earthen structure consisting of a limited set of geometrically different interlocking blocks. By adapting a visual-inertial object tracking software, to the assembly process of a mortarless, compressed earth block (CEB) dome, the construction site no longer needs physical templates and manuals. This enables the builders to have real-time tracking with visual feedback to actively adjust according to the optical guidance during the course of assembly. Two identical dome structures are built with the same set of earth blocks, one with AR and one without. The results show that using AR can significantly improve construction efficiency for complex, dry-stacked structures as it acts as assembly guidance and provides insight into the limits of the tracking tolerances. Further, this paper discusses the limitations and challenges and can provide an outlook for further research scaling up the production to construct a habitable dwelling. Starting with just a pile of dirt and a mobile phone, the demonstrator exhibits the compatibility of local, sustainable materials and digital, efficient processes.
keywords Compressed Earth Blocks, Augmented Reality, Interlocking Blocks, Earth Building, Dry-Stack Assembly, Sustainable Construction
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_89
id ecaade2023_89
authors Ahmadpanah, Hooshiar, Haidar, Adonis and Latifi, Seyed Mostafa
year 2023
title BIM and Machine Learning (ML) Integration in Design Coordination: Using ML to automate object classification for clash detection
doi https://doi.org/10.52842/conf.ecaade.2023.2.619
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 619–628
summary Amongst the countless benefits of BIM, clash detection appears to be one of the most recognized ones. This is due to the automated manner in which clashes can be detected in the design stage in comparison to the cumbersome drawing-based clash detection applied in traditional design coordination. When BIM clash detection software, such as Navisworks or Solibri, is used, thousands of clashes can be detected automatically, and a report is generated containing a list of all the clashes with an image of each clash. In most cases, a large number of irrelevant/ignorable clashes can be found, making it extremely difficult and time-consuming to classify those clashes in order to assign responsibilities to manage those clashes, and more importantly specifying which clashes are relevant and which are not. Therefore, finding an automated machine-enabled method to classify clashes into relevant and irrelevant appears to be indispensable. This paper provides the first step towards this automation by developing a Machine Learning (ML) algorithm capable of recognizing the types of elements from images that are originated from the clash detection report. To achieve this, a Deep Learning (DL) algorithm called ‘YOLO’, that is based on object recognition, is developed, and a set of various images indicating different kinds of clashes are used as the dataset. Using the “Makesense” platform, the images are labeled into different categories to feed the algorithm. The algorithm was able to recognize trusses and beams from the images saved in the data set, which is the first step towards object classification. The paper contributes to the knowledge by, firstly, enabling the clashes to be classified based on images rather than numeric information data, and secondly, by applying the DL algorithm that is used in many author industries in the context of clash detection within a construction project.
keywords BIM, Clash Detection, Machine Learning (ML), Deep Learning, Image Recognition
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2024_477
id caadria2024_477
authors Akbaylar Hayreter, Ipek, Gulec Ozer, Derya and As Cemrek, Handan
year 2024
title Enhancing Cultural Heritage Digitalization and Visitor Engagement Through LiDAR Scanning and Gamification
doi https://doi.org/10.52842/conf.caadria.2024.2.283
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 283–292
summary Cultural heritage assets are valuable, providing important information about humanity's past and conveying it to the future. Unfortunately, conventional documentation is insufficient to preserve them for the next generations. Furthermore, increasing visitor interaction with these assets and raising awareness has been one of the challenges in this field. In this paper, we will examine how mobile LiDAR (Laser Detection and Ranging) technology can be used to precisely scan and document historical sites and how it can be combined with gamification elements to provide visitors with better experiences. It is also important that the texture taken in mobile laser scanning can be used to better visualize 3D mesh models of the scanned objects, so the fastest application that produces 3D models is selected. The study area is Syedra Ancient City in Alanya / Turkey, where the research and excavation process has continued since 2015 and the restoration projects started in 2023. Future work includes the creation of experiences to provide a basis for gamification and revitalizing the story of the heritage for the visitors through digital storytelling and AR (Augmented Reality). Preserving historical sites while providing visitors with a more in-depth, vivid and enjoyable experience are important facts for enhancing cultural heritage and passing it on to future generations.
keywords Cultural Heritage, Digitalization, LiDAR, Mobile Laser Scanning, Digital Storytelling, Augmented Reality, Gamification
series CAADRIA
email
last changed 2024/11/17 22:05

_id caadria2023_70
id caadria2023_70
authors Al-Douri, Firas, Yan, Wei and Jahic, Edin
year 2023
title Campusim: An Integrated Parametric BIM for Campus Design Simulation and Optimization
doi https://doi.org/10.52842/conf.caadria.2023.2.471
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 471–480
summary Although simulation models have been recently employed to model and examine pedestrian behavior in urban areas, comparable research has not been pursued in campus environments despite their importance as a critical area of inquiry. Those models' paucity and methodological limitations suggest investigating new research and design strategies to objectively assess and describe how the qualities of campus spaces and zones influence human behavior and, hence, predict the patterns of users' interaction and space usage. Those patterns and their impact on health have been pointed out as critical to the relationship among public space and quality of life due to Covid-19. There is an urgent need to develop decision support tools that would support interactive design processes and enhance the quality of open space design in terms of sense of space, place-making, and user interaction. To that goal, this study has proposed the integrated parametric BIM-based campus life simulation "CampuSIM" as a method for parametrization of the qualities of pedestrian campus zones and spaces. The study proposed the use of multi-objective optimization methods to fulfill various campus quantifiable and non-quantifiable design objectives. The significance of the proposed tool will result from its potential application in a wide range of complex, dynamic pedestrian behavior scenarios such as flows, social simulations, and design.
keywords Campus Modelling, Campus Master Planning, Campus Design, Parametric Modelling, BIM, Design Optimization
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2023_51
id ecaade2023_51
authors Aman, Jayedi, Kim, Jong Bum and Verniz, Debora
year 2023
title AI-Integrated Urban Building Energy Simulation: A framework to forecast the morphological impact on daylight availability
doi https://doi.org/10.52842/conf.ecaade.2023.2.369
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 369–378
summary The research presents a computational framework to investigate the relationship between urban morphology and environmental performance metrics of buildings. Understanding how buildings interact with their surroundings is crucial in optimizing environmental performance. Current urban building energy simulation methods (UBES) often overlook the complex interaction between urban morphology and environmental performance across a diverse set of attributes, resulting in inaccuracies. The proposed framework integrates machine learning (ML) with physics-based simulations and includes Parametric Building Information Modeling, iterative physics-based simulations, Multi-Objective Optimization, and a graph neural network. The framework leverages the detailed analysis capabilities of physics-based simulations and the data processing strengths of ML to analyze urban morphological attributes. Evaluations indicate that the framework enhances prediction accuracy while considering the influence of urban morphology on environmental performance.
keywords Urban Morphology, Urban Building Energy Modeling, Graph Neural Networks, Sustainable Urban Development, Environmental Performance, Multi-objective Optimization
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia23_v2_520
id acadia23_v2_520
authors Ampanavos, Spyridon; Bernal, Marcelo; Okhoya, Victor
year 2023
title Daylight ML: A General-Purpose Deep-Learning Surrogate Model for Annual Daylight Distribution
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 520-531.
summary Building performance simulation, such as daylight evaluation can lead to better quality designs. However, time constraints are currently limiting its use for design exploration. Surrogate modeling can offer drastic speed improvements to simulation processes, but existing models are either project specific or offer limited flexibility to design inputs, while requiring a significant initial investment for their training. This research introduces a method for predicting spatial distribution of annual daylight metrics using a raytrac- ing-based encoding of the inputs, and a deep-learning surrogate model. The method can operate on spaces of any shape. Using synthetic data, surrogate models for Atlanta, Georgia, and Boston, Massachusetts, were trained, and achieved low average errors on the test set for all daylight metrics considered. Furthermore, models trained on simple datasets of rectangular spaces were able to predict accurate results for L-shaped, circular, and courtyard-shaped spaces, and for sensors that had twice the density of the ones in the training set. Overall, the results suggest that trained models can be used to evaluate the daylight quality of any project or design within their respective locations.
series ACADIA
type paper
email
last changed 2024/12/20 09:13

_id caadria2023_55
id caadria2023_55
authors Anam, Nadia and Tan, Linus
year 2023
title A Human-Centric Approach to a Design-to-Fabrication Process: A Case of Homeless Housing Design in Melbourne, Australia
doi https://doi.org/10.52842/conf.caadria.2023.2.461
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 461–470
summary Recent advancements in computer-aided design (CAD) and computer-aided manufacturing (CAM) have influenced architects to practice more purposeful design processes. However, most previous research have focused on innovating CAD and CAM technologies and less on how to automate the specific needs of users into design-to-fabrication processes. Therefore, this study applies a human-centric design approach to examine how designers can leverage specific and dynamic individual needs in digital design processes to optimise designing of housing. Using research through design, we tested our user-design-fabrication framework with dynamic needs of homeless individuals and 3D printing construction technologies, to design and prototype homeless housing solutions in Melbourne, Australia. This research demonstrates that specific and dynamic occupant needs are leveraged by designer's increased knowledge of digital design processes for 1) greater manipulation of basic software and machines and 2) provision of more individualised homeless housing design solutions. This suggests that there is a need for design researchers to further investigate the role of designers in such digital design processes working with homeless individuals, to foresee the current move in industry for more client-oriented and individualised homeless housing design solutions.
keywords human-centric design, user-to-design, design-to-fabrication, homeless housing design, client-oriented design
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2023_328
id ecaade2023_328
authors Andreou, Alexis, Kontovourkis, Odysseas, Solomou, Solon and Savvides, Andreas
year 2023
title Rethinking Architectural Design Process using Integrated Parametric Design and Machine Learning Principles
doi https://doi.org/10.52842/conf.ecaade.2023.2.461
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 461–470
summary Artificial Intelligence (AI) has the potential to process vast amounts of subjective and conflicting information in architecture. However, it has mostly been used as a tool for managing information rather than as a means of enhancing the creative design process. This work proposes an innovative way to enhance the architectural design process by incorporating Machine Learning (ML), a type of Artificial Intelligence (AI), into a parametric architectural design process. ML would act as a mediator between the architects' inputs and the end-users' needs. The objective of this work is to explore how Machine Learning (ML) can be utilized to visualize creative designs by transforming information from one form to another - for instance, from text to image or image to 3D architectural shapes. Additionally, the aim is to develop a process that can generate comprehensive conceptual shapes through a request in the form of an image and/or text. The suggested method essentially involves the following steps: Model creation, Revisualization, Performance evaluation. By utilizing this process, end-users can participate in the design process without negatively affecting the quality of the final product. However, the focus of this approach is not to create a final, fully-realized product, but rather to utilize abstraction and processing to generate a more understandable outcome. In the future, the algorithm will be improved and customized to produce more relevant and specific results, depending on the preferences of end-users and the input of architects.
keywords End-users, Architects, Mass personalization, Visual programming, Neural Network Algorithm
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_378
id ecaade2023_378
authors Araya, Sergio, Fuentes, Cesar, Strahlendorff, Mikko, Camus, María Jesus and Kröger, Anni
year 2023
title Three-Dimensional Realtime Air Quality Mapping using Astronomical algorithms on Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2023.2.811
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 811–820
summary The OMS estimates that over 7 million people die every year of complications attributed to atmospheric pollution. Air quality has degraded progressively and dramatically in urban environments over the last couple of decades, being a current concern in most metropolitan areas, and the focus of public policy as well as public/private scientific innovation for better diagnostics and better solutions. At SIC we are developing a method for 3D mapping the sources, affected locations, density, motion, translation, and potential composition of polluted air masses in close to real-time. We do this by leveraging a multidisciplinary approach that encompasses urban and architectural simulation with data science and astronomical techniques, producing a data visualization that enables novel research in air quality, urban policy, private investment, sustainability efforts, and smart transportation. Our approach, Sit-C, combines satellite remote sensing of air masses and atmospheric conditions, with data obtained from traffic and urban surveillance cameras deployed throughout the city of Santiago, in Chile. These cameras, oftentimes open to public access, are usually placed linearly along main avenues, or scattered around urban milestones, providing walk-though perspectives and locally situated POVs to observe the city, analog to series of cross-sections through urban areas. Satellite sensing provides a large-scale plan view, allowing for precise location of specific conditions across a region. This collaboration between architects, designers, engineers, and meteorologists, from Chile and Finland, combines digital design, data science, and remote sensing techniques to study air quality. We study suspended particulate matter (SPM) and other molecules, and its spatial behavior over time, through light-occlusion analysis, producing a three-dimensional map of the air over a city.
keywords Air Quality, Pollution, 3D mapping, Data Science, Astronomy, Sustainable Cities, Smart Cities, Machine Learning
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2023_343
id caadria2023_343
authors Armaly, Perla, Kirzner, Shay, Kashi, Yechezkel and Barath, Shany
year 2023
title Biomanufacturing of Architectural Prototypes With Cyanobacteria
doi https://doi.org/10.52842/conf.caadria.2023.2.149
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 149–158
summary Cement and concrete production are responsible for nearly 8% of the world's annual emissions of greenhouse gas carbon dioxide. Biodesign can potentially address this challenge in architecture by integrating living materials in design processes and enhancing the ecological performance of materials. As part of an interdisciplinary approach between architecture and microbiology, this research outlines a systematic workflow consisting of pre-fabrication, fabrication, and post-fabrication phases. The workflow leverages additive processes based on biological data and utilizes cyanobacteria’s output capabilities towards architectural production. Cyanobacteria through their photosynthetic process are able to absorb CO2 and induce calcium carbonate (CaCO3) precipitation, the main ingredient in limestone and cement. This paper focuses on the pre-fabrication phase and develops material protocols for designers. It examines the compatibility of two bacterial strains in order to formulate a biomixture suitable for integration in an additive biomanufacturing process.
keywords biodesign, additive manufacturing, biofabrication, sustainability, Cyanobacteria, Carbon Dioxide fixation
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2023_71
id ecaade2023_71
authors Austern, Guy, Yosifof, Roei and Fisher-Gewirtzman, Dafna
year 2023
title A Dataset for Training Machine Learning Models to Analyze Urban Visual Spatial Experience
doi https://doi.org/10.52842/conf.ecaade.2023.2.781
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 781–790
summary Previous studies have described the effects of urban attributes such as the Spatial Openness Index (SOI) on pedestrians’ experience. SOI uses 3-dimensional ray casting to quantify the volume of visible space from a single viewpoint. The higher the SOI value, the higher the perceived openness and the lower the perceived density. However, the ray casting simulation on an urban-sized sampling grid is computationally intensive, making this method difficult to use in real-time design tools. Convolutional Neural Networks (CNN), have excellent performance in computer vision in image processing applications. They can be trained to predict the SOI analysis for large urban fabrics in real-time. However, these supervised learning models need a substantial amount of labeled data to train on. For this purpose, we developed a method to generate a large series of height maps and SOI maps of urban fabrics in New York City and encoded them as images using colour information. These height map - SOI analysis image pairs can be used as training data for a CNN to provide rapid, precise visibility simulations on an urban scale.
keywords Visibility Analysis, Machine Learning, CNN, Perceived Density
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2023_73
id caadria2023_73
authors Awaji, Hiroki, Hayashi, Sei and Gondo, Tomoyuki
year 2023
title Construction of a Free-Form Pavilion Using On-Site Plywood Bending With the Development of Fabrication Tools
doi https://doi.org/10.52842/conf.caadria.2023.2.099
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 99–108
summary Buildings with complex shapes are increasingly being constructed using digital fabrication tools. However, many building components nevertheless require specialised skills for their assembly at the construction site, even if the manufacturing has been streamlined. In this study, by practising an agile design process that repeats the method of ‘Add-on the tool’ and ‘feedback on form and material, we devised a construction method that allows unskilled workers to be involved in the fabrication of pavilions and the creation of complex curved surfaces without requiring special skills, so long as the rules of assembly are determined. In this study, a method of achieving large curvatures using wire bending of Y-shaped wooden units made of 4-mm thick lauan veneer boards was proposed, in which large curvatures were used to design two-dimensionally curved surfaces with continuous wavy shapes. This method was also used to control the force applied to the wires by controlling their lengths. The free curved surface with the elastic bending of the plywood allowed a height of 2.3 m and a span of 6 m.
keywords Add-on the tools, Agile development, Large-span Structure, Active Bending, Plywood, Curvature, Fabrication Tools
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2023_421
id ecaade2023_421
authors Aydin, Serdar, ªik, Büºra, Yörük, Merve ªule and Aktaº, Begüm
year 2023
title Assessment of Correlative Digital Drawing Features in the Design Processes of Unstructured Creativity
doi https://doi.org/10.52842/conf.ecaade.2023.1.231
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 231–240
summary This research critically challenges the conventional perception of drawings as mere technical blueprints and delves into the intricate integration of design ideation, abstraction, and speculation with geometrical manipulations and semantic labelling. By focusing on unconventional architectural design studio experiments at the undergraduate level, the study aims to explore the role of creativity in speculative drawing. It adopts a 3- dimensional design thinking process that transcends the rigid constraints of traditional drawings and embraces the fluidity of representational norms. Furthermore, the paper elucidates on the pedagogical aspects of the design studio, including the unstructured creativity inherent in the design process. The methodology employed in this study is exemplified through different stages of the design studio, incorporating a variety of representations such as 2D, 2.5D, and 3D,encompassing scalar, geometric, and material transfigurations. To assess the outcomes of the studio, the research utilises correlation diagrams that establish connections between digital drawing features at different stages and the unstructured creativity manifested in the final design. These scatter and correlation diagrams capture the syntactic relationships between the objects within digital drawings. The findings of this study reveals insight on the nuanced interplay between intuitive, reflective, and retrospective aspects of unstructured creativity during the design ideation process. By unraveling the intricate role of digital design tools and methods this research contributes to a deeper understanding of of how design ideation is generated and manifested through the dynamic interplay of the modulating compounds of drawing objects. It highlights the significance of meaningful, conceptual, and speculative representations that directly relate to the creation of buildable forms and architectural spaces. Through its critical insights, this study paves the way for advancements in the field of CAAD and offers valuable perspective for architectural education and practice.
keywords Digital design, Correlation, Intuitive Design, Speculative Architectural Drawing
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2023_172
id caadria2023_172
authors Bachtiar, Naomi Marcelle and Ortner, F. Peter
year 2023
title A Multiplayer Game for Participatory Planning
doi https://doi.org/10.52842/conf.caadria.2023.2.421
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 421–430
summary This paper presents a digital urban design game, ’Katakita’, as a tool for multiple non-expert participants to generate options for equitable transit-oriented development in Jakarta. It is set in the context of the ongoing MRT development and addresses the risk of transit-induced displacement for the lower income group. A preliminary study is done on the risk level of displacement based on historical data of displacement and vulnerable communities are then mapped out. The potential of using a game as a platform for discussion, evaluation and consensus-building is investigated in this paper. The game permits players to choose different roles to play and make design decisions by placing various building blocks in the multiplayer environment. Game scores such as equitability and profitability are tracked to encourage discussions and negotiations. Game session consisting of participants with relevant profiles has been conducted and results of which will be shared in this paper.
keywords Participatory Planning, Serious Games, Game Design, Multi-criteria Decision Making, Optimisation, Urban Design
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2023_60
id caadria2023_60
authors Bai, Zishen and Peng, Chengzhi
year 2023
title Convolutional Neural Network (CNN) Supported Urban Design to Reduce Particle Air Pollutant Concentrations
doi https://doi.org/10.52842/conf.caadria.2023.1.505
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 505–514
summary PM2.5 has become a significant factor contributing to the haze outbreak in mainland China, which has negative impacts for public health. The current agility of CFD-based modelling to reveal in real-time the changes in PM2.5 concentrations in response to (proposed) changes in urban form limits its practical applications in the design processes. To support urban design for better air quality (AQ), this study presents a machine learning approach to test: (1) that the spatial distribution of PM2.5 concentrations measured in an urban area reflects the area’s capacity to disperse particle air pollution; (2) that the PM2.5 concentration measurements can be linked to certain urban form attributes of that area. A Convolutional Neural Network algorithm called Residual Neural Network (ResNet) was trained and tested using the ChinaHighPM2.5 and urban form datasets. The result is a ResNet-AQ predictor for the city centre area in Beijing which had one of the highest air pollution levels within the Beijing-Tianjin-Hebei region. The urban area covered by the ResNet-AQ predictor contains 4,000 grid cells (approx. 25.3 km x 25.3 km), of which 1,200 (30%) cells were selected randomly for testing. The ResNet-AQ prediction accuracy achieved 87.3% after 100 iterations. An end-use scenario is presented to show how a social housing project can be supported by the AQ predictor to achieve better urban air quality performance.
keywords PM2.5, urban form indicators, image classification, Convolutional Neural Network, open urban data
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2023_436
id ecaade2023_436
authors Bank Stigsen, Mathias, Moisi, Alexandra, Rasoulzadeh, Shervin, Schinegger, Kristina and Rutzinger, Stefan
year 2023
title AI Diffusion as Design Vocabulary - Investigating the use of AI image generation in early architectural design and education
doi https://doi.org/10.52842/conf.ecaade.2023.2.587
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 587–596
summary This paper investigates the potential of Text-to-Image AI in assisting the ideation phase in architectural design and education. The study proposes a structured workflow and tests it with first-year architecture students. It aims to create a comprehensive design vocabulary by using AI-generated images as primary design references and incorporating them into a modelling workflow. The paper implements a process combining specific vocabulary extraction, image generation, 2D to 3D translation, and spatial composition within a six weeklong design course. The findings suggest that such a process can enhance the ideation phase by generating new and diverse design inspirations, improve spatial understanding through the exploration of various design elements, and provide students with a targeted visual vocabulary that helps define design intention and streamlines the modelling process.
keywords Artificial Intelligence, Text-to-Image, Midjourney, Architectural design, Design ideation, 2D to 3D
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2023_124
id ecaade2023_124
authors Battal, Alim and Yazici, Sevil
year 2023
title Computational Design and Analysis of Shell Topologies driven by Different Microstructural Patterns found in Natural Materials
doi https://doi.org/10.52842/conf.ecaade.2023.2.297
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 297–306
summary This study aims to introduce new topological solutions in shell structures by transferring the microstructural characteristics of natural materials into macro-scale structures. The methodology is built on three stages, including investigating the microstructure of natural materials, translating this knowledge into the design of shell structures, and assessing their structural behaviour by using Finite Element Method (FEM) analysis. Different algorithms are operated to undertake different tasks in the process, including the creation of cellular solids, their transformation into shell structures, and structural performance evaluations. Structural analysis results of cellular solid-based shells showed that lattice-based shell structures performed better compared to open-cell foams in terms of their structural strength however, obtained disadvantages in terms of their overall mass and material utilization.
keywords Microstructure, natural materials, shell structures, computational design, structural performance
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_120
id ecaade2023_120
authors Baudoux, Gaëlle and Leclercq, Pierre
year 2023
title Experimenting with a New Proposal for Digital Design Instrumentation: A Wizard of OZ method to study its impact on activity
doi https://doi.org/10.52842/conf.ecaade.2023.1.731
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 731–740
summary This paper is a continuation of a previous research in which we highlighted the limits of the current transition between ideation and digital production, in particular to generate the Building Information Modeling models, and in wich we proposed an alternative transition through the semantic and digital formalisation of the building based on an automatic interpretation of the architectural sketches. We must now study how to test this proposed transition technology. This paper presents the test set up to determine (1) how to extract meaning from the often ambiguous, incomplete and personal graphical traces for generating the building models and (2) how to return these generated models so that they constitute an added value for the design activity. This arrangement consists of a Wizard of Oz type experiment immersing expert designers in this technology for a design capsule. The protocol includes the elaboration of the instrumented work environment and the collection of data via cameras and interviews. These experiments allow to obtain data documenting (1) the activities required to interpret architectural sketches and produce models, and (2) the design activities and human-machine interactions of the architects.
keywords Design, Human-computer interaction, Ideation-CAD transition, Sketch interpretation, Experimentation protocol, Wizard of Oz
series eCAADe
email
last changed 2023/12/10 10:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_16753 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002