CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2224

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
doi https://doi.org/10.52842/conf.acadia.2021.328
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2020_193
id ecaade2020_193
authors Alymani, Abdulrahman, Jabi, Wassim and Corcoran, Padraig
year 2020
title Machine Learning Methods for Clustering Architectural Precedents - Classifying the relationship between building and ground
doi https://doi.org/10.52842/conf.ecaade.2020.1.643
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 643-652
summary Every time an object is built, it creates a relationship with the ground. Architects have a full responsibility to design the building by taking the ground into consideration. In the field of architecture, using data mining to identify any unusual patterns or emergent architectural trends is a nascent area that has yet to be fully explored. Clustering techniques are an essential tool in this process for organising large datasets. In this paper, we propose a novel proof-of-concept workflow that enables a machine learning computer system to cluster aspects of an architect's building design style with respect to how the buildings in question relate to the ground. The experimental workflow in this paper consists of two stages. In the first stage, we use a database system to collect, organise and store several significant architectural precedents. The second stage examines the most well-known unsupervised learning algorithm clustering techniques which are: K-Means, K-Modes and Gaussian Mixture Models. Our experiments demonstrated that the K-means clustering algorithm method achieves a level of accuracy that is higher than other clustering methods. This research points to the potential of AI in helping designers identify the typological and topological characteristics of architectural solutions and place them within the most relevant architectural canons
keywords Machine Learning; Building and Ground Relationship; Clustering Algorithms; K-means cluster Algorithms
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia21_238
id acadia21_238
authors Anifowose, Hassan; Yan, Wei; Dixit, Manish
year 2021
title BIM LOD + Virtual Reality
doi https://doi.org/10.52842/conf.acadia.2021.238
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 238-245.
summary Architectural Education faces limitations due to its tactile approach to learning in classrooms with only 2-D and 3-D tools. At a higher level, virtual reality provides a potential for delivering more information to individuals undergoing design learning. This paper investigates a hypothesis establishing grounds towards a new research in Building Information Modeling (BIM) and Virtual Reality (VR). The hypothesis is projected to determine best practices for content creation and tactile object virtual interaction, which potentially can improve learning in architectural & construction education with a less costly approach and ease of access to well-known buildings. We explored this hypothesis in a step-by-step game design demonstration in VR, by showcasing the exploration of the Farnsworth House and reproducing assemblage of the same with different game levels of difficulty which correspond with varying BIM levels of development (LODs). The game design prototype equally provides an entry way and learning style for users with or without a formal architectural or construction education seeking to understand design tectonics within diverse or cross-disciplinary study cases. This paper shows that developing geometric abstract concepts of design pedagogy, using varying LODs for game content and levels, while utilizing newly developed features such as snap-to-grid, snap-to-position and snap-to-angle to improve user engagement during assemblage may provide deeper learning objectives for architectural precedent study.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id 242d
authors Atkin, Brian L. and Gill, E. Moira
year 1986
title CAD and Management of Construction Projects
source Journal of Construction Engineering and Management, Vol. 112, December, pp. 557-565
summary The increasing interest in computer-aided design (CAD) has prompted research that is aimed at identifying the opportunities for construction managers and building contractors. It has been found that the use of CAD systems in the U.K. is mainly confined to the production of detailed drawings. Indeed, most of the systems used are 2-D drafting tools and incapable of supporting the integration of even modest amounts of nongraphical (construction) data. On the other hand, many 3-D modeling systems have the potential to integrate construction data, although they appear to be almostignored. The use of 3-D modeling systems is considered to be the most suitable vehicle for successfully integrating these data. However, this is likely to necessitate the introduction of separate databases, preferably of the relational type. The use of 3-D modeling systems in assessing the construction implications of outline designs also presents interesting possibilities and is discussed.
series journal paper
last changed 2003/04/23 15:14

_id acadia21_258
id acadia21_258
authors Augustynowicz, Edyta; Smigielska, Maria; Nikles, Daniel; Wehrle, Thomas; Wagner, Heinz
year 2021
title Parametric design and multirobotic fabrication of wood facades
doi https://doi.org/10.52842/conf.acadia.2021.258
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 258-269.
summary The paper describes the findings of the applied research project by Institute Integrative Design (currently ICDP) HGK FHNW and ERNE AG Holzbau to design and manufacture prefabricated wooden façades in the collaborative design manner between architects and industry. As such, it is an attempt to respond to the current interdisciplinary split in the construction, which blocks innovation and promotes standardized inefficient building solutions. Within this project, we apply three innovations in the industrial setup that result in the integrated design-to-production process of individualized, cost-efficient and well-crafted façades. The collaborative design approach is a method in which architect, engineer and manufacturer start exchange on the early stage of the project during the collaborative design workshops. Digital design and fabrication tools enable architects to generate a large scope of façade variations within production feasibility of the manufacturer and engineers to prepare files for robotic production. Novel multi-robot fabrication processes, developed with the industrial partner, allows for complex façade assembly. This paper introduces the concept of digital craftsmanship, manifested in a mixed fabrication system, which intelligently combines automated and manual production to obtain economic feasibility and highest aesthetic quality. Finally, we describe the design and fabrication of the project demonstrator consisting of four intricate façades on a modular office building, inspired by local traditional solutions, which validate the developed methods and highlight the architectural potential of the presented approach.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2016_641
id caadria2016_641
authors Baerlecken, D.; K. Wright, J. Reitz, N. Mueller and B. Heiermann
year 2016
title Performative Agency of Materials: Matter agency of vernacular African pattern systems
doi https://doi.org/10.52842/conf.caadria.2016.641
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 641-650
summary This paper investigates an agency of materials through a design methodology that follows Martin Heidegger’s process of “Entbergen” or “unconcealing” as a non-instrumentalist understanding of tools and materials. This investigation takes place through the de- sign of a children’s theatre in South Africa where material innovation for architectural components is needed. The research studies vernacu- lar African patterns and their inherent behaviour when transferred to materials. The transference of pattern systems to architectural proto- types is discussed alongside the discussion of their technical and ar- chitectural performance criteria. Following Heidegger’s theory of “Entbergen” (“unconcealing”) the paper will demonstrate how making in this methodology becomes an “unconcealing”, which includes both digital and analogue means, linking the four causalities - causa mate- rialis, causa formalis, causa finalis, and causa efficiens – through the agency of material within an integrated process between all four caus- es. Making becomes a process in which form is generated through in- terventions within fields of forces and currents of materials, taking cause and agency into account, and standing in opposition to methods that are defined by a premeditated notion of an ideal outcome.
keywords African patterns, making, design build, design methodology
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2020_418
id ecaade2020_418
authors Barczik, Günter and Königstein, Gesa
year 2020
title Immediacy, Tools and Topography - Towards overcoming the digital divide between designers and developers
doi https://doi.org/10.52842/conf.ecaade.2020.1.709
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 709-715
summary We introduce direct, versatile and almost tactile techniques for designing topographies and density distributions in architecture and landscape architecture through a sequence of digital 2D drawing and 3D modeling tools. We situate these techniques within the broader context of the growing digital divide between designers and developers of design tools. We explain, demonstrate and discuss:(i) the relevance of the techniques in design tasks, (ii) advantages of our tool sequences, (iii) the functionality of the tools, their hitherto underused connection and their sequential use. We reason that hitherto, accessibility of design tools (or simplicity of input and handling) has been much less developed than their performance (or complexity of output and variability) and call on developers to remedy this.
keywords Landscape Architecture; Topography Design; Design Tools
series eCAADe
email
last changed 2022/06/07 07:54

_id ca8e
authors Bentley, Jon L.
year 1975
title Multidimensional Binary Search Trees Used for Associative Searching
source communications of the ACM September, 1975. vol. 18: pp. 509-517 : ill. includes bibliography.
summary This paper develops the multidimensional binary search tree (or k-d tree, where k is the dimensionality of the search space) as a data structure for storage of information to be retrieved by associative searches. The k-d tree is defined and examples are given. It is shown to be quite efficient in its storage requirements. A significant advantage of this structure is that a single data structure can handle many types of queries very efficiently. Various utility algorithms are developed; their proven average running times in an n record file are: insertion, O(log(n)); deletion of the root, O(n(k-1)/k); deletion of a random node, O(n); and optimization (guarantees logarithmic performance of searches), O(n(log(n))). Search algorithms are given for partial match queries with t keys specified [proven maximum running time of O(n(k-t)/k)] and for nearest neighbor queries [empirically observed average running time of O(log n).] These performances far surpass the best currently known algorithms for these tasks. An algorithm is presented to handle any general intersection query. The main focus of this paper is theoretical. It is felt, however, that k-d trees could be quite useful in many applications, and examples of potential uses are given
keywords search, attributes, information, systems, queries, database, intersection, algorithms
series CADline
last changed 2003/06/02 13:58

_id 9f35
authors Bhavnani, S. K., Garrett, J.H., Flemming, U. and Shaw, D.S.
year 1999
title Towards Active Assistance
source Bridging the Generations. The Future of Computer-Aided Engineering (eds. J. H. Garrett and D. R. Rehak) Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA (1999), 199-203
summary The exploding functionality of current computer-aided engineering (CAE) systems has provided today’s users with a vast, but under-utilized collection of tools and options. For example, MicroStation, a popular CAE system sold by Intergraph, offers more than 1000 commands including 16 ways to construct a line (in different contexts) and 28 ways to manipulate elements using a “fence”. This complex array of functionalities is bewildering and hardly exploited to its full extent even by frequent, experienced users. In a recent site visit to a federal design office, we observed ten architects and three draftsmen using MicroStation.
series other
email
last changed 2003/11/21 15:16

_id 82ff
authors Bhavnani, S.K., Flemming, U., Forsythe, D.E., Garrett, J.H., Shaw, D.S. and Tsai, A.
year 1996
title CAD usage in an architectural office: from observations to active assistance
source Automation in Construction 5 (3) (1996) pp. 243-255
summary The functionality and resources provided by CAD systems have been increasing rapidly, but productivity growth expected from their use has been difficult to achieve. Although many surveys describe this productivity puzzle, few studies have been conducted on actual CAD users to understand its causes. In an effort to arrive at such an understanding, the first author visited a federal architectural office and observed CAD users in their natural setting. This paper describes preliminary results obtained from the study, which used ethnographic techniques developed by cultural anthropologists. The study revealed that users had leveled-off in their learning and experimentation and were using the CAD system in suboptimal ways. By asking why users were not using many resources available to them to improve performance, the observer uncovered issues of communication and management that needed to be addressed. Based on this understanding, the authors provide explicit recommendations to CAD users and vendors. In addition, they hypothesize that users might benefit from a system that provides active assistance, that is, intervenes spontaneously with advice, assistance, and relevant information while the user interacts with the CAD system. They conclude with some issues revealed by the study that should be considered when developing such active assistance.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 4dd6
authors Bhavnani, S.K., Garrett, J. and Shaw, D.S.
year 1993
title Leading Indicators of CAD Experience
source CAAD Futures ‘93 [Conference Proceedings / ISBN 0-444-89922-7] (Pittsburgh / USA), 1993, pp. 313-334
summary Current interfaces and help facilities of CAD systems are not designed to respond to a user's performance. To develop such adaptive environments, a better understanding of the indicators of CAD experience is required. This paper discusses the results of studying behavior patterns of different types and levels of CAD users for a specific drawing task. The results show that the type and experience of the CAD user has a clear correlation to the pattern of commands used, the time taken, and the quality of drawing produced. By using the experimental data to train a neural network, the paper demonstrates a connectionist approach for experience assessment. This information, it is proposed, can provide input to an adaptive interface which generates unobtrusive interception to improve the performance of a CAD user. Future experiments to explore the issues of generality and interception are presented.
keywords CAD user Modeling, Adaptive Interface, Neural Networks
series CAAD Futures
email
last changed 2003/11/21 15:16

_id acadia21_318
id acadia21_318
authors Borhani, Alireza; Kalantar, Negar
year 2021
title Nesting Fabrication
doi https://doi.org/10.52842/conf.acadia.2021.318
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 318-327.
summary Positioned at the intersection of the computational modes of design and production, this research explains the principles and applications of a novel fabrication-informed geometric system called nesting. Applying the nesting fabrication method, the authors reimage the construction of complex forms by proposing geometric arrangements that lessen material waste and reduce production time, transportation cost, and storage space requirements. Through this method, appearance and performance characteristics are contingent on fabrication constraints and material behavior. In this study, the focus is on developing design rules for this method and investigating the main parameters involved in dividing the global geometry of a complex volume into stackable components when the first component in the stack gives shape to the second. The authors introduce three different strategies for nesting fabrication: 2D, 2.5D, and 3D nesting. Which of these strategies can be used depends on the geometrical needs of the design and available tools and materials. Next, by revisiting different fabrication approaches, the authors introduce readers to the possibility of large-scale objects with considerable overhangs without the need for nearly any temporary support structures. After establishing a workflow starting with the identification of geometric rules of nesting and ending with fabrication limits, this work showcases the proposed workflow through a series of case studies, demonstrating the feasibility of the suggested method and its capacity to integrate production constraints into the design process. Traversing from pragmatic to geometrical concerns, the approach discussed here offers an integrated approach supporting functional, structural, and environmental matters important when turning material, technical, assembly, and transportation systems into geometric parameters.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id f11d
authors Brown, K. and Petersen, D.
year 1999
title Ready-to-Run Java 3D
source Wiley Computer Publishing
summary Written for the intermediate Java programmer and Web site designer, Ready-to-Run Java 3D provides sample Java applets and code using Sun's new Java 3D API. This book provides a worthy jump-start for Java 3D that goes well beyond the documentation provided by Sun. Coverage includes downloading the Java 2 plug-in (needed by Java 3D) and basic Java 3D classes for storing shapes, matrices, and scenes. A listing of all Java 3D classes shows off its considerable richness. Generally, this book tries to cover basic 3D concepts and how they are implemented in Java 3D. (It assumes a certain knowledge of math, particularly with matrices, which are a staple of 3D graphics). Well-commented source code is printed throughout (though there is little additional commentary). An applet for orbiting planets provides an entertaining demonstration of transforming objects onscreen. You'll learn to add processing for fog effects and texture mapping and get material on 3D sound effects and several public domain tools for working with 3D artwork (including converting VRML [Virtual Reality Markup Language] files for use with Java 3D). In all, this book largely succeeds at being accessible for HTML designers while being useful to Java programmers. With Java 3D, Sun is betting that 3D graphics shouldn't require a degree in computer science. This book reflects that philosophy, though advanced Java developers will probably want more detail on this exciting new graphics package. --Richard Dragan Topics covered: Individual applets for morphing, translation, rotation, and scaling; support for light and transparency; adding motion and interaction to 3D objects (with Java 3D classes for behaviors and interpolators); and Java 3D classes used for event handling.
series other
last changed 2003/04/23 15:14

_id acadia21_400
id acadia21_400
authors Bruce, Mackenzie; Clune, Gabrielle; Xie, Ruxin; Mozaffari, Salma; Adel, Arash
year 2021
title Cocoon: 3D Printed Clay Formwork for Concrete Casting
doi https://doi.org/10.52842/conf.acadia.2021.400
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 400-409.
summary Concrete, a material widely used in the construction industry today for its low cost and considerable strength as a composite building material, allows designers to work with nearly any form imaginable; if the technology to build the formwork is possible. By combining two historic and widely used materials, clay and concrete, our proposed novel process, Cocoon, integrates robotic clay three-dimensional (3D) printing as the primary formwork and incrementally casting concrete into this formwork to fabricate nonstandard concrete elements. The incremental casting and printing process anchors the concrete and clay together, creating a symbiotic and harmonious relationship. The concrete’s fluidity takes shape from the 3D printed clay formwork, allowing the clay to gain structure from the concrete as it cures. As the clay loses moisture, the formwork begins to shrink, crack, and reveal the concrete below. This self-demolding process produces easily removable formwork that can then be recycled by adding water to rehydrate the clay creating a nearly zero-waste formwork. This technique outlines multiple novel design features for complex concrete structures, including extended height limit, integrated void space design, tolerable overhang, and practical solutions for clay deformation caused by the physical stress during the casting process. The novelty of the process created by 3D printing clay formwork using an industrial robotic arm allows for rapid and scalable production of nearly zero-waste customizable formwork. More significant research implications can impact the construction industry, integrating more sustainable ways to build, enabled by digital fabrication technologies.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_362
id acadia21_362
authors Bruscia, Nicholas
year 2021
title Surface Disclination Topology in Self-Reactive Shell Structures
doi https://doi.org/10.52842/conf.acadia.2021.362
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 362-371.
summary This paper discusses recent developments on the geometric construction and fabrication techniques associated with large-scale surface disclinations. The basic concept of disclinations recognizes the role of “defects” in the composition of materials, the strategic placement of which shapes the material by inducing curvature from initially planar elements. By acknowledging the relationship between geometry and topology that governs disclination based form-finding and material prototyping, this work consciously explores its potential at the architectural scale. Basic geometric figures and their topological transformations are documented in the context of digital modeling and simulation, fabrication, and a specific material palette. Specifically, this work builds on recent efforts by focusing on three particular areas of investigation; a) enhancing the stability of surface disclinations with a synthetic fibrous layer, b) aggregation via periodic tilings, and c) harnessing snap-through buckling to increase bending stiffness in thin surfaces.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id db26
authors Cao, J., Chan, J.Y.K., Li, Heng, Mahdjoubi, Lamine and Love, Peter E.D.
year 2001
title REALMEDIA: providing multimedia-based real-estate services through the Internet
source Automation in Construction 10 (2) (2001) pp. 275-289
summary This paper presents the design and implementation of a software system, known as REALMEDIA, which provides Web-based, multimedia real-estate services on the Internet. REALMEDIA is innovative in that it is designed to provide both on-line services to clients and a tool for maintaining the system to real-estate agent. The software consists of a web-based interface, a client side editor and an application server. The web interface is used by both the customer and the real-estate agent to request particular services. When used by a customer, it allows the potential buyer to select and view desired properties, and to make an appointment with agents. Multimedia information, which integrates text, graphics and video clips, are presented to the customer. When used by the agent, the web interface allows the agent to dynamically update the contents of the web page and to manipulate property details through the Client Side Editor. The application server acts as a bridge between the Web Interface and the Client Side Editor. The computational architecture and major components of REALMEDIA as well as its implementation using JAVA, TCP/IP and FTP will be described.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id acadia21_160
id acadia21_160
authors Cao, Shicong; Zheng, Hao
year 2021
title A POI-Based Machine Learning Method in Predicting Health
doi https://doi.org/10.52842/conf.acadia.2021.160
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 160-169.
summary This research aims to explore the quantitative relationship between urban planning decisions and the health status of residents. By modeling the Point of Interest (POI) data and the geographic distribution of health-related outcomes, the research explores the critical factors in urban planning that could influence the health status of residents. It also informs decision-making regarding a healthier built environment and opens up possibilities for other data-driven methods. The data source constitutes two data sets, the POI data from OpenStreetMap, and the PLACES: Local Data for Better Health dataset from CDC. After the data is collected and joined spatially, a machine learning method is used to select the most critical urban features in predicting the health outcomes of residents. Several machine learning models are trained and compared. With the chosen model, the prediction is evaluated on the test dataset and mapped geographically. The relations between factors are explored and interpreted. Finally, to understand the implications for urban design, the impact of modified POI data on the prediction of residents' health status is calculated and compared. This research proves the possibility of predicting resident's health from urban conditions with machine learning methods. The result verifies existing healthy urban design theories from a different perspective. This approach shows vast potential that data could in future assist decision-making to achieve a healthier built environment.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_392
id acadia21_392
authors Carlow, Jason
year 2021
title Al Janah Pavilion
doi https://doi.org/10.52842/conf.acadia.2021.392
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 392-397.
summary This pavilion project was built as an outcome of an undergraduate design studio and design practicum at the American University of Sharjah in the UAE. The research methodology for the studio included case studies of various traditional building types to understand how traditional architecture in the MENA (Middle East and North Africa) region has been intelligently shaped by desert climate and Islamic culture over hundreds of years. Understanding and analysis of the precedent projects helped students to formulate climatic, structural, and material strategies for their design endeavors. Of the thirteen conceptual building envelopes developed by thirteen students in the design studio, the Al Janah scheme was chosen for development and construction.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id caadria2020_093
id caadria2020_093
authors Cerovsek, Tomo and Martens, Bob
year 2020
title The Evolution of CAADRIA Conferences - A Bibliometric Approach
doi https://doi.org/10.52842/conf.caadria.2020.1.325
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 325-334
summary This paper presents an analysis of the output, impact, use and content of 1,860 papers that were published in the CAADRIA conference proceedings over the last 20+ years (from 1996 to 2019). The applied methodology is a blend of bibliometrics, webometrics and clustering with text mining. The bibliometric analysis leads to quantitative and qualitative results on three levels: (1) author, (2) article and (3) association. The most productive authors authored over 50 papers, and the top 20% authors have over 80 % of all citations generated by CAADRIA proceedings. The overall impact of CAADRIA may be characterised by nearly 2,000 known citations and by the h-index that is 17. The webometrics based on CumInCAD.org reveals that the CAADRIA papers served over 200 k users, which is a considerable visibility for scientific CAAD output. The keywords most frequently used by authors were digital fabrication, BIM and parametric, generative, computational design. Notably, 90% of the papers' descriptors are 2-grams. This study may be useful to researchers, educators and publishers interested in CAAD.
keywords bibliometrics; open source; text clustering; n-gram
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 111HOMELOGIN (you are user _anon_225623 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002