CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 559

_id architectural_intelligence2023_10
id architectural_intelligence2023_10
authors Cheng Bi Duan, Su Yi Shen, Ding Wen Bao & Xin Yan
year 2023
title Innovative design solutions for contemporary Tou-Kung based on topological optimisation
source Architectural Intelligence Journal
doi https://doi.org/https://doi.org/10.1007/s44223-023-00028-x
summary Tou-Kung, which is pronounced in Chinese and known as Bracket Set (Liang & Fairbank, A pictorial history of Chinese architecture, 1984), is a vital support component in the Chinese traditional wooden tectonic systems. It is located between the column and the beam and connects the eave and pillar, making the heavy roof extend out of the eaves longer. The development of Tou-Kung is entirely a microcosm of the development of ancient Chinese architecture; the aesthetic structure and Asian artistic temperament behind Tou-Kung make it gradually become the cultural and spiritual symbol of traditional Chinese architecture. In the contemporary era, inheriting and developing Tou-Kung has become an essential issue. Several architects have attempted to employ new materials and techniques to integrate the traditional Tou-Kung into modern architectural systems, such as the China Pavilion at the 2010 World Expo and Yusuhara Wooden Bridge Museum. This paper introduces the topological optimisation method bi-directional evolutionary structural optimisation (BESO) for form-finding. BESO method is one of the most popular topology optimisation methods widely employed in civil engineering and architecture. Through analyzing the development trend of Tou-Kung and mechanical structure, the authors integrate 2D and 3D optimisation methods and apply the hybrid methods to form-finding. Meanwhile, mortise and tenon joint used to create stable connections with components of Tou-Kung are retained. This research aims to design a new Tou-Kung corresponding to “structural performance-based aesthetics”. The workflow proposed in this paper is valuable for Architrave and other traditional building components.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id cdrf2023_35
id cdrf2023_35
authors Zexi Lyu, Zao Li, Zijing Wu
year 2023
title Research on Image-to-Image Generation and Optimization Methods Based on Diffusion Model Compared with Traditional Methods: Taking Façade as the Optimization Object
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_4
summary The intersection of technology and culture has become a topic of great interest worldwide, with China's development embracing this integration as an essential direction. One critical area where these two fields converge is in the inheritance, translation, and creative design of cultural heritage. In line with this trend, our study explores the potential of stable diffusion to produce highly detailed and visually stunning building façades. We start by providing an overall survey and algorithm fundamentals of the generative deep learning models used so far, namely, GAN and Diffusion models. Then, we present our methodology for using Diffusion Model to generate architecture façades. We then demonstrate how the fine-tuning is done for Stable Diffusion is done to yield optimal performance and then evaluate four different training methods of SD. We also compare existing GAN based façade generation method with our Diffusion based method. Our results show that our Diffusion-based approach outperforms existing methods in terms of detail and quality, highlighting the potential of stable diffusion in generating visually appealing building façades. This research contributes to the growing body of work on the integration of technology and culture in architecture and offers insights into the potential of stable diffusion for creative design applications.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2023_439
id ecaade2023_439
authors Adelzadeh, Amin, Karimian-Aliabadi, Hamed, Ahlund, Karl and Robeller, Christopher
year 2023
title ReciprocalShell: A hybrid timber system for robotically-fabricated lightweight shell structures
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 651–660
doi https://doi.org/10.52842/conf.ecaade.2023.1.651
summary Reciprocal timber systems have been widely studied, however they have never been directly applied to the segmented timber shell structures as cross bracing of the polygonal topologies. For the first time, this paper presents an innovative hybrid timber system developed for design and construction of the robotically-fabricated lightweight timber shell structures. The paper integrates two configurations of wood beams: polygonal framing and reciprocal bracing. While, the polygonal topology of facets enables a constant distance offset for the thickness of the shell, the reciprocal configuration allows for cross bracing of polygonal frames where diagonals within the polygons cannot directly connect corners due to geometric constraints resulted by the free-form surface structure of shell shapes. Joining the cross-bracing elements in the center of the polygons with a reciprocal node reduces the complexity of the connection system at nodes while demonstrating the high load-bearing capacity of joints to withstand structural loads throughout the structure, compared to connecting 5, 6 or 7 beams in a single point. The article discusses the application and limitations of the timber system while presenting the design-to-assembly process of a case study of the small-scale shell demonstrator with the maximum span of 7.5 meters made of 144 wood elements for each polygonal and reciprocal configurations. The results show that the timber system has a great capacity for the rapid and precise assembly and disassembly of prefabricated timber structures. Generation of similar but different solid elements, allowed for the development of a custom CAD data interface for the automated production of numerous pieces, where simple joint details are applied for both alignment and attachment of beams, reducing the design complexity and facilitate the construction phase. As the result, the fabrication process was completely carried out with only a saw blade in a multi-axis robotic fabrication set up that enables the rapid, precise, and accurate cuts and grooves. Both timber configurations generate a uniform distribution of beam size, meaning that the production process created only a minimal amount of offcuts that allows for the use of simple and cost-efficient, short solid wood pieces.
keywords Hybrid Timber System, Reciprocal Shell, Robotic Fabrication, Timber Shell, Lightweight Structures
series eCAADe
email
last changed 2023/12/10 10:49

_id ascaad2023_024
id ascaad2023_024
authors Afshar, Sepehr; Eshaghi, Sarvin; Kim, Ikhwan; Afshar, Sana
year 2023
title Leveraging Landscape Architecture and Environmental Storytelling for NextGeneration Gaming Experiences: A Holistic Approach to Virtual World Design
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 639-651.
summary Designing a virtual environment within a digital game occupies a large part of the design procedure, requiring holistic attention and a broad arrangement of the game constituents. Considering other design disciplines, they occupy a unified design methodology; however, a comprehensive literature review reveals the lack of the intended design methodology in the digital game domain's virtual environment development, despite a currently proposed theoretical methodology trying to dissolve the issue. Hence, this research aims to determine the industry's requirements and provide a set of assets included in current digital games as an initial step of providing such a design methodology for the domain. In this regard, the researchers reverse-engineered ten selected digital games, understanding the current condition of digital games via adopting the mentioned currently available design methodology. This dataset reveals a lack in the assets of the story layer in the recent digital games, despite their focus on being story-based. This dilemma leads to long text or speech conversations between game characters, disrupting the players while following the game. The current design focuses on environmental resources only, however, as a virtual landscape, the story needs to be reinforced to be a balanced and well-designed game. Hence, increasing the ratio of the assets in this layer will advance the games' interactivity. Also, as future work, this data set could pave the way for a digital game industry design tool regarding the virtual environment.
series ASCAAD
email
last changed 2024/02/13 14:34

_id ecaade2023_74
id ecaade2023_74
authors Agkathidis, Asterios, Jourdan, David, Song, Yang, Kanmani, Arathi and Thomas, Ansha
year 2023
title Four-Dimensional Printing on Textiles Evaluating Digital File-to-Fabrication Workflows for Self-Forming Composite Shell Structures
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 491–498
doi https://doi.org/10.52842/conf.ecaade.2023.1.491
summary This design-led research investigates the development of self-forming wearable composite structures by printing embossed patterns out of flexible filament on pre-stretched textiles and releasing the stress after the printing has been completed, whereby time becomes the fourth dimension of the printing process. In particular, the study presents and compares three methods of ‘file-to-fabrication’ techniques for generating self-forming textile shell structures: The first is based on modified geometrical patterns in relation to curvature analysis, the second on printed patterns related to their stress line simulation and the third on an analysis of the anisotropic shrinking behaviour of stripe patterns. The findings emphasize the advantages and challenges of each method as well as present a comparative table chart highlighting the relationship between material properties, pattern geometry and the formal vocabulary of the composite shells.
keywords 4D printing, additive manufacturing, textile wearables, digital materiality
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_89
id ecaade2023_89
authors Ahmadpanah, Hooshiar, Haidar, Adonis and Latifi, Seyed Mostafa
year 2023
title BIM and Machine Learning (ML) Integration in Design Coordination: Using ML to automate object classification for clash detection
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 619–628
doi https://doi.org/10.52842/conf.ecaade.2023.2.619
summary Amongst the countless benefits of BIM, clash detection appears to be one of the most recognized ones. This is due to the automated manner in which clashes can be detected in the design stage in comparison to the cumbersome drawing-based clash detection applied in traditional design coordination. When BIM clash detection software, such as Navisworks or Solibri, is used, thousands of clashes can be detected automatically, and a report is generated containing a list of all the clashes with an image of each clash. In most cases, a large number of irrelevant/ignorable clashes can be found, making it extremely difficult and time-consuming to classify those clashes in order to assign responsibilities to manage those clashes, and more importantly specifying which clashes are relevant and which are not. Therefore, finding an automated machine-enabled method to classify clashes into relevant and irrelevant appears to be indispensable. This paper provides the first step towards this automation by developing a Machine Learning (ML) algorithm capable of recognizing the types of elements from images that are originated from the clash detection report. To achieve this, a Deep Learning (DL) algorithm called ‘YOLO’, that is based on object recognition, is developed, and a set of various images indicating different kinds of clashes are used as the dataset. Using the “Makesense” platform, the images are labeled into different categories to feed the algorithm. The algorithm was able to recognize trusses and beams from the images saved in the data set, which is the first step towards object classification. The paper contributes to the knowledge by, firstly, enabling the clashes to be classified based on images rather than numeric information data, and secondly, by applying the DL algorithm that is used in many author industries in the context of clash detection within a construction project.
keywords BIM, Clash Detection, Machine Learning (ML), Deep Learning, Image Recognition
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_311
id ecaade2023_311
authors Akbar, Zuardin, Ron, Gili and Wortmann, Thomas
year 2023
title Democratizing the Designer’s Toolbox: Adopting free, open-source, and platform-agnostic tools into computational design teaching
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 41–50
doi https://doi.org/10.52842/conf.ecaade.2023.1.041
summary This paper proposes a computational design education approach where students learn to develop their own geometric and logical workflows beyond specific software and platform. The course’s objectives are to familiarize architecture students with computational geometry, foster computational thinking that stays relevant over time, and promote democratized design tools through computation. Over a semester, we taught students to work directly on coordinates or numerical representations by utilizing 3-Dimensional (3D) computer graphics programming rather than learning 3D modeling software that rapidly goes out of style. This paper outlines our teaching methods to introduce the technology stack, design algorithm development, open-source or free tools implementation, and user experience – interface design. This paper also reviews the student’s final projects to deliver interactive web-browser applications for architectural design of varied scales and compares them according to four evaluation parameters. The paper culminates with the project's critical assessment and students' feedback to evaluate our approach and suggest an outlook for future development.
keywords Computational Design, Algorithmic Design, Education, Design Tool, Platform-Agnostic Software, Open Source, Democratized Design
series eCAADe
email
last changed 2023/12/10 10:49

_id ascaad2023_075
id ascaad2023_075
authors Aljhadali, Abdulrahman; Megahed, Yasser; Gwilliam, Julie
year 2023
title Artificial Intelligence (AI) and Machine Learning (ML) in Practice: A Comprehensive Investigation into the Utilization of Generative Artificial Intelligence (AI) and Machine Learning (ML) in Architectural Practice
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 324-343.
summary This study offers a comprehensive investigation into the utilization of artificial intelligence (AI) and machine learning (ML) technologies within architectural practices. Since the introduction of computer-aided design (CAD), technology has had a significant impact on the way architects conduct their work. This study explores the potential of AI/ML in actual architectural workflows, with a particular emphasis on the capacity of deep neural networks to assist in the design process.The outcome will help to develop a clearer picture of the opportunities and barriers associated with AI for architects; they will also inform the prioritization of focus for future development of this technology in architectural practice, as well as identifying the specific tasks and project phases in which ML could play a role. This research reviewed literature to explore various approaches for applying AI/ML technologies within the field of architecture. Also , complemented by a number of interviews to investigate the ways in which participants are currently using AI/ML in their work, framing the current feedback and the future potential of AI/ML technologies in architecture. The data collection methods adopted involved semi-structured one-on-one interviews with professionals from multi-regional architecture firms and AI developers. The architects interviewed exhibited diverse ways of benefiting from AI/ML technology, with varying approaches and some common trends. The findings demonstrate that AI has played a pivotal role in expediting the design process and enhancing visualization within the field. However, it has also raised concerns, particularly in the realm of privacy.
series ASCAAD
email
last changed 2024/02/13 14:40

_id ecaade2023_51
id ecaade2023_51
authors Aman, Jayedi, Kim, Jong Bum and Verniz, Debora
year 2023
title AI-Integrated Urban Building Energy Simulation: A framework to forecast the morphological impact on daylight availability
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 369–378
doi https://doi.org/10.52842/conf.ecaade.2023.2.369
summary The research presents a computational framework to investigate the relationship between urban morphology and environmental performance metrics of buildings. Understanding how buildings interact with their surroundings is crucial in optimizing environmental performance. Current urban building energy simulation methods (UBES) often overlook the complex interaction between urban morphology and environmental performance across a diverse set of attributes, resulting in inaccuracies. The proposed framework integrates machine learning (ML) with physics-based simulations and includes Parametric Building Information Modeling, iterative physics-based simulations, Multi-Objective Optimization, and a graph neural network. The framework leverages the detailed analysis capabilities of physics-based simulations and the data processing strengths of ML to analyze urban morphological attributes. Evaluations indicate that the framework enhances prediction accuracy while considering the influence of urban morphology on environmental performance.
keywords Urban Morphology, Urban Building Energy Modeling, Graph Neural Networks, Sustainable Urban Development, Environmental Performance, Multi-objective Optimization
series eCAADe
email
last changed 2023/12/10 10:49

_id sigradi2023_367
id sigradi2023_367
authors Andia, Alfredo
year 2023
title Programmable Bio-Matter Architecture
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1797–1808
summary Building with biology will be the most important platform to transform our planet in the next decades. Since 2006, Synthetic Biology (SynBio) has surfaced as the fastest-growing technology in human history. This field is allowing us to manipulate the genetic code, biology, food, and vaccines and ultimately aiming to reshape the very essence of existence. In this paper, we assess the development of SynBio and its impacts on architectural thinking, materials, and particularly in Architectural fiction. In this paper, we argue that there are at least three waves of impacts of SynBio technology in construction: Biomaterials, Engineered Living Materials (ELM), and Bio-Matter or biobots. We explore architectural thinking's domain, involving architects and engineers in research and startups. We embrace the architectural envisioning role and present our design work utilizing observed biological growth algorithms. Synthetic Biology urges questioning not only biomaterials but also the field's overarching vision.
keywords Synthetic Biology, Bio-Architecture, Climate Change, Biotechnology, Architecture
series SIGraDi
email
last changed 2024/03/08 14:09

_id architectural_intelligence2023_3
id architectural_intelligence2023_3
authors Areti Markopoulou & Oana Taut
year 2023
title Urban mining. Scoping resources for circular construction
source Architectural Intelligence Journal
doi https://doi.org/https://doi.org/10.1007/s44223-023-00021-4
summary Operating with an abundance mindset – rather than from a place of “scarcity” – is a new paradigm, relevant to the practices of design and construction, which expands the definition of “resources” as well as where resources, both raw and non-raw materials, can be found and “mined”. Within three scales of design and planning, the current research – developed at the Institute for Advanced Architecture of Catalonia (IAAC) – examines the applications of computational technologies and life cycle assessment with the goal of setting up protocols for enhancing processes of urban mining and material reuse in future circular construction. In the material scale (i), selected projects experiment with up-cycled waste for the creation of new engineered composites for construction. In the building scale (ii), robotic technologies and computer vision are used to scan and sort the materials from existing buildings or demolition sites. Finally, in the urban scale (iii), google images, satellite data and ML are used to index the existing material stock in building façades in cities. The research calls for agents involved in design, planning and construction to shift their focus to the anthroposphere as a source of, rather than just a destination for, processed goods. The concept of “urban mining” is revisited to manage the material stock in urban systems and the use of anthropogenic resources in new production cycles. Through a multi-scalar approach, the outcome challenges the foundation of our material practices, presenting the potential to disrupt linear patterns of design and making in the built environment.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id sigradi2023_177
id sigradi2023_177
authors Azambuja Varela, Pedro and Sousa, José Pedro
year 2023
title Stereotomic BIM. A plugin for designing low carbon architecture
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1253–1262
summary This paper focuses on the development of a BIM (Building Information Modeling) tool for stereotomic design, aiming to create a bridge between academic research and practical implementation of stereotomy in the construction sector. The creation of a stereotomic BIM tool enhances the use of compressive materials within funicular shapes to minimize reliance on carbon-intensive steel-reinforced concrete slabs. The proposed BIM tool enables architects to design and visualize stereotomic systems, addressing challenges such as architectural specificity and technological expertise. Architects can work from initial shape concepts to the precise geometric definition of elements, benefiting from the interactive adjustment of subdivisions and considering materialization and assembly specifics. This approach aligns with the Industry 4.0 paradigm, contributing to both sustainable development goals and the evolution of construction practices.
keywords BIM adoption, Stereotomy, Generative design, Parametric design, Sustainability
series SIGraDi
email
last changed 2024/03/08 14:08

_id ecaade2023_125
id ecaade2023_125
authors Baºarir, Lale, Çiçek, Selen and Koç, Mustafa
year 2023
title Demystifying the patterns of local knowledge: The implicit relation of local music and vernacular architecture
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 791–800
doi https://doi.org/10.52842/conf.ecaade.2023.2.791
summary As the zeitgeist suggests, the development of novel design output using Artificial Neural Networks (ANNs) is becoming an important milestone in the architectural design discourse. With the recent encounter of the computational design realm with the diffusion models, it becomes even easier to generate 2D and 3D design outputs. Yet, the utilization of machine learning tools within design computing domains is confined to generating or classifying visual and encoded data. However, it is critical to evaluate the untapped potentials of machine learning technologies in terms of illuminating the implicit correlations and links underlying distinct concepts and themes across a wide range of technical domains. With the ongoing research project named “Local Intelligence", we hypothesized that the local knowledge of a certain location might be conceptualized as a distributed network to connect different forms of local knowledge. As the first case of the project, we tried to reinstate a commonality between the local music and vernacular architecture, for which we trained generative adversarial network (GAN) models with the visual spectrograms translated from the audio data of the local songs and images of vernacular architectural instances from a defined geography. The two multi-modal GAN models differ in terms of the inherent convolutional layers and data pairing process. The outcomes demonstrated that both GAN models can learn how to depict vernacular architectural features from the rhythmic pattern of the songs in various patterns. Consequently, the implicit relations between music and architecture in the initial findings come one step closer to being demystified. Thus, the process and generative outcomes of the two models are compared and discussed in terms of the legibility of the architectural features, by taking the original vernacular architectural image dataset as the ground truth.
keywords Local Intelligence, Machine Learning, Generative Adversarial Network (GAN), Local Music, Vernacular Architecture
series eCAADe
email
last changed 2023/12/10 10:49

_id ijac202321301
id ijac202321301
authors Bedarf, Patrick; Anna Szabo; Enrico Scoccimarro; Benjamin Dillenburger
year 2023
title Foamwork: Challenges and strategies in using mineral foam 3D printing for a lightweight composite concrete slab
source International Journal of Architectural Computing 2023, Vol. 21 - no. 3, 388–403
summary This paper presents an innovative design and fabrication workflow for a lightweight composite slab prototype that combines mineral foam 3D printing (F3DP) and concrete casting. Non-standardized concrete elements that are geometrically optimized for resource efficiency often result in complex shapes that are difficult to manufacture. This paper extends the research in earlier studies, showing that F3DP can address this challenge. F3DP is used to construct 24 stay-in-place formwork elements for a lightweight, resource-efficient ribbed concrete element with a 2 × 1.3 m footprint. This advancement highlights the improved robotic F3DP setup, computational design techniques for geometry and print path generation, and strategies to achieve near-netshape fabrication. The resulting prototype shows how complex geometries that were previously costprohibitive can be produced efficiently. Discussing the findings, challenges, and future improvements offers useful perspectives and supports the development of this resourceful and sustainable construction technique.
keywords robotic 3D printing, mineral foam, stay-in-place formwork, concrete composite, SDG12 responsible consumption and production
series journal
last changed 2024/04/17 14:30

_id sigradi2023_39
id sigradi2023_39
authors Borges, Marina, Karantino, Lucas and Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 397–408
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to value pedestrians and consequently active mobility, giving priority to the concepts of the Transportation Oriented Development (TOD) methodology. Although the Master Plan (BELO HORIZONTE, 2019) proposes that areas located in regional centralities are enhancing active mobility, can residents actually benefit from these resources at a walkable distance to access basic services? Thus, the aim of this research is to utilize digital technologies to visualize, analyze, and assess pedestrians' access conditions to commerce and basic services, identifying areas lacking infrastructure. The goal is for the model to serve as a reference for the development of public policies. To achieve this, metadata was used for parametric modeling to study walkability in the peripheral region of the city of Belo Horizonte.
keywords Walkability, Urban Data Analysis, Urban Design, Parametric Urbanism, Algorithmic Logic
series SIGraDi
email
last changed 2024/03/08 14:07

_id ascaad2023_083
id ascaad2023_083
authors Borges, Marina; Karantino, Lucas; Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 293-304.
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to prioritize pedestrians and promote active mobility, giving them priority and encouraging walking, as presented in the concepts of TOD (Transit-Oriented Development). Although the master plan suggests that areas located in the regional centrality of Belo Horizonte are enhancing active mobility, residents may still need to use individual or public transportation due to long distances when accessing basic services on foot. In peripheral areas of the city of Belo Horizonte, are there favorable walkability conditions for the residents? Thus, the aim of this research is to use digital technologies to investigate, through a parametric performative model, the quality of the existing routes, with a focus on the peripheral areas of the city. Based on the results obtained, it will be possible to conclude whether there are discrepancies between what is presented in the master plan and, ultimately, to identify potential solutions for the area based on metrics that qualify and enhance active mobility. These solutions may vary according to the specific needs of the location.
series ASCAAD
email
last changed 2024/02/13 14:40

_id acadia23_v2_104
id acadia23_v2_104
authors Brandiæ Lipiñska, Monika; Dade-Robertson, Martyn; Zhang, Meng
year 2023
title Space Architecture, Biotechnology, and Parametric Processes: Design through Assembly, Growth, and Fabrication Parameters in an Iterative Feedback Loop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 104-115.
summary Resource scarcity in extraterrestrial environments, like the Moon or Mars, imposes limitations on construction, necessitating resource and energy optimization. To respond to these challenges, this paper explores the development of a parametric framework, bridging the fields of space architecture, biotechnology, and parametric processes, allowing for the development of energy and resource-efficient structural components. The foundation for the framework is built upon ongoing research conducted in collabo- ration with NASA Ames Research Center, focusing on a mycelium-based aggregation of Martian regolith for construction. Due to the nature of the material and targeted environ- ment, the proposed parametrization process is based on specific assembly, growth, and fabrication requirements. The framework incorporates a feedback loop between design, computational simulation, and physical testing. The interaction of multiple systems, imple- mented through an iterative process and hybrid design approaches, enable continuous design refinement. These systems incorporate inputs from the interconnected disciplines that pose challenges when evaluated separately. The paper recognizes the challenge of identifying crucial parameters and implicit actions, and bridging the gap between theory and implementation. It calls for further work on programming the parametrization frame- work, and integrating computational simulations and data evaluation. In emphasizing the interdisciplinary nature of future space exploration and architecture, this paper under- scores the significance of integrating diverse disciplines and technologies.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id ascaad2023_090
id ascaad2023_090
authors Busbait, Omar; Reinhardt, Dagmar; Globa, Anastasia
year 2023
title Human-Robot Craft Transfer: Learning from Nabateans Carving Out Methods,Techniques, and Tools
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 154-165.
summary Traditional methods of carving trenches have been used by Nabateans in quarries locations for centuries, including carving out a large block out of a mass solid of sandstone and continuing carving out processes. This research explores the strategies for sculpting and the structural feasibility needed to assist methods of design generation in tangent. It traces tools and processes used in cutting large blocks for stone quarries and rock-cut buildings for efficient and sustainable methods to train an industrial robot. The research aims to support a revival of the historical global phenomenon approach of carved-out buildings through advanced technologies for fabrication. Through knowledge derived from traditional stone cutting, robotic subtractive/additive processes and robotic fabrication and assembly, the paper aims to develop case studies. By reviewing the current state of the art in digital sandstone carving, and prototyping, the paper discusses craftsmanship and technological development through the concept of carved-out in solid, applied in the context of advanced fabrication and robotic adaptation. This paper reports on a parallel study of the traditional methods of cutting a block out of a solid from one side and the robot adoption of the ancient tools and methods by testing processes iteratively; first through manual investigation and secondly through robotic simulation and tooling with Styrofoam as homogeneous material replacement. The paper discusses the results of digital fabrication and novel knowledge for the human–robot craft transfer.
series ASCAAD
email
last changed 2024/02/13 14:40

_id acadia23_v2_282
id acadia23_v2_282
authors Casalnuovo, Gianluca; Zanetti, Erik; Haußer, Tamara; Dörstelmann, Moritz; La Magna, Riccardo
year 2023
title Digital Structural Design for Natural Composites: A Case Study of Willow-Earth Hybrid Construction
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 282-292.
summary As natural resources become increasingly scarce, it becomes crucial to seek solutions that promote circularity and sustainability. Embracing local materials and reinterpreting traditional architectural systems can help align the design of construction systems with these principles. Computational design methods can play a pivotal role in facilitating a transformative approach that supports the development of alternative material systems, their industrialization, and widespread adoption. This paper presents a computational design method for the structural development of a willow-earth composite construction system, aiming to advance the implementation of fully circular and waste-free building techniques through digital construction technologies. The research uses structural principles as a guiding factor for the development of the material system, and employs an integrative co-design approach to manage the reciprocal relationships between structural performance, material system behavior, and fabrication processes. By capitalizing on the advantageous interaction between willow and earth, a material system based on compres- sion-tension dualism is developed. This is achieved through digital studies of mechanical properties and computational analyses that inform the distribution, orientation, and gradation of the materials. The research incorporates feedback loops across multiple disciplines, both digital and analog, enabling a simultaneous consideration of the under- lying correlations. The research showcases the potential to expand the design possibilities for structures constructed with earth and willow composite materials. Through a distinc- tive digital workflow, it presents new avenues for sustainable and circular construction methods. The outcomes are illustrated through digital studies and a full-scale research demonstrator, providing tangible evidence of the research's advancements.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id ecaade2023_49
id ecaade2023_49
authors Chan, Caleb, Pelosi, Antony and Brown, Andre
year 2023
title VR Controlled Remote Robotic Teleoperation for Construction Applications
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 369–376
doi https://doi.org/10.52842/conf.ecaade.2023.1.369
summary The research in this paper addresses the challenges that had to be overcome to create a functioning VR controlled robotic device. We consider what the communication and control systems are needed to deliver such a robotic device. We also ask if teleoperation of a robot using VR provide can provide a sufficiently accurate and responsive means of delivering site construction operations. The resulting aspects that we report on in the paper are the communication issues to be addressed, accuracy and dexterity issues in simulated construction situations, and practical issues such as reducing lag between a VR action and robot reaction.
keywords Robotics, VR, Teleoperation, Construction, Site, Remote
series eCAADe
email
last changed 2023/12/10 10:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_700780 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002