CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2392

_id c55f
authors Kalay, Yehuda E.
year 1986
title The Impact of CAD On Architectural Design Education in the United States
doi https://doi.org/10.52842/conf.ecaade.1986.348
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 348-355
summary Computer-Aided Design (CAD) began to appear in schools of architecture in the United States over 15 years ago. By 1982, over 50% of all accredited schools of architecture in North America included some form of CAD in their curricula. This number has continued to steadily increase. For the most part, the use of CAD has been restricted to the few individuals working on special "CAD projects" and to the researchers developing CAD products. The reasons for this limitation have included the low availability, difficulty of use, restricted access and high cost of the CAD systems, as well as limited faculty and administrative support. Recently, however, partly due to the introduction of micro- computer CAD software, and partly due to the growing awareness of the importance of CAD in architectural education and practice, some schools have begun to introduce CAD as part of the general design curriculum.
series eCAADe
email
last changed 2022/06/07 07:52

_id e234
authors Kalay, Yehuda E. and Harfmann, Anton C.
year 1985
title An Integrative Approach to Computer-Aided Design Education in Architecture
source February, 1985. [17] p. : [8] p. of ill
summary With the advent of CAD, schools of architecture are now obliged to prepare their graduates for using the emerging new design tools and methods in architectural practices of the future. In addition to this educational obligation, schools of architecture (possibly in partnership with practicing firms) are also the most appropriate agents for pursuing research in CAD that will lead to the development of better CAD software for use by the profession as a whole. To meet these two rather different obligations, two kinds of CAD education curricula are required: one which prepares tool- users, and another that prepares tool-builders. The first educates students about the use of CAD tools for the design of buildings, whereas the second educates them about the design of CAD tools themselves. The School of Architecture and Planning in SUNY at Buffalo has recognized these two obligations, and in Fall 1982 began to meet them by planning and implementing an integrated CAD environment. This environment now consists of 3 components: a tool-building sequence of courses, an advanced research program, and a general tool-users architectural curriculum. Students in the tool-building course sequence learn the principles of CAD and may, upon graduation, become researchers and the managers of CAD systems in practicing offices. While in school they form a pool of research assistants who may be employed in the research component of the CAD environment, thereby facilitating the design and development of advanced CAD tools. The research component, through its various projects, develops and provides state of the art tools to be used by practitioners as well as by students in the school, in such courses as architectural studio, environmental controls, performance programming, and basic design courses. Students in these courses who use the tools developed by the research group constitute the tool-users component of the CAD environment. While they are being educated in the methods they will be using throughout their professional careers, they also act as a 'real-world' laboratory for testing the software and thereby provide feedback to the research component. The School of Architecture and Planning in SUNY at Buffalo has been the first school to incorporate such a comprehensive CAD environment in its curriculum, thereby successfully fulfilling its obligation to train students in the innovative methods of design that will be used in architectural practices of the future, and at the same time making a significant contribution to the profession of architecture as a whole. This paper describes the methodology and illustrates the history of the CAD environment's implementation in the School
keywords CAD, architecture, education
series CADline
email
last changed 2003/06/02 13:58

_id 8c27
authors Kalay, Yehuda E.
year 1982
title Determining the Spatial Containment of a Point in General Polyhedra
source Computer graphics and Image Processing. 1982. vol. 19: pp. 303-334 : ill. includes bibliography. See also criticism and improvements in Orlowski, Marian
summary Determining the inclusion of a point in volume-enclosing polyhedra (shapes) in 3D space is, in principle, the extension of the well-known problem of determining the inclusion of a point in a polygon in 2D space. However, the extra degree of freedom makes 3D point-polyhedron containment analysis much more difficult to solve than the 2D point polygon problem, mainly because of the nonsequential ordering of the shape elements, which requires global shape data to be applied for resolving special cases. Two general O(n) algorithms for solving the problem by reducing the 3D case into the solvable 2D case are presented. The first algorithm, denoted 'the projection method,' is applicable to any planar- faced polyhedron, reducing the dimensionality by employing parallel projection to generate planar images of the shape faces, together with an image of the point being tested for inclusion. The containment relationship of these images is used to increment a global parity-counter when appropriate, representing an abstraction for counting the intersections between the surface of the shape and a halfline extending from the point to infinity. An 'inside' relationship is established when the parity-count is odd. Special cases (coincidence of the halfline with edges or vertices of the shape) are resolved by eliminating the coincidental elements and re-projecting the merged faces. The second algorithm, denoted 'the intersection method,' is applicable to any well- formed shape, including curved-surfaced ones. It reduces the dimensionality by intersecting the polygonal trace of the shape surface at the plane of intersection, which is tested for containing the trace of the point in the plane, directly establishing the overall 3D containment relationship. A particular O(n) implementation of the 2D point-in-polygon inclusion algorithm, which is used for solving the problem once reduced in dimensionality, is also presented. The presentation is complemented by discussions of the problems associated with point-polyhedron relationship determination in general, and comparative analysis of the two particular algorithms presented
keywords geometric modeling, point inclusion, polygons, polyhedra, computational geometry, algorithms, search, B-rep
series CADline
email
last changed 2003/06/02 10:24

_id 2312
authors Carrara, G., Kalay Y.E. and Novembri, G.
year 1992
title Multi-modal Representation of Design Knowledge
doi https://doi.org/10.52842/conf.ecaade.1992.055
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 55-66
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if computers are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer-aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the multimodal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process Goals, Knowledge Representation, Semantic Networks
series eCAADe
email
last changed 2022/06/07 07:55

_id 4bd2
authors Carrara, G., Kalay, Y.E. and Novembri, G.
year 1992
title A Computational Framework for Supporting Creative Architectural Design
source New York: John Wiley & Sons, 1992. pp. 17-34 : ill. includes Bibliography
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of performance criteria. The process comprises three distinct operations: (1) Definition of the desired set of performance criteria (design goals); (2) generation of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to the predefined criteria. Difficulties arise in performing each one of the three operations, and in combining them into a purposeful unified process. Computational techniques were developed to assist each of the three operations. A comprehensive and successful computational design assistant will have to recognize the limitations of current computational techniques, and incorporate a symbiosis between the machine and the human designer. This symbiosis comprises allocating design tasks between the designer and the computer in a manner that is most appropriate for the task at hand. The task allocation must, therefore, be done dynamically, responding to the changing circumstances of the design process. This report proposes a framework for such a symbiotic partnership, which comprises four major components: (1) User interface and design process control; (2) design goals; (3) evaluators; (4) database
keywords architecture, knowledge base, systems, design process, control
series CADline
email
last changed 2003/06/02 14:41

_id 42eb
authors Chastain, Th., Kalay, Y.E. and Peri, C.
year 2002
title Square peg in a round hole or horseless carriage? Reflections on the use of computing in architecture
source Automation in Construction 11 (2) (2002) pp. 237-248
summary We start with two paradigms that have been used to describe the relationship of computation methods and tools to the production of architecture. The first is that of forcing a square peg into a round hole –– implying that the use of a tool is misdirected, or at least poorly fits the processes that have traditionally been part of an architectural design practice. In doing so, the design practice suffers from the use of new technology. The other paradigm describes a state of transformation in relationship to new technology as a horseless carriage in which the process is described in obsolete and `backward' terms. The implication is that there is a lack of appreciation for the emerging potentials of technology to change our relationship with the task. The paper demonstrates these two paradigms through the invention of drawings in the 14th Century, which helped to define the profession of architecture. It then goes on to argue that modern computational tools follow the same paradigms, and like drawings, stand to bring profound changes to the profession of architecture as we know it.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ad51
authors Chastain, Th., Kalay, Y.E. and Peri, Ch.
year 1999
title Square Peg in a Round Hole or Horseless Carriage? Reflections on the Use of Computing in Architecture
doi https://doi.org/10.52842/conf.acadia.1999.004
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 4-15
summary We start with two paradigms that have been used to describe the relationship of computation methods and tools to the production of architecture. The first is that of forcing a square peg into a round hole — implying that the use of a tool is mis-directed, or at least poorly fits the processes that have traditionally been part of an architectural design practice. In doing so, the design practice suffers from the use of new technology. The other paradigm describes a state of transformation in relation-ship to new technology as a horseless carriage in which the process is described in obsolete and ‘backward’ terms. The impli-cation is that there is a lack of appreciation for the emerging potentials of technology to change our relationship with the task. The paper demonstrates these two paradigms through the invention of drawings in the 14th century, which helped to define the profession of Architecture. It then goes on to argue that modern computational tools follow the same paradigms, and like draw-ings, stand to bring profound changes to the profession of architecture as we know it.
series ACADIA
email
last changed 2022/06/07 07:55

_id 7f64
authors Harfmann, A.C., Swerdloff, L.M. and Kalay, Y.E.
year 1986
title The Terminal Crit
doi https://doi.org/10.52842/conf.acadia.1986.079
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 79-87
summary Numerous attempts have been made to develop formal design methods with -the purpose of increasing the predictability, consistency and dissemination of the design process and improving the quality of the objects produced. The ill- structured nature of design, and the perception of design activities as intuitive and experience dependent have frustrated many of the efforts to structure these process. The growing complexity of the built environment and advances in technology have led to a more rigorous effort to understand and externalize creative activities. Computer aided design tools have recently been playing an important role in the evolution of the design process as a rationally defined activity. The use of- computers for drafting, analysis, and 2 or 3 dimensional modeling is rapidly becoming an accepted method in many design schools and practitioners. A next logical step in the externalization of the design process is to endow the computer with the ability to manipulate and critique parts of the design. Under this scenario, the "terminal crit" is redefined to mean critiques that are carried out by both the designer and the computer. The paper presents the rationalization of the design process as a continuum into which CAD has been introduced. The effects of computers on the design process are studied through a specific incorporation of CAD tools into a conventional design studio, and a research project intended to advance the role of CAD in design.
series ACADIA
email
last changed 2022/06/07 07:49

_id 4248
authors Kalay, Y.E. and Skibniewski, M.J.
year 1995
title Automation in Construction: Fulfilling the promise
source Automation in Construction 4 (1) (1995) pp. 1-3
summary Three years ago, Elsevier Science B.V. has embarked on one of the most important endeavors for the A/E/C community, worldwide. With the help of three dedicated individuals, it has inaugurated a new refereed journal devoted to discussing, critically examining and disseminating the latest developments affecting the processes that lead to the design, construction and use of buildings and other facilities. Unlike other jour-nals in this field, Automation in Construction has been dedicated to exploring the processes and tools used by the A/E/C community, rather than its products. It has been dedicated to issues concerning the A/ E / C community specifically, and to methods, practices and tools that make use of computers in particular, thereby filling a void which existed, until its inauguration, within the A/E/C community's publications.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/06/02 09:30

_id 07c6
authors Kalay, Y.E., Harfmann, A.C. and Swerdloff, L.M.
year 1985
title ALEX: A Knowledge-Based Architectural Design System
doi https://doi.org/10.52842/conf.acadia.1985.096
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 96-108
summary A methodology for the development of a knowledge-based computer-aided design system and its experimental application in the domain of single family house design are presented.

The methodology involves integrating within a unified design environment, tools and techniques that have been independently developed in various disciplines (including knowledge representation, information management, geometric modeling, human,machine interface, and architectural design). By assuming the role of active design partners, the resulting systems are expected to increase the productivity of designers, improve the quality of their products, and reduce cost and lead time of the design process as a whole.

ALEX (Architecture Learning Expert), a particular application of this methodology, is a prototype knowledge-based CAD system in the domain of single family house design. It employs user-interactive, goal directed heuristic search strategies in a solution space that consists of a network of objects. Message-based change propagation techniques, guided by domain-specific knowledge, are used to ensure database integrity and well-formedness.

The significance of the methodology and its application is threefold: it furthers our knowledge of the architectural design process, explores the utilization of knowledge engineering methods in design, and serves as a prototype for developing the next generation of computer-aided architectural design systems.

series ACADIA
email
last changed 2022/06/07 07:52

_id 3d2f
authors Kalay, Y.E., Khemlani, L. and JinWon, C.
year 1998
title An integrated model to support distributed collaborative design of buildings
source Automation in Construction 7 (2-3) (1998) pp. 177-188
summary The process of designing, constructing and managing buildings is fragmented, and involves many participants interacting in complex ways over a prolonged period of time. Currently, sequential communication among the participants is the norm. Consequently, while individual parts of the project may be optimized, the optimality of the overall project suffers. It is our view that the quality of the overall project can be significantly improved (in terms of time, money, and quality of design) if there was a tighter, non-sequential collaboration among the participants. Additional improvements will accrue if the participants were provided with discipline-specific design and evaluation tools, which assist them in performing their tasks. This paper describes the development of an integrated design environment, which is intended to facilitate such collaboration. It comprises a semantically-rich, object-oriented database, which forms the basis for shared design decisions. The database is augmented by knowledge-based query and update operators. Geometric and semantic editing tools round out the environment.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 4f90
authors Kalay, Y.E.
year 1998
title P3: Computational environment to support design collaboration
source Automation in Construction 8 (1) (1998) pp. 37-48
summary The work reported in this paper addresses the paradoxical state of the construction industry (also known as A/E/C, for Architecture, Engineering and Construction), where the design of highly integrated facilities is undertaken by severely fragmented teams, leading to diminished performance of both processes and products. The construction industry has been trying to overcome this problem by partitioning the design process hierarchically or temporally. While these methods are procedurally efficient, their piecemeal nature diminishes the overall performance of the project. Computational methods intended to facilitate collaboration in the construction industry have, so far, focused primarily on improving the flow of information among the participants. They have largely met their stated objective of improved communication, but have done little to improve joint decision-making, and therefore have not significantly improved the quality of the design project itself. We suggest that the main impediment to effective collaboration and joint decision-making in the A/E/C industry is the divergence of disciplinary `world-views', which are the product of educational and professional processes through which the individuals participating in the design process have been socialized into their respective disciplines. To maximize the performance of the overall project, these different world-views must be reconciled, possibly at the expense of individual goals. Such reconciliation can only be accomplished if the participants find the attainment of the overall goals of the project more compelling than their individual disciplinary goals. This will happen when the participants have become cognizant and appreciative of world-views other than their own, including the objectives and concerns of other participants. To achieve this state of knowledge, we propose to avail to the participants of the design team highly specific, contextualized information, reflecting each participant's valuation of the proposed design actions. P3 is a semantically-rich computational environment, which is intended to fulfill this mission. It consists of: (1) a shared representation of the evolving design project, connected (through the World Wide Web) to (2) individual experts and their discipline-specific knowledge repositories; and (3) a computational project manager makes the individual valuations visible to all the participants, and helps them deliberate and negotiate their respective positions for the purpose of improving the overall performance of the project. The paper discusses the theories on which the three components are founded, their function, and the principles of their implementation.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ee8e
authors Kalay, Y.E.
year 1999
title Performance-based design
source Automation in Construction 8 (4) (1999) pp. 395-409
summary Even before Louis Sullivan coined the phrase `Form Follows Function,' architectural researchers have sought, to no avail, a causal relationship between these two primary constituents of the building enterprise. This paper attempts to explain why this quest has been futile, and proposes a performance-based design paradigm, instead of the prevailing process-based paradigms. It suggests that the driving force behind any design activity is the desire to achieve a qualitative solution for a particular combination of form and function in a specific context. Furthermore, it suggests that quality can only be determined by a multi-criteria, multi-disciplinary performance evaluation, which comprises a weighted sum of several satisfaction/behavior functions. The paper develops a performance-based design methodology and demonstrates its application in an experimental, knowledge-based CAD system.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 68fb
authors Khemlani, L., Timerman, A., Benne, B. and Kalay, Y.E.
year 1998
title Intelligent representation for computer-aided building design
source Automation in Construction 8 (1) (1998) pp. 49-71
summary At the core of any computational system that can support design development, analysis, and evaluation is an “intelligent” building representation which should be able to represent all the different components that make up a building, along with the manner in which they come together. In other words, the representation must be informationally complete and semantically rich. The paper discusses these two criteria and briefly reviews other research efforts aimed at developing building representations for computer-aided design that attempt to meet them. Our solution to this problem is then presented. It is aimed primarily at the schematic design phase, the rationale for which is also stated. Taking the view that buildings are unique assemblies of discrete, mostly standardized components, our representation is clearly divided into two components: the Object Database (ODB) which stores detailed information about various building elements, and the Project Database (PDB) which holds information about how these elements are assembled to make up a particular building. An ODB may be shared by many building projects, while the PDB must necessarily be unique to each. The data schemas of both the PDB and the ODB are described in detail and their computational implementation, to the extent that it has been completed, is illustrated.
series journal paper
last changed 2003/03/05 13:12

_id 2de7
authors Lachmi, K., Beatrice, B., Timerman, A. and Kalay, Y.E.
year 1997
title Semantically Rich Building Representation
doi https://doi.org/10.52842/conf.acadia.1997.207
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 207-227
summary At the core of any computational system that can support design development, analysis, and evaluation is a building representation which should be able to represent all the different components that make up a building, along with the manner in which they come together. In other words, the representation must be informationally complete and semantically rich. The paper discusses these two criteria in detail, and briefly reviews other research efforts aimed at developing building representations for CAAD that attempt to meet them. Our solution to this problem is then presented. It is aimed primarily at the schematic design phase, the rationale for which is also stated. Taking the view that buildings are unique assemblies of discrete, mostly standardized components, our representation is clearly divided into two components: the Object Database (ODB) which stores detailed information about various building elements, and the Project Database (PDB) which holds information about how these elements are assembled to make up a particular building. An ODB may be shared by many building projects, while the PDB must necessarily be unique to each. The data schemas of both the PDB and the ODB are described in detail and their computational implementation, to the extent that it has been completed, is illustrated.

series ACADIA
email
last changed 2022/06/07 07:52

_id c804
authors Richens, P.
year 1994
title Does Knowledge really Help?
source G. Carrara and Y.E. Kalay (Eds.), Knowledge-Based Computer-Aided Architectural Design, Elsevier
summary The Martin Centre CADLAB has recently been established to investigate software techniques that could be of practical importance to architects within the next five years. In common with most CAD researchers, we are interested in the earlier, conceptual, stages of design, where commercial CAD systems have had little impact. Our approach is not Knowledge-Based, but rather focuses on using the computer as a medium for design and communication. This leads to a concentration on apparently superficial aspects such as visual appearance, the dynamics of interaction, immediate feedback, plasticity. We try to avoid building-in theoretical attitudes, and to reduce the semantic content of our systems to a low level on the basis that flexibility and intelligence are inversely related; and that flexibility is more important. The CADLAB became operational in January 1992. First year work in three areas – building models, experiencing architecture, and making drawings – is discussed.
series other
more http://www.arct.cam.ac.uk/research/pubs/
last changed 2003/03/05 13:19

_id eabb
authors Boeykens, St. Geebelen, B. and Neuckermans, H.
year 2002
title Design phase transitions in object-oriented modeling of architecture
doi https://doi.org/10.52842/conf.ecaade.2002.310
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 310-313
summary The project IDEA+ aims to develop an “Integrated Design Environment for Architecture”. Its goal is providing a tool for the designer-architect that can be of assistance in the early-design phases. It should provide the possibility to perform tests (like heat or cost calculations) and simple simulations in the different (early) design phases, without the need for a fully detailed design or remodeling in a different application. The test for daylighting is already in development (Geebelen, to be published). The conceptual foundation for this design environment has been laid out in a scheme in which different design phases and scales are defined, together with appropriate tests at the different levels (Neuckermans, 1992). It is a translation of the “designerly” way of thinking of the architect (Cross, 1982). This conceptual model has been translated into a “Core Object Model” (Hendricx, 2000), which defines a structured object model to describe the necessary building model. These developments form the theoretical basis for the implementation of IDEA+ (both the data structure & prototype software), which is currently in progress. The research project addresses some issues, which are at the forefront of the architect’s interest while designing with CAAD. These are treated from the point of view of a practicing architect.
series eCAADe
email
last changed 2022/06/07 07:52

_id 56de
authors Handa, M., Hasegawa, Y., Matsuda, H., Tamaki, K., Kojima, S., Matsueda, K., Takakuwa, T. and Onoda, T.
year 1996
title Development of interior finishing unit assembly system with robot: WASCOR IV research project report
source Automation in Construction 5 (1) (1996) pp. 31-38
summary The WASCOR (WASeda Construction Robot) research project was organized in 1982 by Waseda University, Tokyo, Japan, aiming at automatizing building construction with a robot. This project is collaborated by nine general contractors and a construction machinery manufacturer. The WASCOR research project has been divided into four phases with the development of the study and called WASCOR I, II, III, and IV respectively. WASCOR I, II, and III finished during the time from 1982 to 1992 in a row with having 3-4 years for each phase, and WASCOR IV has been continued since 1993. WASCOR IV has been working on a automatized building interior finishing system. This system consists of following three parts. (1) Development of building system and construction method for automated interior finishing system. (2) Design of hardware system applied to automated interior finishing system. (3) Design of information management system in automated construction. As the research project has been developing, this paper describes the interim report of (1) Development of building system and construction method for automated interior finishing system, and (2) Design of hardware system applied to automated interior finishing system.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 2c13
authors Knuth, Donald E.
year 1982
title The Concept of a Meta-Font
source Visible Language. Winter, 1982. vol. XVI: pp. 3-27 : ill. includes bibliography
summary A single drawing of a single letter reveals only a small part of what was in the designer's mind when that letter was drawn. But when precise instructions are given about how to make such a drawing, the intelligence of that letter can be captured in a way that permits us to obtain an infinite variety of related letters from the same specification. Instead of merely describing a single letter, such instructions explain how that letter would change its shape if other parameters of the design were changed. Thus an entire font of letters and other symbols can be specified so that each character adapts itself to varying conditions in an appropriate way. Initial experiments with a precise language for pen motions suggest strongly that the font designer of the future should not simply design isolated alphabets; the challenge will be to explain exactly how each design should adapt itself gracefully to a wide range of changes in the specification. This paper gives examples of a meta-font and explains the changeable parameters in its design
keywords programming, computer graphics, parametrization
series CADline
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 119HOMELOGIN (you are user _anon_403389 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002