CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 743

_id ijac202321308
id ijac202321308
authors Xu, Hang; Tsung-Hsien Wang
year 2023
title A generative computational workflow to develop actionable renovation strategies for renewable built environments: A case study of Sheffield
source International Journal of Architectural Computing 2023, Vol. 21 - no. 3, 516–535
summary Urban building energy modelling (UBEM) is a prevalent research method to examine the multi-scale building to urban renovation in mitigating global energy-related carbon emissions. However, only a few studies delineate a complete workflow from generation to application using UBEM. In particular, to facilitate the designing of sustainable built environments, existing research needs to emphasize the integration of multiscale energy performance evaluation within the design development process for architects and urban planners. The key challenges lie in the need for integrated datasets and incompatibility between software tools required for designing, modelling, and evaluation. This paper presents a comprehensive methodological framework to investigate applicable urban decarbonization strategies. A case study of Sheffield in the UK demonstrates the development of an automated and standardized computational workflow. This data-driven workflow aims to evaluate energy demand and supply scenarios at an urban scale to access the potential of decarbonizing built environments. The workflow is designed to be adaptable to various scales of urban regions, given a suitable geographic information system (GIS) dataset.
keywords Parametric design, urban sustainability, urban building energy modelling, building performance simulation, decarbonization
series journal
last changed 2024/04/17 14:30

_id ecaade2023_426
id ecaade2023_426
authors Adelzadeh, Amin, Karimian-Aliabadi, Hamed and Robeller, Christopher
year 2023
title Wave-edge Modeling Method for Segmented Timber Plate Shell Structures: A computational tool for optimizing the bonding area of CLT joints
doi https://doi.org/10.52842/conf.ecaade.2023.1.301
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 301–310
summary The paper presents an algorithmic modeling tool for segmented timber shell structures made of glued wave-edge CLT plates. The goal is to provide a larger bonding area and thereby higher adhesive strength between plates, especially where a higher tension-resistant capacity is required. In addition to a number of contemporary research for exploring stereotomic modules, the inspiration is taken from the long history of the traditional glued finger joints in carpentry where they are used for providing higher interlocking capacity and adhesive strength. The structural performance of regular and glued finger joints is directly proportional to the bonding area between adjoining elements where they are interlocked and glued. Hence, expanding the shared faces would intrinsically magnify the structural performance of the glued finger joints. The paper presents the modeling method of a material-efficient, grain-informed, and structurally-optimized wedge edge joint system for the multi-shaped shell structures where the wave pattern is chosen for generating smoother fabrication toolpaths compared to any sharp-cornered pattern. The algorithm developed by the authors can efficiently maximize the glue bond by optimizing the wave-edge properties dynamically with respect to the geometric design, material system, and structural analysis within a feedback loop. The wave-edge properties directly affect the material waste and fabrication time and cost; therefore, the production parameters could be directly considered and controlled within the design process. The algorithm is able to produce the structural data model for the direct RFEM structural analysis, and fabrication data for automated production of multitude elements. The paper argues the application possibilities and limitations of the joint system for multi-shaped timber plate shells made of a multitude of geometrically-differentiated timber plates.
keywords Algorithmic Design, Wave-edge Joint System, CLT, Shell Structure, Timber Prefabrication
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2023_70
id caadria2023_70
authors Al-Douri, Firas, Yan, Wei and Jahic, Edin
year 2023
title Campusim: An Integrated Parametric BIM for Campus Design Simulation and Optimization
doi https://doi.org/10.52842/conf.caadria.2023.2.471
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 471–480
summary Although simulation models have been recently employed to model and examine pedestrian behavior in urban areas, comparable research has not been pursued in campus environments despite their importance as a critical area of inquiry. Those models' paucity and methodological limitations suggest investigating new research and design strategies to objectively assess and describe how the qualities of campus spaces and zones influence human behavior and, hence, predict the patterns of users' interaction and space usage. Those patterns and their impact on health have been pointed out as critical to the relationship among public space and quality of life due to Covid-19. There is an urgent need to develop decision support tools that would support interactive design processes and enhance the quality of open space design in terms of sense of space, place-making, and user interaction. To that goal, this study has proposed the integrated parametric BIM-based campus life simulation "CampuSIM" as a method for parametrization of the qualities of pedestrian campus zones and spaces. The study proposed the use of multi-objective optimization methods to fulfill various campus quantifiable and non-quantifiable design objectives. The significance of the proposed tool will result from its potential application in a wide range of complex, dynamic pedestrian behavior scenarios such as flows, social simulations, and design.
keywords Campus Modelling, Campus Master Planning, Campus Design, Parametric Modelling, BIM, Design Optimization
series CAADRIA
email
last changed 2023/06/15 23:14

_id cdrf2023_201
id cdrf2023_201
authors Chunxia Yang, Ming Zhan
year 2023
title Construction of Recreation Behavior Simulation Model of Public Space in Urban Waterfront—Taking Huangpu River in Shanghai as an Example
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_17
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary This study constructs a multi-agent behavior simulation model to explore the quantitative simulation method of waterfront public space. Taking 6 waterfront public space samples along the Huangpu River in Shanghai as research objects, this study first collects environmental data and pedestrian behavior data through field survey, and then analyzes and processes the data to obtain the Spatial Attraction Weight (SWA) that expresses the relationship between pedestrian behavior and spatial elements. Then, based on the Anylogic platform, the pedestrian agent particles expressing people’s characteristics are placed into the simulation environment based on the social force model. They interact in real time to dynamically simulate the pedestrian’s behavior. Finally, fitting verification of the preliminary model is carried out. The qualitative comparison and quantitative correlation analysis are combined to enhance the accuracy. The behavior simulation model of waterfront public space built in the study can more realistically represent the pedestrian's behavior. It can realize the scientific prediction of the future use of waterfront space and provide more detailed reference for problem diagnosis and optimization.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaaderis2023_57
id ecaaderis2023_57
authors De Luca, Francesco and Lykouras, Ioannis
year 2023
title RIS2023 front matter
source De Luca, F, Lykouras, I and Wurzer, G (eds.), Proceedings of the 9th eCAADe Regional International Symposium, TalTech, 15 - 16 June 2023, pp. 1–14
summary Nowadays, sustainability is in the agenda of most of the countries and international organizations. Among the 17 Sustainable Development Goals of the United Nations, Goal 11 Sustainable Cities and Communities sets specific targets for cities to adopt solutions for inclusion, safety, resource efficiency, resilience, mitigation and adaptation to climate change. Furthermore, it is increasingly evident among designers and researchers that design methods and solutions doing less harm or with a neutral effect on the environment are not sufficient anymore. A holistic approach is necessary in designing for a positive effect on climate change, resource depletion, human health and natural systems as a whole to develop sustainable architecture design solutions as well as regenerative and resilient cities. Computational design allows us to develop workflows considering the built environment, humans and natural systems as a whole, by integrating simulations such as climatic, environmental, materiality, energy, behavior and use, and performances such as energy balance, usability, structural, fabrication, comfort, health, and costs, at multiple scales. The symposium and workshops reflected and experimented new concepts, methods, and solutions to create a positive impact on the urban environment and the city, but also on humans and the natural environment, taking advantage of the potential of computational design to integrate performance-driven and simulation-based workflows. Furthermore, the objective of the symposium was to explore the potential of computational design in proposing a new architectural paradigm through performance and simulation. Particular emphasis has been given to research showing innovative holistic, multi-disciplinary, multi-domain, multi-scale, and multi- objective approaches to guide and support the scientific and design community at large to design sustainable cities and communities.
keywords Parametric Design, Simulations, Architecture, Urban Design, Environmental Design
series eCAADe
email
last changed 2024/02/05 14:28

_id ecaade2023_363
id ecaade2023_363
authors Fleckenstein, Julia, Bertagna, Federico, Piccioni, Valeria, Fechner, Mareen, Düpree, Mia, DAcunto, Pierluigi and Dörfler, Kathrin
year 2023
title Revisiting Breuer through Additive Manufacturing: Passive solar-control design strategies for bespoke concrete building envelope elements
doi https://doi.org/10.52842/conf.ecaade.2023.1.527
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 527–538
summary With the IBM Research Center in La Gaude, France (1960-1962), the architect Marcel Breuer pioneered a novel industrial approach towards modular construction using precast façade elements for on-site assembly, combining load-bearing and solar control functions in their configuration. This industrial production method involved a high level of standardization, which was a practical response to the need for rapid and cost-effective construction systems. However, this standardization limited the ability to create custom elements to meet specific local requirements, such as variations in solar exposure. To overcome this limitation, new methods of Additive Manufacturing in Construction (AMC) could enhance design flexibility, allowing for bespoke designs while still maintaining industrialisable production processes. This paper draws inspiration from Breuer's building design with the aim to expand the concept of element prefabrication by incorporating performance-based and locally customized design approaches supported by AMC technology. As such, the authors present the method and results of an experimental case study for multi-scale-differentiation of building envelope elements, which design was informed by solar radiation simulations and AMC-related boundary conditions. The research describes an algorithmic based design-to-production workflow combining computational design and simulation methods using geometry-based graphical methods for solar control and solar radiation simulations for form-based changes, leveraging the potential of Selective Cement Activation (SCA) as an AMC technology. The workflow was tested and evaluated on behalf of the design and additive manufacturing of a building envelope element at full building scale.
keywords additive manufacturing in construction, performance-oriented computational design, passive solar control, climate-aware design, functional hybridization
series eCAADe
email
last changed 2023/12/10 10:49

_id cdrf2023_139
id cdrf2023_139
authors Fuyuan Liu, Min Chen, Lizhe Wang, Zhouyi Xiang, Songhua Huang
year 2023
title Lightweight and Customized Design via Conformal Parametric Lattice Driven by Stress Fields
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_12
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary Additive manufacturing has opened up new opportunities for material-based design and optimization, with lattice materials being a key area of interest. Lattice materials can exhibit superb physical properties, such as high thermal conductivity and excellent energy absorption, and be designed to meet specific design objectives. However, optimizing the use of these materials requires considering geometric constraints and loading conditions. This research explores stress-driven multi-agent system (MAS) to achieve high-performance lattice infilling. The von Mises stress and principal stress are investigated as the infilling environments as they are typical failure evaluation criteria. The feasibility of these approaches is demonstrated through a case study of sport helmet design, where MAS is used to generate conformal lattice structures that meet functional and fabrication requirements. The density distribution and arrangement direction of lattice units are effectively controlled in physical fields. The results demonstrate that both von Mises stress field and principal stress field-driven methods can improve the stiffness of helmets compared to the method that only considers geometrical conformity under the same mass. The paper concludes that stress-driven lattice infilling has the potential to revolutionize material-based design and optimization in additive manufacturing.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2023_272
id ecaade2023_272
authors Jorge, Leonardo, Eyesen, Carolina and Beirao, José Nuno
year 2023
title Design Cost Analysis in a BIM/VPI Framework
doi https://doi.org/10.52842/conf.ecaade.2023.2.217
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 217–226
summary This paper aims to investigate the relations between architectural quality and financial feasibility of the design for constructing a sustainable environment. how is it possible to make the architect a protagonist of the design decision-making process, in which the financial impact on the final result is often most valued? The design process is often the stage of conflicting processes, and in particular, most requirements aiming at design sustainability usually collide with the financial plan and investment feasibility. How can the architect manage these conflicting requirements at early stages of the design process and keep track of their impacts as the design progresses in detail? During the design process, the architect is responsible to generate options seeking to meet the objectives of the stakeholders, while balancing multiple criteria such as sustainability requirements, cost, aesthetics and other. The set of design objectives must not impair the other qualities of the building or subjugate them to the final cost. In this way, we propose a digital tool to assist the architect, based on customer feedback, in different stages of the architectural project. Considering that financial feasibility is an essential design objective, the architect can operate a central role in this process, by balancing design decisions. The method consisted of (1) definition of the calculation models, (2) computational implementation of the tool (composed of a BIM modeling tool and an evaluation module), and (3) carrying out the case study. Initially, we present the framework, with an approach to the different stages of the project, systematized in LOD. Then, the different calculation models were implemented in a BIM/VPI environment, following a modular structure. We show a case study based on a housing project. Finally, we implemented the tool in a professional environment. Once a design program and a maximum investment value is defined for that program, the tool allows to confront construction cost and sustainability objectives (e.g.: designing a nZEB - netZero Energy Building) along the design process at different levels of detail. The flowchart for our BIM/VPI algorithm is presented and discussed in regard to its possible contributions to the production of more sustainable environments.
keywords Performance-based Design, Collaborative/Multi-disciplinary Design, Building Information Modelling, LOD, Algorithmic and Parametric Design, Decision-making
series eCAADe
email
last changed 2023/12/10 10:49

_id cdrf2023_466
id cdrf2023_466
authors Kelton Boyter-Grant, Zhouyang Xin, Ding Wen Bao, Xin Yan, Dan Luo
year 2023
title Weaving Tectonics: Algorithmically Optimised Robotic FRP Weaving of Large Scale Planar Forms
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_39
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary Steel reinforced concrete is a widely used material for constructing large spanning planar building elements due to its strength, durability, and low cost, but its environmental impact, long fabrication time, and relatively low structural performance demonstrate the need for innovation. To address these issues, this study proposes a novel design methodology and fabrication method that integrates robotic Fibre Reinforced Polymer (FRP) woven reinforcement that is optimized using a Multi-Weight Bi-directional Evolutionary Structural Optimization (MW-BESO) algorithm. The optimized FRP reinforcement is then cast in epoxy resin to produce the large scale planar building element. The methodology is evaluated through a Tabletop prototype and other small-scale rapid prototypes, which demonstrate the successes, challenges, and limitations of this approach. The study outlines the material and methodological testing conducted to assess the effectiveness of using the MW-BESO algorithm with robotic FRP weaving and describes the workflow of transforming the resulting 3D MW-BESO geometry into a 2D robotic winding path for fabrication. The research shows that this methodology has the potential to reduce the environmental impact, stimulate innovative design solutions, and streamline the fabrication of large scale building elements, providing a promising avenue for the development of sustainable and efficient construction techniques.
series cdrf
email
last changed 2024/05/29 14:04

_id ijac202321411
id ijac202321411
authors Khodadadi, Anahita
year 2023
title A Generative Design Exploration Methodology for Integration of Structural, Environmental, and User Agencies in an Early Design Stage
source International Journal of Architectural Computing 2023, Vol. 21 - no. 4, 757-780
summary This article presents a generative design exploration methodology utilized to assist designers in problem structuring and decision-making in a multi-disciplinary setting. This novel design exploration methodology is based on the hybridization of a genetic algorithm (GA) and the Theory of Innovative Problem Solving (TRIZ). This methodology allows investigation of unexpected solutions, application of innovative ideas for resolving contradictory design objectives, and continuous interaction between designers and the search engine. In this study, the design case of a mid-rise apartment complex is used to examine the capacity of the proposed multi-agent design exploration method. Accordingly, both quality and numeric performance-based values of the design alternatives, including the visual appearance of the complex and apartments’ shadows over one another, structural and energy efficiency, and life-cycle impact of the building’s structural system, are investigated to demonstrate the usability and benefits of the developed method.
keywords Conceptual design, design exploration, TRIZ, genetic algorithm, multi-objective design, Cross-Laminated Timber (CLT) plates, informed decision-making, life-cycle assessment
series journal
last changed 2024/04/17 14:30

_id caadria2023_390
id caadria2023_390
authors Li, Yu, Li, Lingling and Yue, Naihua
year 2023
title A Surrogate-Assisted Optimization Approach to Improve Thermal Comfort and Energy Efficiency of Sports Halls in Subtropical Climates
doi https://doi.org/10.52842/conf.caadria.2023.1.301
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 301–310
summary Balancing the thermal comfort and energy efficiency has been recognized as a critical issue in sports hall design, which is yet to be properly implemented in early design stages due to the huge computational cost and delayed simulation feedback. This paper develops an accelerated optimization approach for thermal comfort and energy efficiency of sports halls by combining surrogate modelling with evolutionary algorithms. An integrated computational workflow designated for early-stage application was established that consists of Design of experiments, Surrogate modelling, Surrogate-assisted multi-objective optimization, and Multi-criteria decision making. Specifically, a parametric sports hall model was set up for batch physics-based simulations to generate abundant training samples, which was then utilized to develop surrogate models for the rapid prediction of thermal comfort and energy efficiency. The validated surrogate models were eventually linked with evolutionary algorithms to quickly identify the optimal design solution(s). The performance of the developed approach was evaluated against the traditional simulation-based optimization (SBMOO) method. Results indicated that the proposed approach could save 70.91% of total computational time for this case study, whilst achieving better optimized thermal comfort and energy efficiency with a reduction of mean PMV and site EUI by 0.001 and 1.60 kWh/m2/yr versus the SBMOO method.
keywords Thermal comfort, Energy efficiency, Multi-objective optimization, Surrogate model, Sports hall
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2023_300
id caadria2023_300
authors Okhoya, Victor and Bernal, Marcelo
year 2023
title Variability in Machine Learning for Multi-Criteria Performance Analysis
doi https://doi.org/10.52842/conf.caadria.2023.1.149
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 149–158
summary Parametric analysis is emerging as an important approach to building performance evaluation in architectural practice. Since architectural performance has many competing metrics multi-criteria analysis is required to deal effectively with the complexity. However, multi-criteria parametric analysis involves large design spaces that are expensive to compute. Machine learning is emerging as an important design space reduction method for multi-criteria analysis. However, there are many types of machine learning algorithms and architects can benefit from understanding which algorithms perform well on which tasks. Using a mid-rise commercial residential tower project this paper investigates three common machine learning algorithms for performance against three common performance metrics. The algorithms are multi-layer perceptrons, support vector machines, and random forests, while the metrics are site energy, illuminance, and a value function that combines them both. In addition, we seek to understand what factors are most impactful in improving algorithm performance. We investigate four impact factors namely sample size, sensitivity analysis, feature selection, and hyperparameters. We find that multi-layer perceptrons perform best for all three performance metrics. We also find that hyperparameter tuning is the most impactful factor affecting multi-layer perceptron performance.
keywords parametric analysis, machine learning, design space
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2023_377
id ecaade2023_377
authors Zhang, Qiyan, Li, Biao, Li, Hongjian and Tang, Peng
year 2023
title Towards Integration and Hybridization in Urban Generation: An extendable urban generative system for better natural ventilation
doi https://doi.org/10.52842/conf.ecaade.2023.2.379
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 379–388
summary The integration of environmental context and morphological design reflects the complexity and synthesis in the urban and architectural design process. Especially considering sustainability, synthesizing climate impact at the early design stage is a more effective way to achieve improved environmental performance. This paper presents an extendable urban generation framework that can integrate multiple environmental information through the field model and interactively generate urban massing with optimized outdoor natural ventilation. The application and implementation of the framework are shown with a case study of a multi-objective optimization model that integrates wind field and frontal area index (FAI). The proposed system supports expansion to the different urban scales and other design applications, inspiring the promising paths of the more hybrid, integrated, and extendable digital framework and the potential of performance-based design optimization toward a sustainable urban future.
keywords Generative methods, Wind environment evaluation, Performance-driven design, Urban massing generation, Field model
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_71
id ecaade2023_71
authors Austern, Guy, Yosifof, Roei and Fisher-Gewirtzman, Dafna
year 2023
title A Dataset for Training Machine Learning Models to Analyze Urban Visual Spatial Experience
doi https://doi.org/10.52842/conf.ecaade.2023.2.781
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 781–790
summary Previous studies have described the effects of urban attributes such as the Spatial Openness Index (SOI) on pedestrians’ experience. SOI uses 3-dimensional ray casting to quantify the volume of visible space from a single viewpoint. The higher the SOI value, the higher the perceived openness and the lower the perceived density. However, the ray casting simulation on an urban-sized sampling grid is computationally intensive, making this method difficult to use in real-time design tools. Convolutional Neural Networks (CNN), have excellent performance in computer vision in image processing applications. They can be trained to predict the SOI analysis for large urban fabrics in real-time. However, these supervised learning models need a substantial amount of labeled data to train on. For this purpose, we developed a method to generate a large series of height maps and SOI maps of urban fabrics in New York City and encoded them as images using colour information. These height map - SOI analysis image pairs can be used as training data for a CNN to provide rapid, precise visibility simulations on an urban scale.
keywords Visibility Analysis, Machine Learning, CNN, Perceived Density
series eCAADe
email
last changed 2023/12/10 10:49

_id sigradi2023_38
id sigradi2023_38
authors Borges, Marina, Portugal, Ana Paula, Gorges, Diego and Oliveira, Bernardo Virgílio
year 2023
title Urban Performance: Parametric Digital Process for Simulation and Analysis of Occupancy in Regional Centralities Areas of Belo Horizonte
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1633–1644
summary The present study aims to explore the urgent issue of urban expansion and its impact on cities, with a specific focus on the regional centrality areas of Belo Horizonte. The main contribution of this work is the development of a parametric model to assess the environmental impact of intensive occupation in these areas and verify their compliance with sustainable development criteria. The study directly addresses the challenges arising from rapid urbanization, offering a digital approach to analyze and simulate the impact of intensive urban occupation in the regional centrality areas. As a methodology, we used georeferenced data, the Grasshopper parametric modeling software, and the Ladybug plugin for environmental simulations, effectively combining empirical information and computational tools to obtain significant results related to the impacts resulting from the proposed densification.
keywords Urban Data Analysis, Urban Design, Parametric Urbanism, Sustainability, Parametric Modeling.
series SIGraDi
email
last changed 2024/03/08 14:09

_id ascaad2023_084
id ascaad2023_084
authors Borges, Marina; Portugal, Ana Paula; Gorges, Diego
year 2023
title Urban Performance: Parametric Digital Process for Simulation and Analysis of Occupancy in Regional Centralities Area of Belo Horizonte
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 242-252.
summary The present study aims to explore the urgent issue of urban expansion and its impact on cities, with a specific focus on the regional centrality areas of Belo Horizonte. The main contribution of this work is the development of a parametric model to assess the environmental impact of intensive occupation in these areas and verify their compliance with sustainable development criteria. The study directly addresses the challenges arising from rapid urbanization, offering a digital approach to analyze and simulate the impact of intensive urban occupation in the regional centrality areas. As a methodology, we used georeferenced data, the Grasshopper parametric modeling software, and the Ladybug plugin for environmental simulations, effectively combining empirical information and computational tools to obtain significant results related to the impacts resulting from the proposed densification.
series ASCAAD
email
last changed 2024/02/13 14:40

_id ecaade2023_31
id ecaade2023_31
authors Canli, Ilkim, Gursel Dino, Ipek and Kalkan, Sinan
year 2023
title Useful Daylight Illuminance Prediction Under Data Imbalance in an Urban Context
doi https://doi.org/10.52842/conf.ecaade.2023.2.599
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 599–608
summary Optimal daylight illumination can aid sustainable design by improving occupants’ psychological and physical health, visual and thermal comfort and decreasing electrical lighting energy usage in buildings. However, dense urban areas can result in restricted daylight access in buildings. Therefore, daylight analysis considering surrounding buildings is important for implementing daylighting strategies. Useful Daylight Illuminance (UDI) is a performance metric that can quantify the annual illuminance levels within certain illumination classes (UDIfell-short, UDIsupplementary, UDIautonomous, and UDIexceeded). UDI can be predicted using machine-learning (ML) methods. However, the calculated data is typically unevenly distributed, generally following a power-law distribution, which causes ML models to underperform for UDI classes with less data. Simulations can be utilized to increase the less dispersed data in the dataset; however, at the urban scale, the computational cost of collecting simulation data for daylighting analysis makes it difficult to augment data with simulations. To undertake this challenge, in this study, SMOTE (Synthetic Minority Oversampling Technique) was applied to augment data to increase the prediction performance of the ML model. The results showed that augmenting the data in the classes which are unevenly distributed leads to an increase in ML model prediction performance. This method shows that SMOTE can be used to increase the performance of ML models during UDI estimation at the urban scale.
keywords Daylight Illumination, Machine Learning Prediction, Useful Daylight Illuminance, Data Imbalance
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_144
id ecaade2023_144
authors Irsyad, Naufal Andi, Alkadri, Miktha Farid, De Luca, Francesco, Arif, Muhammad and Heinzelmann, Florian
year 2023
title Tropical Responsive Envelopes for Urban Heat Island mitigation in tropical countries
doi https://doi.org/10.52842/conf.ecaade.2023.2.249
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 249–258
summary Since tropical countries present wet and dry seasons all year round, the objective of solar envelopes significantly shifts and aims to minimize the penetration of direct sun access to the buildings, due to high temperatures. As a consequence, the air conditioner (AC) frequently becomes a short-term solution to mitigate a building’s temperature, which unfortunately contributes to an annual increase in energy consumption. Accordingly, shading conditions become considerably relevant for urban form generation in tropical contexts, especially to reduce the UHI effect for tropical high-rise building areas. The concept of tropical responsive envelopes is then proposed not only to create shading for adjacent buildings but also to perform self-building protection that refers to self-shading envelopes. This concept specifically deals with solar-radiation reduction in order to achieve appropriate daylight in both the proposed building and the surrounding context. To do so, a solar protection plane and ray tracing analysis are performed based on shading performance criteria. In parallel, solar radiation simulation is applied to identify potential solar collectors on the building surfaces. This provides architects with a comprehensive method of tackling passive solar design strategy for urban equatorial climates
keywords Solar Envelopes, Shading Envelopes, Self-shading Envelopes, Tropical Responsive Envelopes
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2023_340
id caadria2023_340
authors Kimm, Geoff, White, Marcus and Burry, Mark
year 2023
title Extending Visuospatial Analysis in Design Computing: An Exploration With a Novel GPU-Based Algorithm and Form-Based Codes
doi https://doi.org/10.52842/conf.caadria.2023.1.655
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 655–664
summary This paper responds to a gap observed between the contemporary capacity for calculation and analysis of visibility of built environment features, such as buildings, in digital urban and architectural computational research models and the functionality of off-the-shelf software tools available to professionals. The research investigates the potential of visibility analysis to be embedded and extended within computational-based workflows of software tools to better meet urban design and planning industry needs. We introduce a novel method for visibility calculation that exposes output data for further analysis within a computational workflow and implement it in a game development engine used by software tool providers. Based in our engagement with a local government authority, we then use that method to demonstrate a workflow in the context of form-based building codes in which the visual impact of a building is considered rather than prescriptive limits on dimensions and use. Our results indicate the novel method has substantial performance improvements compared to an alternative mode of visibility calculation and that software providers could more thoroughly integrate and extend visibility analysis to meet industry needs.
keywords design computing, viewsheds, isovists, GPU shader, Unity 3D, genetic algorithm, generative design, form-based building codes
series CAADRIA
email
last changed 2023/06/15 23:14

_id sigradi2023_108
id sigradi2023_108
authors Passos, Aderson, Jorge, Luna, Cavalcante, Ana, Sampaio, Hugo, Moreira, Eugenio and Cardoso, Daniel
year 2023
title Urban Morphology and Solar Incidence in Public Spaces - an Exploratory Correlation Analysis Through a CIM System
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1655–1666
summary The walkability of open spaces has been highlighted in current discussions about the production of designed environments in urban contexts (Matan, 2011). To contribute to this theme, this work selects the environmental comfort of open spaces as its element of study. The production of urban space was investigated, specifically in regard to urban morphology, understanding that city design directly influences environmental comfort (Jacobs, 1996). This work addresses the geographic context of low latitudes, specifically in hot and humid climate zones of Brazil, and, in this context, according to NBR 15220 (national performance standards), shading is one of the main comfort strategies, so solar incidence was the approached environmental phenomenon. Thus, this work presents a digital system that performs exploratory analysis on the correlations between urban form indicators and environmental performance indicators, specifically solar incidence. The method consists of three steps: urban form modeling (1), indicator measurement (2) and correlation analysis (3). In the first stage, different spatial sections of a city in Brazil were represented in the digital environment (1). This work’s implementation instrument is based on a City Information Modeling framework (Beirao et al., 2012). Visual Programming Interface (VPI) and Geographic Information Systems (GIS) tools were used, in addition to a Relational Database Management System (RDBMS). Then, for each urban clipping, the values of morphological indicators and the incidence of solar radiation were measured (2). Based on the values of the indicators, an exploration of their correlation was carried out by statistical methods (3). The results of the correlation analysis and their correspondent scatter plots are presented. Finally, possible applications of the results for the creation of prescriptive urban planning systems are discussed, seeking to promote a sustainable urban environment.
keywords Urban planning, Environmental comfort, Walkability, Urban morphology, Statistical methods.
series SIGraDi
email
last changed 2024/03/08 14:09

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_244077 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002