CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 794

_id ecaade2023_328
id ecaade2023_328
authors Andreou, Alexis, Kontovourkis, Odysseas, Solomou, Solon and Savvides, Andreas
year 2023
title Rethinking Architectural Design Process using Integrated Parametric Design and Machine Learning Principles
doi https://doi.org/10.52842/conf.ecaade.2023.2.461
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 461–470
summary Artificial Intelligence (AI) has the potential to process vast amounts of subjective and conflicting information in architecture. However, it has mostly been used as a tool for managing information rather than as a means of enhancing the creative design process. This work proposes an innovative way to enhance the architectural design process by incorporating Machine Learning (ML), a type of Artificial Intelligence (AI), into a parametric architectural design process. ML would act as a mediator between the architects' inputs and the end-users' needs. The objective of this work is to explore how Machine Learning (ML) can be utilized to visualize creative designs by transforming information from one form to another - for instance, from text to image or image to 3D architectural shapes. Additionally, the aim is to develop a process that can generate comprehensive conceptual shapes through a request in the form of an image and/or text. The suggested method essentially involves the following steps: Model creation, Revisualization, Performance evaluation. By utilizing this process, end-users can participate in the design process without negatively affecting the quality of the final product. However, the focus of this approach is not to create a final, fully-realized product, but rather to utilize abstraction and processing to generate a more understandable outcome. In the future, the algorithm will be improved and customized to produce more relevant and specific results, depending on the preferences of end-users and the input of architects.
keywords End-users, Architects, Mass personalization, Visual programming, Neural Network Algorithm
series eCAADe
email
last changed 2023/12/10 10:49

_id ascaad2023_134
id ascaad2023_134
authors Salman, Huda; Dounas, Theodoros; Clarke, Connor
year 2023
title Fluency of Creative Ideas in the Digital Age: Exploring Emergent AI Influences on Design Methodology and Visual Thinking in Architectural Education
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 815-832.
summary Research has explored the concept of originality in visual thinking and architectural education, using different methods. The new state of Artificial Intelligence (AI) in architectural design represents another shift from traditional modes of architectural design and education, into a more authentic approach to the digital age. An experiment is designed to highlight the originality of this approach in design thinking and its futuristic trends and impact on education and creativity studies. The intent of the study we present here is twofold: one to revisit key design studies of design exploration and secondly to explore students' design activity while interacting with text-to-image diffusion machine learning (ML) generative models such as Midjourney, DALL-E and Stable Diffusion, as these might have the potential to change the way that architectural students approach the concept stages of designing projects and products. In addition, we are interested in how the new shift in interfaces and modes of stimulus will influence the students' design process and perceptions. Participants in the design process are final year students who had spent at least four years in a school of architecture and can be classified as semi-experienced designers. Further within the evaluation also lies a critique of the diffusion ML tools themselves as producers of architectonic images, rather than complete concepts for architecture that encapsulate spatial, formal, structural arrangements of elements.
series ASCAAD
email
last changed 2024/02/13 14:41

_id sigradi2023_16
id sigradi2023_16
authors Carline Andrade Bastos, Bruno, Pereira Barcelos Ribeiro, Letícia, Celeste Santana Cunha, Aura, Monteiro Xavier de Lima, Mariana and Ribeiro Cardoso, Daniel
year 2023
title Artificial Intelligence Applied to Ideation in Design
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1325–1336
summary This paper is based on two main concepts: Concept Design and Artificial Intelligence (A.I.). According to Leach (2021), people are surrounded by A.I. in various aspects of daily life. This circumstance highlights the importance of creative professionals to interpret A.I. as a Design tool. The objective of this paper is to evaluate how A.I. can be used in early stages of the ideation process for the development of an artifact. The methodological framework is exploratory-descriptive and was developed through a case study. The practical contribution is to exemplify the simultaneous use of AI and Design tools in a simulation of the creative phase of a furniture project, this result was diagrammed to represent a systematization of where each tool fits into the creative process. The theoretical contribution is to add to the debate around this subject.
keywords Artificial intelligence, Concept Design, Creative processes, Design Methods, Ideation
series SIGraDi
email
last changed 2024/03/08 14:08

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id ecaade2023_444
id ecaade2023_444
authors Gan, Amelia Wen Jiun, Dang, Quoc, Western, Blaine and García del Castillo, Jose Luis
year 2023
title AI-Mediated Group Ideation
doi https://doi.org/10.52842/conf.ecaade.2023.2.389
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 389–398
summary Design charrettes and town hall formats are commonly used in the field of architecture to facilitate group ideation at multiple stages across a variety of stakeholders. Group ideation is critical to generate a wide range of solutions while covering all aspects of a defined problem. However, the format of group ideation often poses a multitude of challenges, including a lack of diverse ideation, difficulties in reaching consensus, imbalanced power dynamics, as well as maintaining focus throughout a group session. This paper explores how recent developments in AI frameworks could be utilized and assembled as a creative mediator in an architectural ideation process. The paper describes a framework and digital interface for AI-mediated group ideation where recent advancements in speech recognition, Natural Language Processing and Text-to-Image generation are leveraged to facilitate brainstorming processes. The paper first delves into the design of the framework and digital interface, taking into account in-person, remote and hybrid contexts, followed by the technical workflow and pilot evaluation methods used in this study. The resulting design is informed by AI-Mediated Communication, group dynamics and behavioral theories, along with core User Experience principles. The result takes the form of a visual ideation and transcription tool that allows users to ideate across conversational and visual methods.
keywords AI-Mediated Communication, Ideation, Design Thinking, Natural Language Processing, Human-Computer Interaction
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2023_1
id caadria2023_1
authors Koh, Immanuel
year 2023
title AI-Bewitched Architecture of Hansel and Gretel: Food-to-Architecture in 2D & 3D with GANs and Diffusion Models
doi https://doi.org/10.52842/conf.caadria.2023.1.009
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 9–18
summary Architects such as Le Corbusier, Frank Gehry, Aldo Rossi, and Greg Lynn have implicitly turned culinary formalism into architectural formalism during their careers. How might AI assist in a similar act of bisociation (or conceptual blending)? The paper is the first to explore this food2architecture bisociation explicitly, and specifically with generative adversarial networks (GANs) such as CycleGAN and VQGAN-CLIP, and diffusion models such as OpenAI’s DALL-E 2, Midjourney and DreamFusion (using Stable Diffusion). Instead of using textual input prompts to generate images of architecture only with the discipline’s own vocabulary, the research merges them with the vocabulary of food, thus exploiting their potential in blending their respective conceptual and formal characteristics. While these diffusion models have recently been used by the general public to generate 2D imagery posts on various social media platforms, no existing work has conducted a detailed and systematic analysis on their exclusive capacity in bisociating food and architecture. Imagery outputs generated during two workshops involving 150 designers and non-designers are included here as illustrations. Beginning and ending the paper with the all-familiar fairy tale of the gingerbread house, the research explores the creative design bisociative affordance of today's text-to-image and text-to-3D models by turning culinary inputs into architectural outputs -- envisioning an explicitly computational version of the implicit 'food2architecture' mental models plausibly used by some of the most creative architects.
keywords Deep Learning, Midjourney, DALL-E 2, DreamFusion, Stable Diffusion, GANs
series CAADRIA
email
last changed 2023/06/15 23:14

_id ascaad2023_115
id ascaad2023_115
authors Ragab, Mazen; Khalifa, Mostafa; Elarnaouty, Sahar; Elsafty, Mona
year 2023
title The Design Process Workflow between Robotics Methodology and Artificial Intelligence Toward Optimum Digital Fabrication
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 706-731.
summary Industrial robots and artificial intelligence in design and construction have rapidly transformed the architecture industry in recent years, offering revolutionary opportunities which intern change the execution methods of buildings. This paper explores how implementing robotics methodology and AI in the design process can improve efficiency and accuracy, especially in generating scripts and data. It highlights their benefits and explores the challenges that must be addressed to optimize their use. It also automates specific tasks in the design process, such as model production and streamlining workflow; it is being used to produce intricate prototypes that manipulate materials and shapes that were previously difficult to create. It can produce more complex designs and achieve higher precision and accuracy in their work. Additionally, robotic arms can be programmed to perform repetitive tasks, freeing designers' time for more creative work. Integrating AI into the design process will bring new possibilities for architects to generate and evaluate a wide range of design options more quickly than before, where AI algorithms can analyze data from various sources, including user feedback and environmental data, to create design proposals that meet specific requirements. Also, AI can generate design scripts, providing robotics with infinite tasks. Hence, this research demonstrates the entire computational process, starting from the AI design phase and ending with robotic fabricated products. It explains the importance of embedded intelligent input into the algorithmic design process, enhancing these processes with infinite data and exploring the capability of the direct connectivity between the AI and robotic tasks monitoring to achieve the optimum solution for a specific product. As a result, the research will emphasize these processes' fully documented phases, demonstrating the importance of integrating AI and robotics arm into computational design and fabrication methodologies to enhance the architecture and construction industries for more performative and optimized strategies, providing new tools and methods to create buildings more efficiently. Furthermore, it reduces waste and minimizes errors. Additionally, integrating robotics and AI in fabrication can reduce the overall construction time and costs, making it more feasible for architects to create innovative and sustainable buildings.
series ASCAAD
email
last changed 2024/02/13 14:41

_id ascaad2023_070
id ascaad2023_070
authors Agrawal, Rohan; Karkoon, Rashi
year 2023
title Reinterpreting the Courtyard in Modern Indian Architecture: A Computational Study on Configurations
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 253-274.
summary India is a land of significantly varying cultures, climates, and hence, a myriad of architectural styles and elements. Courtyard, one such element, had emerged as a result of multiple factors including not only climate and its context but the community and its culture as well. It is true reflection of the diversity that the country showcases. From the Havelis in Rajasthan and Gujarat to the Wadas in Maharashtra, it has always been an integral part of Indian architecture and its heritage. However, despite being such deeply rooted in the country's heritage, it has started to go missing in modern construction. Various changes in social, cultural, and climatic patterns have made courtyards either an element of luxury or a lost element of the past. What exists today is a vague notion of this element, whose origin is muddled, and the science behind it is lost. One needs to understand that leaving an empty space or a cut-out is neither the true identity nor the authentic form of a courtyard. This configuration depends on a plethora of factors, one of which is Enclosure, governed by width, length, and height. Configurations formed with varied enclosed proportions not only have a psychological influence on the user owing to volume change but also affect air circulation and temperature change. However, the modern application of courtyards is often theoretically examined, resulting in a lack of practical application of its methodologies and design techniques. Hence, different spatial possibilities create an opportunity to use computational methods such as modeling and simulation techniques to form cases of varying degrees and forms of enclosures. It enables the research to reinterpret courtyards in today’s modern context using computer-aided design for a more data-driven exploration for higher human well-being in designed spaces, optimized microclimate, and a more sustainable building. Thus, the paper aims to understand the age-old concept of the courtyard through a scientific lens with the help of modern computational techniques. It will evaluate different configurations formed through simulations graphically. Through the case of Bengaluru, Karnataka, a modern city that experiences a temperate climate in India, the paper will showcase how changing enclosures and various positions of openings can incorporate the true essence of a courtyard in today’s modern architecture. Further, a similar study of different climatic conditions can bring back the lost heritage to the country in its truest form through a futuristic design process that is not only data-driven but also more human and community-centric.
series ASCAAD
email
last changed 2024/02/13 14:40

_id caadria2023_55
id caadria2023_55
authors Anam, Nadia and Tan, Linus
year 2023
title A Human-Centric Approach to a Design-to-Fabrication Process: A Case of Homeless Housing Design in Melbourne, Australia
doi https://doi.org/10.52842/conf.caadria.2023.2.461
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 461–470
summary Recent advancements in computer-aided design (CAD) and computer-aided manufacturing (CAM) have influenced architects to practice more purposeful design processes. However, most previous research have focused on innovating CAD and CAM technologies and less on how to automate the specific needs of users into design-to-fabrication processes. Therefore, this study applies a human-centric design approach to examine how designers can leverage specific and dynamic individual needs in digital design processes to optimise designing of housing. Using research through design, we tested our user-design-fabrication framework with dynamic needs of homeless individuals and 3D printing construction technologies, to design and prototype homeless housing solutions in Melbourne, Australia. This research demonstrates that specific and dynamic occupant needs are leveraged by designer's increased knowledge of digital design processes for 1) greater manipulation of basic software and machines and 2) provision of more individualised homeless housing design solutions. This suggests that there is a need for design researchers to further investigate the role of designers in such digital design processes working with homeless individuals, to foresee the current move in industry for more client-oriented and individualised homeless housing design solutions.
keywords human-centric design, user-to-design, design-to-fabrication, homeless housing design, client-oriented design
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2023_125
id ecaade2023_125
authors Baºarir, Lale, Çiçek, Selen and Koç, Mustafa
year 2023
title Demystifying the patterns of local knowledge: The implicit relation of local music and vernacular architecture
doi https://doi.org/10.52842/conf.ecaade.2023.2.791
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 791–800
summary As the zeitgeist suggests, the development of novel design output using Artificial Neural Networks (ANNs) is becoming an important milestone in the architectural design discourse. With the recent encounter of the computational design realm with the diffusion models, it becomes even easier to generate 2D and 3D design outputs. Yet, the utilization of machine learning tools within design computing domains is confined to generating or classifying visual and encoded data. However, it is critical to evaluate the untapped potentials of machine learning technologies in terms of illuminating the implicit correlations and links underlying distinct concepts and themes across a wide range of technical domains. With the ongoing research project named “Local Intelligence", we hypothesized that the local knowledge of a certain location might be conceptualized as a distributed network to connect different forms of local knowledge. As the first case of the project, we tried to reinstate a commonality between the local music and vernacular architecture, for which we trained generative adversarial network (GAN) models with the visual spectrograms translated from the audio data of the local songs and images of vernacular architectural instances from a defined geography. The two multi-modal GAN models differ in terms of the inherent convolutional layers and data pairing process. The outcomes demonstrated that both GAN models can learn how to depict vernacular architectural features from the rhythmic pattern of the songs in various patterns. Consequently, the implicit relations between music and architecture in the initial findings come one step closer to being demystified. Thus, the process and generative outcomes of the two models are compared and discussed in terms of the legibility of the architectural features, by taking the original vernacular architectural image dataset as the ground truth.
keywords Local Intelligence, Machine Learning, Generative Adversarial Network (GAN), Local Music, Vernacular Architecture
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia23_v2_220
id acadia23_v2_220
authors Beckett, Richard
year 2023
title Architecture for the Holobiont: Designing Probiotic Interventions
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-229.
summary This paper details a biodigital, probiotic design approach to creating biologically active material systems for buildings. These living materials are beneficial for the health of the human holobiont body through their impact on the human microbiome and potential to shape immunoregulatory health. I frame the research within the context of bio-inte- grated design in architecture and engineered living materials (ELM’s), but with novel focus on microbiome health in urban environments. I introduce the discipline of microbiome science and its associated metagenomic technologies that show how it may be possible for bio-integrated design approaches to reshape the indoor microbiome of buildings. We propose a computational methodology towards designing and fabricating hybrid living building components that serve as both a niche and a source of symbiotically important microbes for buildings. A biodigital approach is presented, driven by current knowledge of the indoor microbiome and indoor environmental conditions that promote beneficial microbial transmissions via mechanisms of touch, ingestion, and respiration. This is presented through an experimental project which develops a human-machine-microbe fabrication process to create a living prototype which is then explored and assessed through an intervention study using a 16S metagenomic analysis.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id ecaade2023_382
id ecaade2023_382
authors Blahut, Sarah and Harnoncourt-Fuchs, Marie-Therese
year 2023
title Mixed Reality Interactive Representations for the Assembly of a Custom Timber Tower
doi https://doi.org/10.52842/conf.ecaade.2023.2.751
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 751–760
summary In recent years, many projects have emerged testing the use of augmented reality (AR) and mixed reality (MR) systems in the custom design and fabrication of architectural projects at a variety of scales using digital and analog tools. This paper presents a series of MR systems for key modes of interactive representations in the assembly process of a custom timber tower, intending to expand an area of research on the use of MR as a critical medium for architectural representation in design customization. The series of MR systems were developed to assist and expedite the physical assembly of customized timber parts and connections for the large-scale tower with a small team of students and carpenters. The MR systems are built as interactive representations of the 3D digital design model, allowing the user to see connections in real-time on physical materials in order to perform collaborative preparation and assembly tasks with analog tools. Each MR system relied on a single user, wearing a HoloLens 2, to use hand gestures to place and interact with 3D Rhino model representations of the tower and individual parts overlaid in the physical context at 1:1 scale. The MR systems deployed as interactive 3D representations were evaluated at three key stages in the material preparation and assembly processes. The project tested the use of MR systems created for a series of tasks that enabled the fast assembly of the tower, which is almost 10 meters high. The outlook explores the perspective of how MR systems augment modes of architectural representation through human interaction, collaboration, and accessibility (also for non-expert users), using digital and analog tools, and how these systems provide greater agency for customization and variety in design and building.
keywords Mixed Reality, Interactive Representation, Customization, HoloLens2, Head-Mounted Display, Digital and Analog, Augmented Reality
series eCAADe
email
last changed 2023/12/10 10:49

_id ascaad2023_035
id ascaad2023_035
authors Cheng, Chi-Li ; Nagakura, Takehiko; Tsai, Daniel
year 2023
title A Synergy of AI Observation and Design Tool: Leveraging Multifaceted AI Techniques for Encoding Human Behaviors and Stories in Space
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 502-516.
summary This paper presents an innovative AI-powered tool aimed at revolutionizing observational methods in architectural design. Its primary objective is to bridge the existing gap between designers and AI predictions, streamlining and enhancing the design process. The tool facilitates the creation of dynamic visualizations that predict human behaviours within 3D design models, adapting seamlessly to design alterations. This prototype showcases the potential for efficient AI-assisted design. The core of our system consists of an AI model that trains on data related to human behavior within environmental contexts. Our user-friendly interface empowers designers to interact dynamically with their 3D modelling tool, akin to playing an interactive chess game. Designers can populate their models with human characters, and the system, in turn, predicts the likely activities of these characters. Observational techniques are pivotal in architectural design, drawing inspiration from influential works such as those by Alexander and Whyte. They provide a comprehensive understanding of how spaces can foster human interaction and help architects, designers, and urban planners make informed decisions that enhance user-friendliness. Nevertheless, two key challenges hinder the effective utilization of this data. Firstly, there is a lack of an intuitive interface that seamlessly integrates with existing tools. Designers often struggle to translate the information into design parameters and interpret the data effectively. Secondly, architects must adapt to evolving living environments and cultural shifts, necessitating real-time observations. However, time constraints and biases impede this process. A solution allowing designers to easily update their data is imperative. Our system comprises three integral components: a pre-trained model adaptable to specific locations, depth prediction and segmentation models for spatial comprehension, and a recognition model for user-designed structures. These features, combined with a user-friendly interface, empower designers to interact intuitively with their models, facilitating more informed and responsive design decisions.
series ASCAAD
email
last changed 2024/02/13 14:34

_id ecaade2023_145
id ecaade2023_145
authors Dortheimer, Jonathan, Schubert, Gerhard, Dalach, Agata, Brenner, Lielle Joy and Martelaro, Nikolas
year 2023
title Think AI-side the Box! Exploring the Usability of text-to-image generators for architecture students
doi https://doi.org/10.52842/conf.ecaade.2023.2.567
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 567–576
summary This study examines how architecture students use generative AI image generating models for architectural design. A workshop was conducted with 25 participants to create designs using three state-of-the-art generative diffusion models and BIM or 3D modeling software. Results showed that the participants found the image-generating models useful for the preliminary design stages but had difficulty when the design advanced because the models did not perform as they expected. Finally, the study shows areas for improvement that merit further research. The paper provides empirical evidence on how generative diffusion models are used in an architectural context and contributes to the field of digital design.
keywords Machine Learning, Diffusion Models, Design Process, Computational Creativity
series eCAADe
email
last changed 2023/12/10 10:49

_id sigradi2023_472
id sigradi2023_472
authors Fernandez Gonzalez, Alberto and Karastathi, Nikoletta
year 2023
title Weaving and Threading Cellular Automata Geometries for Adaptive Architectural Spaces
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1535–1546
summary This study explores the integration of finite-state machines, known as cellular automata (CA), with the process of weaving to create adaptive architectural environments. By focusing on local interactions within CA and using them as a generator, this research examines how the interactions between environmental factors and CA patterns translate into architectural designs through weaving. The bottom-up approach allows for reprogrammable structures responsive to environmental variables, emphasizing soft materials known for complex mechanical behavior suitable for various applications like soft robotics. Weaving, traditionally involving the interlacing of warp and weft threads, is utilized as a CA translator to build intricate three-dimensional structures. The study simulates spatial complexity in discrete environments and provides a framework for creating adaptable structures. This innovative method presents opportunities for flexible and environmentally responsible architectural solutions.
keywords Cellular Automata, Weaving, Threading, Patterns, Digital Fabrication
series SIGraDi
email
last changed 2024/03/08 14:08

_id ecaade2023_206
id ecaade2023_206
authors Ham, Jeremy
year 2023
title Cross-Domain Representation Reconsidered: Using parametric tools to understand music
doi https://doi.org/10.52842/conf.ecaade.2023.2.801
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 801–810
summary This paper reconsiders the cross-disciplinary connections between music and architecture through ‘Cross-Domain Representation’ (XDR). XDR is defined as the representation of processes or artefacts from one domain within a different domain, as in the representation of music in the spatial domain. Through a case study of five drummers’ improvised responses to a piece of music, the affordances (Norman, 2002) of various methods of XDR reveal new aspects of musical performance. This case study provides an example of how cross-disciplinary practitioners may utilize the tools, methods and media of architectural design to further knowledge in the domain of music in addition to, or as a by-product of creative musico-spatial explorations.
keywords Parametric tools, music and architecture, inter-disciplinary research, cross-domain representation
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia23_v3_91
id acadia23_v3_91
authors Knight, Terry
year 2023
title Teaching Award of Excellence
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary My work is research focused. Broadly speaking, I’m interested in the “How” of creative production, as opposed to the “What”. I ask “How is this?” not “What is this?” I am interested in “How” designs and things are made or become, in the processes or paths to form, whether abstract or material. As a process carried out over time, computation offers a unique means for understanding and describing the “How” of design and making. I explore this potential with shape grammars and, most recently, with making grammars. The unique visual and spatial nature of the rules and computations of these grammars is aimed at unveiling the “How” in design.
series ACADIA
type award
email
last changed 2024/04/17 13:59

_id caadria2023_395
id caadria2023_395
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldaboos, Sarah and Aldabous, Rahaf
year 2023
title Research on the Exploration of Sprayed Clay Material and Modeling System
doi https://doi.org/10.52842/conf.caadria.2023.2.231
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 231–240
summary As a traditional building material, clay has been used by humans for a long time. From early civilisations, to the modern dependence on new technologies, the craft of clay making is commonly linked with the use of moulds, handmade creations, ceramic extruders, etc. (Schmandt and Besserat, 1977). Clay in the form of bricks is one of the oldest building materials known (Fernandes et al, 2010). This research expands the possibilities offered by standardised bricks by testing types of clay, forms, shapes, porosity, and structural methods. The traditional way of working with clay relies on human craftsmanship and is based on the use of semi-solid clay (Fernandes et al., 2010). However, there is little research on the use of clay slurry. With the rise of 3D printing systems in recent years, research and development has been emerging on using clay as a 3D printing filament (Gürsoy, 2018). Researchers have discovered that in order for 3D-printed clay slurry to solidify quickly to support the weight of the added layers during printing, curing agents such as lime, coal ash, cement, etc. have to be added to the clay slurry. After adding these substances, clay is difficult to be reused and can have a negative effect on the environment (Chen et al., 2021). In this study, a unique method for manufacturing clay elements of intricate geometries is proposed with the help of an internal skeleton that can be continuously reused. The study introduces the process of applying clay on a special structure through spraying and showcases how this method creates various opportunities for customisation of production.
keywords Spray clay, Substructure, 3D printing, Modelling system, Reusable
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2023_44
id ecaade2023_44
authors Mayrhofer-Hufnagl, Ingrid and Ennemoser, Benjamin
year 2023
title From Linear to Manifold Interpolation: Exemplifying the paradigm shift through interpolation
doi https://doi.org/10.52842/conf.ecaade.2023.2.419
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 419–429
summary The advent of artificial intelligence, specifically neural networks, has marked a significant turning point in the field of computation. During such transformative times, we are often faced with a dearth of appropriate vocabulary, which forces us to rely on existing terms, regardless of their inadequacy. This paper argues that the term “interpolation,” typically used in deep learning (DL), is a prime example of this phenomenon. It is not uncommon for beginners to misunderstand its meaning, as DL pioneer Francois Chollet (2017) has noted. This misreading is especially true in the discipline of architecture, and this study aims to demonstrate how the meaning of “interpolation” has evolved in the second digital turn. We begin by illustrating, using 2D data, the difference between linear interpolation in the context of topological figures and its use in DL algorithms. We then demonstrate how 3DGANs can be employed to interpolate across different topologies in complex 3D space, highlighting the distinction between linear and manifold interpolation. In both 2D and 3D examples, our results indicate that the process does not involve continuous morphing but instead resembles the piecing together of a jigsaw puzzle to form many parts of a larger ambient space. Our study reveals how previous architectural research on DL has employed the term “interpolation” without clarifying the crucial differences from its use in the first digital turn. We demonstrate the new possibilities that manifold interpolation offers for architecture, which extend well beyond parametric variations of the same topology.
keywords Interpolation, 3D Generative Adversarial Networks, Deep Learning, Hybrid Space
series eCAADe
email
last changed 2023/12/10 10:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 39HOMELOGIN (you are user _anon_125586 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002