CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 5781

_id ecaadesigradi2019_412
id ecaadesigradi2019_412
authors Leit?o de Souza, Thiago, Fialho, Valéria, Bicalho, Giovany, Schelk, Vinicius and Mendes, Isabella
year 2019
title An Immersive 360° Experience in Rio de Janeiro in the Late 19th Century - The panorama of Victor Meirelles and Henri Langerock
doi https://doi.org/10.52842/conf.ecaade.2019.3.107
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 107-114
summary This essay is related to the research project "The immersive experience in 360°: investigation, representation and digital immersion in the city of Rio de Janeiro in the 19th and 20th centuries", developed at PROURB in FAU-UFRJ, Rio de Janeiro/Brazil. This work will investigate the Panorama of Rio de Janeiro looking for memories and historical truths in its context: Which part represents a historical point of view? Which part is invention? How were the city and its landscape represented on the canvas? As the most well-known Rio de Janeiro's panorama, which project was idealized by the Brazilian painter Victor Meirelles de Lima (1832-1903) and the Belgian photo-painter Henri Charles Langerock (1830-1915), it was exhibited in Brussels 1888, Paris 1889, and Rio de Janeiro 1891-1896, with great recognition in all these cities. This paper will explore this Panorama, its initial studies, its landscape and the architecture depicted, newspapers descriptions of its exhibitions, and mainly, distinguishing among memories, historical truths and verisimilitudes. In order to achieve these objectives, digital and analogical systems of representations, sketches and computer graphics techniques, specially, tridimensional models will be developed and applied.
keywords Panorama of Rio de Janeiro; Immersive experience in 360°; Geolocation; Virtual Reality; Digital Technologies; Cultural Heritage
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id sigradi2005_310
id sigradi2005_310
authors Malveira de Araujo, Tereza Cristina; Angela Maria Gabriella Rossi
year 2005
title Virtual design studio: Vygostky and virtual interaction
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 310-314
summary As the Web grows in the Education area, the new Information and Communication Technologies have been introduced to improve quality in remote education, and more interaction among students through a collaborative environment that helps the learning process. In architecture, many experiences have occurred among schools, giving their students the opportunity to experience this new reality. Like a virtual “field trip”, students with different cultures and oriented under different methodologies, have the opportunity to be part of an inter-institutional group to design together. The social-history theories of Lev Vygotsky (1896-1934), Russian psychologist that dedicated his life to education, seams to fit the new forms of virtual interaction among students. The aim of this article is to introduce the Vygotsky´s theories and its suitability as a pedagogical support to the Virtual Design Studios in architectural schools. [Full paper in Portuguese]
series SIGRADI
email
last changed 2016/03/10 09:55

_id ddss2006-hb-467
id DDSS2006-HB-467
authors A. Fatah gen. Schieck, A. Penn, V. Kostakos, E. O'Neill, T. Kindberg, D. Stanton Fraser, and T. Jones
year 2006
title Design Tools for Pervasive Computing in Urban Environments
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 467-486
summary In this paper we report on ongoing research in which the implications of urban scale pervasive computing (always and everywhere present) are investigated for urban life and urban design in the heritage environment of the city of Bath. We explore a theoretical framework for understanding and designing pervasive systems as an integral part of the urban landscape. We develop a framework based on Hillier's Space Syntax theories and Kostakos' PSP framework which encompasses the analysis of space and spatial patterns, alongside the consideration of personal, social and public interaction spaces to capture the complex relationship between pervasive systems, urban space in general and the impact of the deployment of pervasive systems on people's relationships to heritage and to each other. We describe these methodological issues in detail before giving examples from early studies of the types of result we are beginning to find.
keywords Urban space, Pervasive systems, Urban computing, Space Syntax, Interaction space
series DDSS
last changed 2006/08/29 12:55

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
doi https://doi.org/10.52842/conf.caadria.2021.2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
doi https://doi.org/10.52842/conf.caadria.2021.1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id ijac202018304
id ijac202018304
authors Aagaard, Anders Kruse and Niels Martin Larsen
year 2020
title Developing a fabrication workflow for irregular sawlogs
source International Journal of Architectural Computing vol. 18 - no. 3, 270-283
summary In this article, we suggest using contemporary manufacturing technologies to integrate material properties with architectural design tools, revealing new possibilities for the use of wood in architecture. Through an investigative approach, material capacities and fabrication methods are explored and combined towards establishing new workflows and architectural expressions, where material, fabrication and result are closely interlinked. The experimentation revolves around discarded, crooked oak logs, doomed to be used as firewood due to their irregularity. This project treats their diverging shapes differently by offering unique processing to each log informed by its particularities. We suggest here a way to use the natural forms and properties of sawlogs to generate new structures and spatial conditions. In this article, we discuss the scope of this approach and provide an example of a workflow for handling the discrete shapes of natural sawlogs in a system that involve the collection of material, scanning/digitisation, handling of a stockpile, computer analysis, design and robotic manufacturing. The creation of this specific method comes from a combination of investigation of wood as a material, review of existing research in the field, studies of the production lines in the current wood industry and experimentation through our in-house laboratory facilities. As such, the workflow features several solutions for handling the complex and different shapes and data of natural wood logs in a highly digitised machining and fabrication environment. This up-cycling of discarded wood supply establishes a non-standard workflow that utilises non-standard material stock and leads to a critical articulation of today’s linear material economy. The project becomes part of an ambition to reach sustainable development goals and technological innovation in global and resource-intensive architecture and building industry.
keywords Natural wood, robotic fabrication, computation, fabrication, research by design
series journal
email
last changed 2020/11/02 13:34

_id sigradi2003_020
id sigradi2003_020
authors Abarca, R., Díaz, S. and Moreno, S.
year 2003
title Desarrollo de material informatico-educativo para la enseñanza de la geometría a estudiantes de diseño (Development of IT-based educational material for the teaching of geometry to students of design)
source SIGraDi 2003 - [Proceedings of the 7th Iberoamerican Congress of Digital Graphics] Rosario Argentina 5-7 november 2003
summary This paper is born as an answer to the meaningful learning difficulties and academic performance in Spatial and Flat Geometry course on second year Design School at Universidad de las Americas University, Santiago de Chile. The problem is faced from the potentiality that digital environment gives us in representation, display options, shape and projection testing, analysis and non visual accounts to teach flat and spatial geometry within the receptors' codes and coherent with designer's own language.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2004_paper14
id ascaad2004_paper14
authors Abdel Mohsen, Ashraf M.
year 2004
title Future Space Cities@Universe (Digi-City Vision)
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary A template for the future city has been carved into the heavens. Ever since the beginning of humankind, we have looked to the sky for the opportunity to make a new start in our imperfect world. Between the stars and the darkness we have imagined utopias beyond the reach of our travel technologies, colonizing space with our fantasies. Now we are in the first stages of an electronic revolution, but in the future 50 years later we will be in a mega-digital era which we have to predict, work and search for the reality of that future. Our planet is recently over loaded with different problems, such as pollution, population, nature disasters. Our vast speed of technology and the curiosity of discovering the invisible, leads to study and find out the nearest Future Space Architecture. With the vast acceleration of technology and digital life, we should start to predict the future architecture on, into or behind the Earth. This paper is one of many perceptions of life and architecture behind the Earth in the digital era, Digi-City Vision.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ascaad2004_paper11
id ascaad2004_paper11
authors Abdelfattah, Hesham Khairy and Ali A. Raouf
year 2004
title No More Fear or Doubt: Electronic Architecture in Architectural Education
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary Operating electronic and Internet worked tools for Architectural education is an important, and merely a prerequisite step toward creating powerful tele-collabortion and tele-research in our Architectural studios. The design studio, as physical place and pedagogical method, is the core of architectural education. The Carnegie Endowment report on architectural education, published in 1996, identified a comparably central role for studios in schools today. Advances in CAD and visualization, combined with technologies to communicate images, data, and “live” action, now enable virtual dimensions of studio experience. Students no longer need to gather at the same time and place to tackle the same design problem. Critics can comment over the network or by e-mail, and distinguished jurors can make virtual visits without being in the same room as the pin-up—if there is a pin-up (or a room). Virtual design studios (VDS) have the potential to support collaboration over competition, diversify student experiences, and redistribute the intellectual resources of architectural education across geographic and socioeconomic divisions. The challenge is to predict whether VDS will isolate students from a sense of place and materiality, or if it will provide future architects the tools to reconcile communication environments and physical space.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ascaad2004_paper5
id ascaad2004_paper5
authors Abdelhameed, Wael A.
year 2004
title A Java Program Model for Design-Idea Exploration in Three Dimensions
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary Visual Perception of depictions is the basis of the act of imagining employed in visual design thinking of design process, and consequently in design-idea exploration. Digital-media use plays a significantly important role in these exploration processes. The underlying assumption of the research is that Visual Perception affects Design-Idea Exploration processes. The research investigates and sheds more light on the processes of Visual Perception, which architects use in mass exploration of design ideas. The research is a part of a series that presents a Java program based on creating 3d shapes, in order for architects to explore initial shapes related to design ideas. The initial version of the program, which is a part of another research, creates 3d shapes through controlling their dimensions and insertion point. Functions of painting, controlling the light position, and shading are added to the program that is presented in this research. The research discusses Design-Idea Exploration and Visual Perception and their correlation. The added features of the program that is used as a design medium are also presented and linked to the investigated areas.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_532
id 2006_532
authors Abdelhameed, Wael
year 2006
title How Does the Digital Environment Change What Architects Do in the Initial Phases of the Design Process?
doi https://doi.org/10.52842/conf.ecaade.2006.532
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 532-539
summary Some researchers have tried to answer the question: do we need to think differently while designing in terms of the digital environment? This methodological question leads to another question: what is the range of this difference, if there is one? This research investigates the range of changes in how architects conduct and develop the initial design within the digital environment. The role offered by the digital environment in visual design thinking during conceptual designing through shaping: concepts, forms, and design methods, is identified and explored.
keywords Conceptual designing; architects; digital environment; design process; visual design thinking
series eCAADe
email
last changed 2022/06/07 07:54

_id 4cd1
authors Abdelmawla, S., Elnimeiri, M. and Krawczyk, R.
year 2000
title Structural Gizmos
doi https://doi.org/10.52842/conf.acadia.2000.115
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 115-121
summary Architects are visual learners. The Internet has enabled interactive learning tools that can be used to assist in visual thinking of structural concepts, especially at the introductory levels. Here, we propose a visual approach for understanding structures through a series of interactive learning modules, or ’gizmos’. These gizmos, are the tools that the student may use to examine one structural concept at a time. Being interactive, they offer many more possibilities beyond what one static problem can show. The approach aims to enhance students’ visual intuition, and hence understanding of structural concepts and the parameters affecting design. This paper will present selected structural gizmos, how they work, and how they can enhance structural education for architects.
series ACADIA
email
last changed 2022/06/07 07:54

_id ascaad2021_000
id ascaad2021_000
authors Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.)
year 2021
title ASCAAD 2021: Architecture in the Age of Disruptive Technologies - Transformation and Challenges
source Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021.
summary The ASCAAD 2021 conference theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration. We have encouraged researchers and scholars in the CAAD community to identify relevant visions and challenging aspects such as: from the tangible to the intangible, from the physical to the phenomenological, from mass production to mass customization, from the artifact-centered to the human-centered, and from formalistic top-down approaches to informed bottom-up approaches. A parallel evolving impact in the field of computational design and innovation is the introduction of disruptive technologies which are concurrently transforming practices and businesses. These technologies tend to provoke multiple transformations in terms of processes and workflows, methodologies and strategies, roles and responsibilities, laws and regulations, and consequently formulating diverse emergent modes of design thinking, collaboration, and innovation. Technologies such as mixed reality, cloud computing, robotics, big data, and Internet of Things, are incessantly changing the nature of the profession, inciting novel modes of thinking and rethinking architecture, developing new norms and impacting the future of architectural education. With this booming pace into highly disruptive modes of production, automation, intelligence, and responsiveness comes the need for a revisit of the inseparable relation between technology and the humanities, where it is possible to explore the urgency of a pressing dialogue between the transformative nature of the disruptive on the one hand and the cognitive, the socio-cultural, the authentic, and the behavioral on the other.
series ASCAAD
last changed 2022/05/19 11:45

_id ecaade2018_370
id ecaade2018_370
authors Abdelmohsen, Sherif, Massoud, Passaint, El-Dabaa, Rana, Ibrahim, Aly and Mokbel, Tasbeh
year 2018
title A Computational Method for Tracking the Hygroscopic Motion of Wood to develop Adaptive Architectural Skins
doi https://doi.org/10.52842/conf.ecaade.2018.2.253
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 253-262
summary Low-cost programmable materials such as wood have been utilized to replace mechanical actuators of adaptive architectural skins. Although research investigated ways to understand the hygroscopic response of wood to variations in humidity levels, there are still no clear methods developed to track and analyze such response. This paper introduces a computational method to analyze, track and store the hygroscopic response of wood through image analysis and continuous tracking of angular measurements in relation to time. This is done through a computational closed loop that links the smart material interface (SMI) representing hygroscopic response with a digital and tangible interface comprising a Flex sensor, Arduino kit, and FireFly plugin. Results show no significant difference between the proposed sensing mechanism and conventional image analysis tracking systems. Using the described method, acquiring real-time data can be utilized to develop learning mechanisms and predict the controlled motion of programmable material for adaptive architectural skins.
keywords Hygroscopic properties of wood; Adaptive architecture; Programmable materials; Real-time tracking
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_118
id ascaad2021_118
authors Abdelmohsen, Sherif; Passaint Massoud
year 2021
title Material-Based Parametric Form Finding: Learning Parametric Design through Computational Making
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 521-535
summary Most approaches developed to teach parametric design principles in architectural education have focused on universal strategies that often result in the fixation of students towards perceiving parametric design as standard blindly followed scripts and procedures, thus defying the purpose of the bottom-up framework of form finding. Material-based computation has been recently introduced in computational design, where parameters and rules related to material properties are integrated into algorithmic thinking. In this paper, we discuss the process and outcomes of a computational design course focused on the interplay between the physical and the digital. Two phases of physical/digital exploration are discussed: (1) physical exploration with different materials and fabrication techniques to arrive at the design logic of a prototype panel module, and (2) deducing and developing an understanding of rules and parameters, based on the interplay of materials, and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity. The process and outcomes confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relationships, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic, in addition to utilizing parametric design to inform form finding as a bottom-up approach.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2006_paper8
id ascaad2006_paper8
authors Abdullah, Sajid; Ramesh Marasini and Munir Ahmad
year 2006
title An Analysis of the Applications of Rapid Prototyping in Architecture
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Rapid prototyping (RP) techniques are widely used within the design/manufacturing industry and are well established in manufacturing industry. These digital techniques offer quick and accurate prototypes with relatively low cost when we require exact likeness to a particular scale and detail. 3D modeling of buildings on CAD-systems in the AEC sector is now becoming more popular and becoming widely used practice as the higher efficiency of working with computers is being recognized. However the building of scaled physical representations is still performed manually, which generally requires a high amount of time. Complex post-modernist building forms are more faithfully and easily represented in a solid visualization form, than they could be using traditional model making methods. Using RP within the engineering community has given the users the possibility to communicate and visualize designs with greater ease with the clients and capture any error within the CAD design at an early stage of the project or product lifecycle. In this paper, the application of RP in architecture is reviewed and the possibilities of modeling architectural models are explored. A methodology of developing rapid prototypes with 3D CAD models using methods of solid freeform manufacturing in particular Fused Deposition Modeling (FDM) is presented and compared against traditional model making methods. An economical analysis is presented and discussed using a case study and the potential of applying RP techniques to architectural models is discussed.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ecaade2023_54
id ecaade2023_54
authors Abdulmajeed, Abdulwahab, Agkathidis, Asterios, Dounas, Theo and Lombardi, Davide
year 2023
title Mass-customisation of dwellings in the Middle East:developing a design-to-fabrication framework to resolve the housing crisis in Saudi Arabia
doi https://doi.org/10.52842/conf.ecaade.2023.2.157
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 157–164
summary The Saudi government is taking the initiative to modernise the country and address critical challenges. One of its primary goals is to relieve the housing deficit. One of the challenges in supplying the houses is that potential inhabitants have denied and refused to accept them due to their design failing to meet their demands. Furthermore, the government suffers from providing high-quality housing in line with people’s needs because only a few enterprises can meet the client’s needs, but only at the price of lengthy planning and building times, in addition to increased construction expenses. This research aims to propose a mass customisation design-to-fabrication workflow, which targets environmental optimisation, reduction of construction time and reduced cost and incorporates client involvement. Our research method includes conducting a survey with Saudi Arabian architecture firms to collect data about contemporary clients’ needs, analysing and reviewing mass-customisation tools & techniques, developing a bespoke algorithm capable of mass-customising housing and evaluating the algorithm through design experiments. Our findings present the advantages and challenges of our tool as well as a shape grammar of mass customised floor plan solutions.
keywords Mass Customisation, Parametric Design, Housing Design
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2018_138
id ecaade2018_138
authors Abdulmawla, Abdulmalik, Schneider, Sven, Bielik, Martin and Koenig, Reinhard
year 2018
title Integrated Data Analysis for Parametric Design Environment - mineR: a Grasshopper plugin based on R
doi https://doi.org/10.52842/conf.ecaade.2018.2.319
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 319-326
summary In this paper we introduce mineR- a tool that integrates statistical data analysis inside the parametric design environment Grasshopper. We first discuss how the integration of statistical data analysis would improve the parametric modelling workflow. Then we present the statistical programming language R. Thereafter, we show how mineR is built to facilitate the use of R in the context of parametric modelling. Using two example cases, we demonstrate the potential of implementing mineR in the context of urban design and analysis. Finally, we discuss the results and possible further developments.
keywords Statistical Data Analysis; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:54

_id ga0132
id ga0132
authors Abe, Yoshiyuki
year 2001
title Beyond the math visualization - Geometrica and Stochastica
source International Conference on Generative Art
summary Mathematically controlled imaging process provides attractive results because of its infinite scaling capabilities with some other elements that contribute to the visualization. Its global/local and precise manipulation of parameters holds potential for realizing an unpredictable horizon of imagery. When it meets the artist's taste, this method could be a strong enough system of creation, and I have been producing images using the surfaces of hyperbolic paraboloid. On the other hand, a method absolutely free from the geometric parameter manipulation is possible with a stochastic process [1]. Like the technique of pendulum in photography, while its production rate of acceptable result is very low, its potential of generating a strong visual message is also very attractive. It is possible to set stochastic elements at any stage of the process, and conditional probability on those elements, or the hierarchy of probability management characterizes the probability distribution. Math space has no light. No gravity. No color on the math surfaces. And the math equation providesonly the boundary in 3D or higher mathematical dimensions. The fact means that artists can keep artistic reality with their unique tastes in colors on the surface and light sources, and this is the most important element of the math based imaging. Being able to give artists' own choice of colors and that the artist may take only right ones from the results of a stochastic process guarantee the motif and aesthetics of artist could be reflected onto the work.
series other
email
more http://www.generativeart.com/
last changed 2003/11/21 15:15

_id ijac201310207
id ijac201310207
authors Abondano, David
year 2013
title The Return of Nature as an Operative Model: Decoding of Material Properties as Generative Inputs to the Form-Making Process
source International Journal of Architectural Computing vol. 11 - no. 2, 267-284
summary The abandonment of nature as an architectural model and the redefinition of the relationship between form and material were two of the main consequences of industrialization for modern architecture. While nature was replaced by the machine as a model for architecture, industrial production suppressed the craftsman's knowledge of the material and the associated techniques once essential to the form-making process. Thus, the replacement of nature as a model implied that principles once related to natural processes started to be seen as industrial values, i.e., the economy of means stopped being recognized as a quality related to natural form-making processes and became a demand of industrial production. Nowadays, material properties and nature are being reintroduced into architecture with the help of digital technologies; that is, the return of nature though computation. As a result, nature has become an operational model as opposed to the visual or iconic one it used to be; its inner qualities and processes are being decoded in order to inform the form-making process and foster innovative digital ornamentation.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 289HOMELOGIN (you are user _anon_73197 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002