CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2998

_id acadia06_068
id acadia06_068
authors Elys, John
year 2006
title Digital Ornament
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 68-78
doi https://doi.org/10.52842/conf.acadia.2006.068
summary Gaming software has a history of fostering development of economical and creative methods to deal with hardware limitations. Traditionally the visual representation of gaming software has been a poor offspring of high-end visualization. In a twist of irony, this paper proposes that game production software leads the way into a new era of physical digital ornament. The toolbox of the rendering engine evolved rapidly between 1974-1985 and it is still today, 20 years later the main component of all visualization programs. The development of the bump map is of particular interest; its evolution into a physical displacement map provides untold opportunities of the appropriation of the 2D image to a physical 3D object.To expose the creative potential of the displacement map, a wide scope of existing displacement usage has been identified: Top2maya is a scientific appropriation, Caruso St John Architects an architectural precedent and Tord Boonje’s use of 2D digital pattern provides us with an artistic production precedent. Current gaming technologies give us an indication of how the resolution of displacement is set to enter an unprecedented level of geometric detail. As modernity was inspired by the machine age, we should be led by current technological advancement and appropriate its usage. It is about a move away from the simplification of structure and form to one that deals with the real possibilities of expanding the dialogue of surface topology. Digital Ornament is a kinetic process rather than static, its intentions lie in returning the choice of bespoke materials back to the Architect, Designer and Artist.
series ACADIA
email
last changed 2022/06/07 07:55

_id a9c2
authors Gordon, William J. and Riesenfeld, Richard F.
year 1974
title Bernstein- Bezier Methods for the Computer-Aided Design of Free-Form Curves and Surfaces
source Journal of the ACM. April, 1974. vol. 21: pp. 293-310 : ill. includes bibliography
summary The mth degree Bernstein polynomial approximation to a function f defined over [0,1] is Em-o f(u/m) Ou(s), where the weights Ou(s) are binomial density functions. The Bernstein approximations inherit many of the global characteristics of f, like monotonicity and convexity, and they always are at least as 'smooth' as f, where 'smooth' refers to the number of undulations, the total variation, and the differentiability class of f. Historically, their relatively slow convergence in the Loo-norm has tended to discourage their use in practical applications. However, in a large class of problems the smoothness of an approximating function is of greater importance than closeness of fit. This is especially true in connection with problems of computer-aided geometric design of curves and surfaces where aesthetic criteria and the intrinsic properties of shape are major considerations. For this latter class of problems, P. Bezier of Renault has successfully exploited the properties of parametric Bernstein polynomials. The purpose of this paper is to analyze the Bezier techniques and to explore various extensions and generalizations. In a sequel, the authors consider the extension of the results contained herein to free-form curve and surface design using polynomial splines. These B-spline methods have several advantages over the techniques described in the present paper
keywords CAD, computer graphics, Bezier, curves, curved surfaces, representation, design, Bernstein, representation, B- splines, user interface, approximation, interpolation
series CADline
last changed 2003/06/02 13:58

_id caadria2007_353
id caadria2007_353
authors John, Elys
year 2007
title Digital Ornament
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.i5h
summary Gaming and visualisation software has a history of developing economical and creative methods to deal with hardware limitations. Traditionally the visual representation of gaming has been a poor offspring of high-end architectural visualisation. In a twist of irony, the paper proposes that game production software leads the way into a new era of physical digital ornament. The toolbox of the rendering engine evolved rapidly between 1974-85 and it is still today 20 years later the main component of all visualisation programs. The development of the bump map is of particular interest; its evolution into a physical displacement map provides untold opportunities in the appropriation of the 2D image to a physical artifact. Contemporary Architects in tandem have been mapping to the façade a new era of complex three-dimensional sculptural representation. The Architect, Designer and Artist now have the opportunity to appropriate the image map and use advanced visualisation technologies in the application of digital ornament.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2023_311
id ecaade2023_311
authors Akbar, Zuardin, Ron, Gili and Wortmann, Thomas
year 2023
title Democratizing the Designer’s Toolbox: Adopting free, open-source, and platform-agnostic tools into computational design teaching
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 41–50
doi https://doi.org/10.52842/conf.ecaade.2023.1.041
summary This paper proposes a computational design education approach where students learn to develop their own geometric and logical workflows beyond specific software and platform. The course’s objectives are to familiarize architecture students with computational geometry, foster computational thinking that stays relevant over time, and promote democratized design tools through computation. Over a semester, we taught students to work directly on coordinates or numerical representations by utilizing 3-Dimensional (3D) computer graphics programming rather than learning 3D modeling software that rapidly goes out of style. This paper outlines our teaching methods to introduce the technology stack, design algorithm development, open-source or free tools implementation, and user experience – interface design. This paper also reviews the student’s final projects to deliver interactive web-browser applications for architectural design of varied scales and compares them according to four evaluation parameters. The paper culminates with the project's critical assessment and students' feedback to evaluate our approach and suggest an outlook for future development.
keywords Computational Design, Algorithmic Design, Education, Design Tool, Platform-Agnostic Software, Open Source, Democratized Design
series eCAADe
email
last changed 2023/12/10 10:49

_id e43b
authors Blasi, D. and Scudo, G.
year 1986
title Experience of Output Visualisation in Thermal Performance Analysis and Design.
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 186-191
doi https://doi.org/10.52842/conf.ecaade.1986.186
summary GKS didactic application in output visualisation of thermal behaviour simulation in building analysis and design. Energy analysis is performed by BEETA (Built Environment Energy Test and Analysis) code. It is a numerical simulation code which allows to simulate the building multizone thermal behaviour with different passive devices (Direct Gain, Greenhouse, Solar Chimney, Trompe, Convective and Radiative Cooling etc.). The code is based on thermal network theory and methods; the set of thermal equation is normally solved every hour or less by the coefficient matrix inversion method. An interactive loop is provide for dealing with non- linear thermal conductance problems with continuous or step variation (i.e. air mixing through an opening between two spaces, Trompe wall convective loop, etc.) The code allows to take into account urban obstructions and shading devices.

series eCAADe
last changed 2022/06/07 07:52

_id acadia05_156
id acadia05_156
authors Cabrinha, Mark
year 2005
title From Bézier to NURBS: Integrating Material and Digital Techniques through a Plywood Shell
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 156-169
doi https://doi.org/10.52842/conf.acadia.2005.156
summary The development of digital fabrication has reintroduced material processes with digital processes. There has been much discussion about the tool and the objects of the tool, but little discussion of the implication of the material process on the digital process. A brief historical review on the development of computer numerical control and the origins of the Bézier curve reveals an instrumental fact: computer numerical controlled tools necessitated advancements in computational surfaces which eventually led to NURBS (Non-Uniform Rational B-Splines) surfaces. In other words, the origins of NURBS surfaces resides in its relation to material processes, rather than many current approaches that develop free form surfaces and then force the tool onto the material without regard to the material properties. From this historical and mathematical review, this project develops toward more intelligent construction methods based on the integration of NURBS differential geometry paired with material qualities and processes. Specifically, a digital technique of developing conceptual NURBS geometry into piecewise surface patches are then flattened based on the material thickness and density. From these flattened patches, a material technique is developed to intelligently remove material to allow the rigid flat material to re-develop into physical surface patches. The goal of this research is to develop digital and material techniques toward intelligent construction based on the correspondence between digitally driven surface and digitally driven material processes. The application of this technique as a rational and flexible system is to support the dynamic response of form and material toward such performative aspects as structure, daylight, ventilation, and thermal properties.
series ACADIA
email
last changed 2022/06/07 07:54

_id ijac202322105
id ijac202322105
authors Cáceres Corvalán, Katherine and Francisco Javier Calvo Castillo
year 2024
title Crafting innovation: Discrete timber pavilions and fabrication-driven approaches
source International Journal of Architectural Computing 2024, Vol. 22 - no. 1, 1-19
summary In regions with limited access to CAD/CAM machines like Latin America, academic experiences have adapted digital tools to local capabilities, aiming to enhance project creativity through digital technology. This article examines the use of timber as a material, addressing the technical, spatial, and cultural aspects related to its use, while intertwining the educational narrative of learning through doing and adapting. The structures designed in this research are based on three key parameters: timber as the main material, framing as a discrete design system and side-by-side joints as a vital component of the traditional fabrication process. Through the integration of digital and traditional techniques, the aim is to adapt methods frequently used in digital design and manufacturing processes. This study emphasizes that merging digital tools with traditional construction knowledge can lead to innovative solutions, especially in areas with limited digital resources, showing that digital fabrication can broaden and enrich traditional building methods beyond just being a numerical alternative.
keywords Material practice, fabrication-based design, timber pavilion, digital fabrication, discrete computation
series journal
last changed 2024/07/18 13:03

_id acadia06_540
id acadia06_540
authors Diewald, J., Frederick, M.
year 2006
title Building Information Modeling: Interactive Versioning Experiment
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 540-541
doi https://doi.org/10.52842/conf.acadia.2006.540
summary Interactive Versioning, is the first experiment of an ongoing investigation into the conceptual role of parametric modeling in the design process. In this case, the form is defined by constrained floor-plate relationships. Originally testing methods using numerical values exported to excel, we obtained undesirable results and shifted our focus to the creation of an interactive model; restoring the direct influence of user input. The result is a 10-floor structure that allows the user to tweak point locations along the slab perimeters that in turn have global effect on the overall geometry of the architectural body. We are using four point definition types: reference above, interactive reference, reference below, and independent value. Interactive reference points use referential constraints defined as x and y distances from the global origin, which change on account of user inputs. Reference above points pull (x,y) values from an interactive point above. Reference below points pull (x,y) values from interactive points below. Independent points are unaffected by changes in any of the other points but may also be tweaked to adjust a form. On any given level, there are 2 interactive reference points, 2 reference above points, 2 reference below points, and 4 independent points. Additionally, 2 length constraints link interactive points with reference above points on the same level. This allows for changes to affect the entire structure rather than only the floor plates immediately above and below a given change. The addition of constraints to the floor outlines will yield a variety of formal results and offer the possibility to further control the output.
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2013_076
id ecaade2013_076
authors Dolas, Caner; Dieckmann, Andreas and Russell, Peter
year 2013
title Building Your Own Urban Tool Kit
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 485-493
doi https://doi.org/10.52842/conf.ecaade.2013.2.485
wos WOS:000340643600049
summary The paper describes the development of a set of smart BIM components to facilitate and accelerate the creation of large-scale urban models in the early design phase in a BIM software environment. The components leverage the analytical, parametric and modelling capabilities of the BIM environment to support adaptive parameter-driven building geometry, patterning of different building types, early numerical and graphical design evaluation, various simulation methods and the exploration of design alternatives. The toolset consists of the most common building shapes, but can be extended with additional shapes and their respective area and volumetric calculations when necessary. The rapid large-scale deployment of the components has been achieved by diverting existing tools from their intended use.
keywords BIM; urban planning; early design; rule-based design; parametric design.
series eCAADe
email
last changed 2022/06/07 07:55

_id 5c22
authors Durmisevic, S., Ciftcioglu, Ö. and Sariyildiz, S.
year 2001
title Quantifying the Qualitative Design Aspects
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 111-116
doi https://doi.org/10.52842/conf.ecaade.2001.111
summary Architecture is a mixture of art and technique. This implies that the architect deals not only with engineering aspects that can be easily quantified and thereafter processed, but deals with aesthetics as well which is in first place qualitative and therefore rather difficult to estimate and numerically represent. As an example, in such cases, these ‘qualitative quantities’ are expressed in linguistic form which should be somehow expressed in numerical form in order to treat such data by powerful and conclusive numerical analysis methods. Expressions such as: bright colour, light room, large space are some of these examples. These expressions are fuzzy concepts whose actual interpretation is hidden and all of them together attach a qualitative value to a certain space. To deal with such information the emerging technologies of the last decade can provide an important aid. One of them is the soft computing technology that can deal with such soft data. In this paper, based on the case studies, we explain the potential of using soft computing techniques.
keywords Qualitative Design Data, Information Processing, Soft Computing, Knowledge Modeling, Neuro-Fuzzy Network
series eCAADe
email
last changed 2022/06/07 07:55

_id 6dda
authors Farin, Gerald E.
year 1996
title Curves and Surfaces for Computer-aided Geometric Design
source Morgan Kaufmann Publishers. San Francisco
summary System requirements: IBM and compatibles with DOS 2.0 or higher or UNIX. This book offers an introduction to the field that emphasizes Bernstein-Bezier methods and presents subjects in an informal, readable style, making this an ideal text for an introductory course at the advanced undergraduate or graduate level. This 3rd edition includes several new section and numerical examples, a treatment of the new blossoming principle, and new C programs. All C programs are available on a disk included with the book. The Problems Sections at the end of each chapter have also been extended.
series other
last changed 2003/04/23 15:14

_id ad2e
authors Fix, George J. and Gunzburger, Max D.
year 1982
title On Numerical Methods for Acoustic Problems
source 14 p. : ill. Pittsburgh: Design Research Center, CMU, April, 1982. include bibliography: p. 12
summary Finite element methods are introduced for the approximate solution of periodic acoustic problems. A least squares technique is used for those problems which are governed by a first order system of partial differential equations while for second order equations, a Galerkin/multigrid technique is employed. In both cases, the solution process for the algebraic system resulting from discretization is iterative in character
keywords acoustics, finite elements, mathematics
series CADline
last changed 2003/06/02 10:24

_id caadria2017_040
id caadria2017_040
authors Haslop, Blaire, Schnabel, Marc Aurel and Aydin, Serdar
year 2017
title Glitch Space - Experiments on Digital Decay to Remap the Anatomy of Glitch in 3D
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 591-600
doi https://doi.org/10.52842/conf.caadria.2017.591
summary This research informs of a series of experimental design practices for the understanding computational glitches in architecture which appears to be equivalently a 'given' as well as an 'informed'. 'Glitch-space' is introduced to navigate the discussion through a spatial interpretation of digital decay. Currently glitches are only explored as forms of 2D art. We however, look to reconnect the underlying data to its digital architectural spatial form. Our methodology a systematic iterative process of transformational change to explore design emergence on the base of computational glitches. A numerical data driven process is explored using decayed files which are turned into 3D formal expressions. In this context, stereoscopic techniques are experimented, helping understand further how glitch can be performed within a 3D virtual environment. Ultimately we explore digital architectural form existing solely in the digital realm that confidently expresses glitch in both its design process and aesthetic outcome. Thus, our research intends to bring a level of authenticity with the notion of 'glitch-space' by discussing 3D interpretations of glitch in an architectural form.
keywords Digital Decay; Glitch; Digital Design Methods; Glitch-space; Data Interpretation
series CAADRIA
email
last changed 2022/06/07 07:49

_id c3b5
authors Hinds, John K. and Kuan, L.P.
year 1979
title Sculptured Surface Technology as a Unified Approach to Geometric Definition
source CASA - The Computer and Automated System Association of SME. 23 p. : ill Dearborn: SME, 1979. MS79-146. includes bibliography.
summary The purpose of this paper is to describe a comprehensive approach to representing and machining complex surface shapes in an APT programming system. The APT (Automatically Programmed Tools) user language was extended to permit the definition of a hierarchy of curves and surfaces. Much of the logic has been implemented using matrix canonical forms which are closed under the full family of projective transformations, permitting family of parts storage and retrieval and part compensation. The area of numerical control machining was addressed, but the solutions for tool positioning were only partially successful due to the complexity of the algorithmic problem. This paper first outlines some of the mathematical methods adopted and then illustrates how these have been implemented with an APT part programming example
keywords curved surfaces, representation, geometric modeling, mechanical engineering, CAM
series CADline
last changed 2003/06/02 13:58

_id ecaade2017_042
id ecaade2017_042
authors Hitchings, Katie, Patel, Yusef and McPherson, Peter
year 2017
title Analogue Automation - The Gateway Pavilion for Headland Sculpture on the Gulf
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
doi https://doi.org/10.52842/conf.ecaade.2017.2.347
summary The Waiheke Gateway Pavilion, designed by Stevens Lawson Architects originally for the 2010 New Zealand Venice Biennale Pavilion, was brought to fruition for the 2017 Headland Sculpture on the Gulf Sculpture trail by students from Unitec Institute of Technology. The cross disciplinary team comprised of students from architecture and construction disciplines working in conjunction with a team of industry professionals including architects, engineers, construction managers, project managers, and lecturers to bring the designed structure, an irregular spiral shape, to completion. The structure is made up of 261 unique glulam beams, to be digitally cut using computer numerical control (CNC) process. However, due to a malfunction with the institutions in-house CNC machine, an alternative hand-cut workflow approach had to be pursued requiring integration of both digital and analogue construction methods. The digitally encoded data was extracted and transferred into shop drawings and assembly diagrams for the fabrication and construction stages of design. Accessibility to the original 3D modelling software was always needed during the construction stages to provide clarity to the copious amounts of information that was transferred into print paper form. Although this design to fabrication project was challenging, the outcome was received as a triumph amongst the architecture community.
keywords Digital fabrication; workflow; rapid prototyping; representation; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id 0a4c
authors Holt, R.C. and Hume, J.N.P.
year 1980
title Programming Standard PASCAL
source x, 381 p. Reston, Verginia: Reston Publishing Company, Inc., 1980. includes index
summary A comprehensive look at data structures, records, files, pointers and more, for effective programming using PASCAL. A practical guide book from an introduction level through advanced coverage of numerical methods, assembly language programming and compiler construction
keywords PASCAL, programming, languages, education
series CADline
last changed 2003/06/02 13:58

_id caadria2015_105
id caadria2015_105
authors Hosny, A.; N. Jacobson and Z. Seibold
year 2015
title Voxel Beam
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 755-764
doi https://doi.org/10.52842/conf.caadria.2015.755
summary Voxelbeam explores precedents in the optimization of architectural structures, namely the Sydney Opera house Arup beam. The authors research three areas crucial to conceiving an innovative contemporary reinterpretation of the beam: A shift in structural analysis techniques from analytical to numerical models such as topology optimization, the fundamental differences between digital and analog representations of structural forces, and the translation of structural analysis data into methods for digital fabrication. The research aims to re-contextualize the structural beam within contemporary digital platforms, explores the architectural implications of topology optimization, and proposes two fabrication strategies based on the analysis results – including automated off-site pre-casting and multi-material 3d printing.
keywords Digital Fabrication, Topology Optimization, Multi-material 3D Printing, Emergent Structural Design, Arup Beam.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2017_021
id caadria2017_021
authors Hwang, Ji-Hyoun and Lee, Hyunsoo
year 2017
title 3D Visual Simulation and Numerical Measurement of Privacy in Traditional Korean Palace
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 355-363
doi https://doi.org/10.52842/conf.caadria.2017.355
summary Traditional Korean architecture provides privacy through a proper balance of openness and enclosure through courtyard gardens. However, it is difficult to analyse privacy quantitatively in a three-dimensional space. The analysis of visual privacy is a significant issue in resolving conflicts and enhancing comfort. This paper develops a computational algorithm for simulating and measuring privacy on the concept of prospect and refuge: a design strategy for psychological wellbeing. In order to visualize privacy, the prospect area ratio (PAR) and refuge area ratio (RAR) are used in 3D visual simulations. PAR and RAR calculate the area ratio of the hiding space or the visible space in the images collected from the 3D model. In addition, parametric algorithms are proposed to calculate PAR/RAR automatically. Finally, this research demonstrates a case study of Gyeongbokgung, one of the five palace buildings in Korea, to show methods and processes of the quantitative analysis of visual privacy. The outcome of this paper contributes to quantitative confirmation of spatial characteristics that clearly distinguish between public space and private space of Gyeongbokgung. The proposed method also shows great potentials to quickly obtain the numeric value of privacy.
keywords 3D simulation; numerical measurement; traditional Korean palace; privacy
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

_id 3071
authors Kuenstle, Michael W.
year 2002
title Escarpment Study in a Virtual Flow Environment A Comparative Analysis of a Single Building Type Modeled in Varying Topological Situations [Escarpment Study in a Virtual Flow Environment. A Comparative Analysis of a Single Building Type Modeled in Varying Topological Situations]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 167-171
summary This paper documents the progress of research to investigate the integration of 3-dimensional computational modeling techniques into wind mitigation analysis and design for building structures located in high wind prone areas. Some of the basic mechanics and theoretical concepts of fluid flow and wind pressure as well as their translation into design criteria for structural analysis and design are reviewed, followed by a discussion of a detailed Computational Fluid Dynamics (CFD) application case study for asimulated “3-second gust” hurricane force wind flow over a low rectangular building located in a coastal region of south Florida. The case study project models the wind flow behavior and pressure distribution over the building structure when situated in three varying conditions within a single terrain exposure category. The simulations include three-dimensional modeling of the building type constructed (1) on-grade in a flat coastal area, (2) above grade with the building elevated on structural columns, and (3) ongradedownwind of an escarpment. The techniques and parameters for development of the simulations are discussed and some preliminary interpretations of the results are evaluated by comparing their predictions to existing experimental and analytical data, with special attention paid to the numerical methods outlined in the American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, ASCE 7-98.
series SIGRADI
email
last changed 2016/03/10 09:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 149HOMELOGIN (you are user _anon_739019 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002