CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 1399

_id 40fc
authors Alonso, Marcelo and Finn, Edward J.
year 1971
title Physics
source 760 p. : ill Reading, Massachusetts: Addison-Wesley Pub. Co., 1971. Includes index.
summary This book, designed for a two-semester general physics course for science and engineering students, presents a logical and unified approach emphasizing the conservation laws, the concepts of fields and waves, and the atomic view of matter. The special theory of relativity, in its more basic aspects, is used throughout the text as one of the guiding principles that must be met by any physical theory
keywords physics, mathematics
series CADline
last changed 2003/06/02 10:24

_id 2
authors Montagu, Arturo
year 1998
title Desde La Computacion Grafica a los Sistemas CAD Actuales. Una Vision Historica de la Revolucion Producida en los Sistemas de Representacion Grafica (1966-1998) (From Graphical Computation to Present CAD Systems. An Historical Vision of the Revolution Produced in the Systems of Graphical Representation (1966-1998))
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 14-21
summary Throughout these pages are made known the persons, the projects and the books that have influenced my actions and that they will be mentioned in form underlined in this paper. I have to emphasize that since 1965 to 1970, and in the continuous search that I was accomplishing to find data and bibliography adapted to the topic of computer graphics, only two series of publications contained topics related to this matter at that time: one was the IBM Journal and the other series was the communications of the ACM. The purpose of this work is to make known an experience accomplished throughout 30 years of intense activity in finding new methods of drawing and design, based on the use of digital computers, mainly in Argentina, and during certain periods of time in Great Britain and since 1971 during short visits to the United States and also in France. The first idea emerged in the year 1965 when I was assistant teacher at the School of Architecture of the University of Buenos Aires, as a combination of ideas between the concepts of spatial geometry and the current morphological studies that we taught in the Course of professor Gaston Breyer. However the idea of automatic drawing emerged observing the operation of the first scientific digital computer installed in the Computing Institute of the Faculty of Sciences of the University of Buenos Aires in 1963 (Sadosky 1963). At the beginning, the approach to the computer were not accomplished from a strictly scientific point of view, but it was implying a kind of "sincresis" (Koheler 1940) it is more than a synthesis, because I was tried to combine ideas that have had its origin in different worlds of thinking, the analogous world and the digital world, and this situation was very difficult to accept at that time.The designing procedures in the decade 1960's was deeply rooted (and still continues) in the architectural design field as a result of a drawing process based in heuristic techniques.
series SIGRADI
email
last changed 2016/03/10 09:55

_id b1db
authors Francis, Sabu
year 1999
title The Importance of Being Abstract: An Indian Approach to Models
doi https://doi.org/10.52842/conf.ecaade.1999.101
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 101-109
summary Traditional Indian way of life is surrounded by ambiguity. This is in direct contrast to an Aristotelian approach, where polarised stands are always taken. A black and white approach tends to yield results speedily, but exhaustive solutions which can explain complexity are usually brute force procedures. Even so, their conclusions in the end are still suspect. The author believes that rich solutions may exist when we use an 'alternate' or abstract synthesized reality to do our modelling instead of relying on analogies and other direct links to the real world. Models that allow synthesis tend to accept ambiguity. The author presents in this paper an 'unconventional' system to represent architecture which has had some amount of success probably because it started of, on pure abstract grounds that allowed ambiguity instead of basing it on an Aristotelian, analytical model.
keywords Aristotle, Buddha, Representations, Abstract Models
series eCAADe
email
last changed 2022/06/07 07:50

_id 39e5
authors Oloufa, A.A., Ikeda, M. and Nguyen, T.
year 1998
title Resource-based simulation libraries for construction
source Automation in Construction 7 (4) (1998) pp. 315-326
summary Discrete event simulation modeling has been used successfully in a wide range of industrial and manufacturing applications. In construction applications, even though simulation has been applied, it still is extremely limited in terms of wide deployment in construction projects. Several reasons limit the effective implementation of this technology in construction. Chief among them is the time needed to develop the simulation model. While developing models for industrial applications is just as time consuming, the perpetual nature of manufacturing activities, may make this investment worthwhile. However, this is not the case in construction. In this research, the authors approach the problem through the development of a library of preprogrammed construction resources. The user need only select the required resources, and specify the project logic by linking these resources together. Benefits of this approach are the increased communication between the members of the construction team. Also the potential application of simulation tools in unforeseen construction situations where the time associated with hiring a simulation programmer may not available and a quick response is required.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id 9999
authors Coxe, W., Hartung, N.F., Hochberg, H.H., Lewis, B.J., Maister, D.H., Mattox, R.F. and Piven, P.A.
year 1987
title Success Strategies for Design Professionals
source New York, McGraw-Hill
summary As consultants with the opportunity to analyze literally hundreds of professional design firms, we have found the search for ideal management methods challenging. Each time we've observed a format that appears to work well for some or many firms, an exception has soon appeared, contradicting what looked like a good rule to follow. For example, some firms do outstanding work organized as project teams, others are very successful with a departmentalized project structure, and still others get good results with a studio format. One of the major puzzles for observers has been finding a relation between the project delivery system used by firms (that is, "how we do our work") and how the organization itself is operated (that is, "how we structure and run the firm"). After years of study and trial and error, a model has begun to emerge that holds promise for creating some order among these issues. At the heart of this model is the recognition that although no one strategy fits all firms, there is a family of understandable principles from which almost any firm of design professionals can devise its own best strategy. We call these the SuperPositioning principles. This book sets forth the theory, a set of master strategies derived from it, and some thoughts on how to put the principles to use. We look forward to further learning in the years ahead from the experience of professionals who apply the principles in their own firms.
series other
last changed 2003/04/23 15:14

_id caadria2013_123
id caadria2013_123
authors Erhan, Halil I.; David Botta, Andy T. Huang and Robert F. Woodbury
year 2013
title Peripheral Tools to Support Collaboration: Probing to Design Collaboration Through Role-Playing
doi https://doi.org/10.52842/conf.caadria.2013.241
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 241-250
summary Peripheral devices like smart phones offer an opportunity to lower the barrier to spontaneous collection and sharing of information during distributed collaboration. We have completed development of guidelines and a framework that focuses on peripheral devices in collaboration. In order to explore the design space generated by our principles, we conducted a role-playing experiment about commissioning a building, in which an “on-site” team and a “design” team were expected to find and resolve discrepancies between requirements, design documents, and the actual site. The teams were given Styrofoam panels to act as pretend smart peripherals to invoke play and help probe the design space. We found that “reflection on action” (debriefing and subsequent brainstorming) was fruitful for ideation and theorem building about interaction, but “reflection in action” failed. Yet, reflection in action, particularly with such probes, is important to capture the “mechanics of collaboration”. Therefore, we are considering adapting improvisational theatre to our study of distributed collaboration.  
wos WOS:000351496100024
keywords Collaborative design, Design support tool, Interactive media, Role-playing, Extended cognition 
series CAADRIA
email
last changed 2022/06/07 07:55

_id 71a0
authors Gasparski, Wojciech W.
year 2002
title Designer’s Responsibility: Methodological and Ethical Dimensions
doi https://doi.org/10.52842/conf.ecaade.2002.010
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 10-011
summary A designer is anybody who designs, where ‘to design’ - from Latin designare - means ‘to mark out’. Those who design professionally are professional designers, i. e. who „see and seek value in new designs“. Seeing an seeking might be done in two ways: narrower or broader. According to the approach characteristic for design-methodological reductionism those things which are designed are considered the designed objects. In this approach the designer’s task is limited to narrowly understood artifacts like buildings, bridges, machines, devices etc. The relation between a designed object and the reminder of the world is of a secondary consideration or ignored even. The postponed consequences are of physical, social, psychological, and economical nature. Systemic design methodology is different. It describes that ‘what is designed’ in terms of an object of design, a system (a whole) separated from the ‘rest of the world’ to an extent that can minimise a negative ‘immunological effect’. The object of design is a spectem is used. An independently developed programming language entitled NQC (Not Quite C) is used to program the robots. The students are initially given three lectures dealing with robotics in general, methods of locomotion and state based programming principles. Small workshops and discussions about ways of tackling the assigned problem followed these lectures. The work of Rechtin is shown wherein the methodology of “architecting” combines heuristics, hierarchies and intuition to reach design solution spaces. The students are then allowed to form teams whereby they must include members from each faculty. The students are also responsible for forming committees to collectively make decisions about the competitions. The committees decide general attributes of the robots such as size (Constructors Committee) as well as the rules for the competition (Race Committee). The Communication Committee was entrusted to develop a communication protocol (using Infrared transmitters) and the Code Committee decided whuse. Once producing and teaching good science is the main tasks of scholars, those among the scholars who are involved in design science are responsible not only for producing good design science but also for educating designers as reflective practitioners conscious of what every designer should know about objects of design and ethics related to the profession.
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2007_052
id ascaad2007_052
authors Hamza, N. and M. Horne
year 2007
title Building Information Modelling: Empowering Energy Conscious Design
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 661-670
summary The increasing awareness of climate change and carbon dioxide emissions from the built environment is resulting in the need to visualize the environmental performance of buildings. One of the recent drivers in the UK has been the tightening of building regulations relating to energy consumption in buildings, mandating all buildings to be performance evaluated by accredited environmental simulation tools to test their carbon dioxide emission against set targets. Currently there is major confusion on all levels from architects to building control officers and contractors on how to engrain energy consciousness principles in the design and construction of buildings. Within this context, ‘Building Information Modelling’ that is linked to ‘Building Performance Modelling’ is increasingly being looked upon as a tool to facilitate the communication between the design team and contractors and to provide a transparent information model on the specification and targeted energy consumption of all new/ refurbished buildings to all parties involved. In this paper, analysis of the benefits and drawbacks of current efforts to combine those two comprehensive databases will be investigated. A sample of main software development companies, architects and contractors, using semi-structured interviews is undertaken to find out how Building Integrated Modelling (BIM) and Building Performance Modelling (BPM) can support the design and construction teams to deliver energy conscious buildings.
series ASCAAD
email
last changed 2008/01/21 22:00

_id 4f90
authors Kalay, Y.E.
year 1998
title P3: Computational environment to support design collaboration
source Automation in Construction 8 (1) (1998) pp. 37-48
summary The work reported in this paper addresses the paradoxical state of the construction industry (also known as A/E/C, for Architecture, Engineering and Construction), where the design of highly integrated facilities is undertaken by severely fragmented teams, leading to diminished performance of both processes and products. The construction industry has been trying to overcome this problem by partitioning the design process hierarchically or temporally. While these methods are procedurally efficient, their piecemeal nature diminishes the overall performance of the project. Computational methods intended to facilitate collaboration in the construction industry have, so far, focused primarily on improving the flow of information among the participants. They have largely met their stated objective of improved communication, but have done little to improve joint decision-making, and therefore have not significantly improved the quality of the design project itself. We suggest that the main impediment to effective collaboration and joint decision-making in the A/E/C industry is the divergence of disciplinary `world-views', which are the product of educational and professional processes through which the individuals participating in the design process have been socialized into their respective disciplines. To maximize the performance of the overall project, these different world-views must be reconciled, possibly at the expense of individual goals. Such reconciliation can only be accomplished if the participants find the attainment of the overall goals of the project more compelling than their individual disciplinary goals. This will happen when the participants have become cognizant and appreciative of world-views other than their own, including the objectives and concerns of other participants. To achieve this state of knowledge, we propose to avail to the participants of the design team highly specific, contextualized information, reflecting each participant's valuation of the proposed design actions. P3 is a semantically-rich computational environment, which is intended to fulfill this mission. It consists of: (1) a shared representation of the evolving design project, connected (through the World Wide Web) to (2) individual experts and their discipline-specific knowledge repositories; and (3) a computational project manager makes the individual valuations visible to all the participants, and helps them deliberate and negotiate their respective positions for the purpose of improving the overall performance of the project. The paper discusses the theories on which the three components are founded, their function, and the principles of their implementation.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ddssar0018
id ddssar0018
authors Loon, Peter Paul van
year 2000
title Team design from the individual points of viewa humanistic approach
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary This paper deals with design in teams from the individual points of view of all the parties involved in the process: principals, investors, owners, specialists, experts, advisors, officials, builders, users and residents. Taken together, these different points of view enable us to describe decentralised design in its pure form.Discussion of the individual points of view is possible only if one assumes that the parties involved have their own standpoints in the form of a collection of definable goals (all their wishes, efforts, principles, standards etc.), that they will endeavour to achieve those goals and that they will adjust their actions and decisions during the design process to serve those goals. For the elaboration of this individual point of view (of team design in a matrix structure) I shall take as a basis two concepts from decision theory: ‘methodological individualism’ and ‘the actor’s viewpoint’.
series DDSS
last changed 2003/08/07 16:36

_id ecaade2010_061
id ecaade2010_061
authors Mokhtar Noriega, Farid; Gaterman, Harald; Rayoon Alvarez, Enrique
year 2010
title Collaborative 3D Modelling and Printing: What You See Is Not Directly What You Get
doi https://doi.org/10.52842/conf.ecaade.2010.031
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.31-40
summary The aim of this collaborative 3D printing workshop is to define the production specifications, the teaching-learning pedagogical strategy aspects to help architecture students acquire: the basic competences of building representation, the pre and post processing of printing procedures (printing materials, paint, epoxy, accessories, etc...), defining the missing functions in BIM and Architectural Modelling software and determining the benefits of enhancing them for better 3D prototyping productivity. Two teams (A and B) adopted specific working scenarios based on real world printing jobs. Team A worked on an in-house scenario and Team B on an outsourcing scenario. Tasks successfully completed showed: the wide range of prototypes that could be produced in an architectural studio and the need for a collaborative network to organize the knowledge and good practices developed by research teams (professional or academic) involved in developing rapid prototyping for architecture. This knowledge network could be a discussion forum and a development partnership of 3D printing manufacturers and CAD/BIM software developers.
wos WOS:000340629400002
keywords Rapid prototyping; Collaborative 3d modelling; Knowledge bases; Software design
series eCAADe
email
last changed 2022/06/07 07:58

_id ascaad2007_029
id ascaad2007_029
authors Prichard-Schmitzberger, A.
year 2007
title Team-Working and Reverse Engineering: Teaching Methods for Complex Architecture
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 343-356
summary This paper contains research and details of a work in progress on the implementation of advanced 3D precision modelling in an undergraduate curriculum. Core to the investigation is the undergraduate course Digitally Enhanced Construction and Fabrication (D.E.C.A.F.) at the Department of Architecture, California State Polytechnic University Pomona. The course tests the application of Reverse Engineering (RE) in a team configuration, Hot-Swapping (HS), and precision modelling of complex geometries with minimal programming/scripting input, taking in consideration the limited resources common to small-scale architectural practices. Reverse Engineering particularly enables students to extract information building assembly and executed details with precision, based on existing documentation. It is conducted in teams not only to emphasize and investigate efficiency of protocols but also to observe problems in developing threads in digital modelling. Hot-Swapping identifies the principle of replacing components of a building during active design processes without altering its general appearance. As a teaching methodology, it allows the investigation of required modelling accuracy, creation of prototypes and various versions of assembly alternatives. The current paper focuses mainly on 1) engaged procedures in Reverse Engineering, 2) the educational aspects of such an approach, and 3) the advantages and disadvantages of conventional tools in a collaborative modelling exercise.
series ASCAAD
email
last changed 2008/01/21 22:00

_id cf2019_043
id cf2019_043
authors Steenblik, Ralph and Will Wang
year 2019
title Bespoke Tools as Solutions for Contemporary Problems
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 367-377
summary This paper explores the process and importance of designing and implementing bespoke toolkit solutions within the architectural design discipline. Along with the need for bespoke design solutions comes the need for fluency in architectural principles, digital tool facility, and computational development skill sets (the combination are, today, are still an uncommon skill set). This skill set combination, quite possibly, will become increasingly necessary for design teams to incorporate. This paper argues, through a series of case study projects produced by an internal platform; that the way forward for the architectural design discipline is through bespoke tool-sets geared toward meeting the needs of architectural designers. Design teams are pursuing increasing levels of sophistication and intelligent solutions that meet the demands of problems faced in the building industry today.
keywords BIM; Data in design; Custom workflow; Facade, Paneling; Design computation
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_199
id caadria2019_199
authors Wang, Will and Steenblik, Ralph Spencer
year 2019
title Bespoke Tools Providing Solutions for Contemporary Problems - Novel BIM practice for architects
doi https://doi.org/10.52842/conf.caadria.2019.2.111
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 111-120
summary This paper examines the process and the importance of designing and implementing intelligent, informed and bespoke information modeling solutions within the architectural design discipline. Along with the need for such tools comes the need for fluency in architectural principles, digital tool facility, and computational development skill sets (the combination are, still uncommon). This skill set combination are becoming more and more necessary for design teams to incorporate. This paper argues (through a series of case study projects produced by an internal platform) a way forward for the architectural design discipline through intelligent, informed and bespoke tool sets tailored to the needs of architectural designers.
keywords BIM; Data in design; Custom workflow; Facade paneling; Design computation
series CAADRIA
email
last changed 2022/06/07 07:58

_id ascaad2021_118
id ascaad2021_118
authors Abdelmohsen, Sherif; Passaint Massoud
year 2021
title Material-Based Parametric Form Finding: Learning Parametric Design through Computational Making
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 521-535
summary Most approaches developed to teach parametric design principles in architectural education have focused on universal strategies that often result in the fixation of students towards perceiving parametric design as standard blindly followed scripts and procedures, thus defying the purpose of the bottom-up framework of form finding. Material-based computation has been recently introduced in computational design, where parameters and rules related to material properties are integrated into algorithmic thinking. In this paper, we discuss the process and outcomes of a computational design course focused on the interplay between the physical and the digital. Two phases of physical/digital exploration are discussed: (1) physical exploration with different materials and fabrication techniques to arrive at the design logic of a prototype panel module, and (2) deducing and developing an understanding of rules and parameters, based on the interplay of materials, and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity. The process and outcomes confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relationships, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic, in addition to utilizing parametric design to inform form finding as a bottom-up approach.
series ASCAAD
email
last changed 2021/08/09 13:13

_id 409f
authors Becker, Joseph D.
year 1987
title Arabic Word Processing
source communications of the ACM. July, 1987. vol. 30: pp. 600-610 : ill. includes bibliography
summary The technology of word processing in the Middle East recently developed a word processing software that can correctly format the cursive, interacting letters of the Arabic script. Moreover, new layout procedures can automatically intermix right-to-left Arabic or Hebrew writing with left-to-right text in European or other languages. The design presented in this article is embodied in the Xerox View Point Documenter, but its principles apply equally well to any Arabic desktop publishing
keywords software, computer graphics
series CADline
last changed 2003/06/02 13:58

_id sigradi2013_000
id sigradi2013_000
authors Bernal, Marcelo & Paula Gómez (Eds.)
year 2013
title Knowledge-based Design
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013
summary Knowledge based design is acquired through one's exposure to a large number of projects and establishes a set of patterns regarding organizations, techniques, procedures, heuristics, priorities and preferences. Over time, designers develop a distinctive set of principles that represent their own individual methods of addressing design problems. Creative designers not only design the solutions, they also design the problems. Although their repertoire of resources includes explicit declarations regarding recognizable problem types, physical components, design rules, or evaluation methods of different aspects, design decisions are also driven by vast amounts of tacit considerations derived from professional experience. Designers make such decisions balancing design intent and technical requirements in a very efficient and synthetic manner. We designers know what we do, but it is not so clear how we do it. This conference is an invitation to engage in a dialogue concerning how Design Knowledge can be represented and manipulated within digital environments.
series other
type normal paper
email
more https://www.dropbox.com/s/nl70a4rz9wh7c03/SIGRADI_2013.pdf
last changed 2014/07/02 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 69HOMELOGIN (you are user _anon_595604 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002