CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 9799

_id acadia14projects_251
id acadia14projects_251
authors Farahi, Behnaz
year 2014
title Breathing Wall
doi https://doi.org/10.52842/conf.acadia.2014.251
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 251-262
summary This installation is aiming to imagine a space that can develop an understanding of its users through their hand/bodily movements and respond accordingly?
keywords Interactive architecture, Kinetic Installation, Human- Building Interaction, Projection mapping, Leap Motion, User participation in design.
series ACADIA
type Student's Research Projects
email
last changed 2022/06/07 07:55

_id acadia18_206
id acadia18_206
authors Farahi, Behnaz
year 2018
title HEART OF THE MATTER: Affective Computing in Fashion and Architecture
doi https://doi.org/10.52842/conf.acadia.2018.206
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 206-215
summary What if material interfaces could physically adapt to the user’s emotional state in order to develop a new affective interaction? By using emotional computing technologies to track facial expressions, material interfaces can help to regulate emotions. They can serve either as a tool for intelligence augmentation or as a means of leveraging an empathic relationship by developing an affective loop with the user. This paper explores how color- and shape-changing operations can be used as interactive design tools to convey emotional information, and is illustrated by two projects, one at the intimate scale of fashion and one at a more architectural scale. By engaging with design, art, psychology, and computer and material science, this paper envisions a world where material systems can detect the emotional responses of a user and reconfigure themselves in order to enter into a feedback loop with the user’s affective state and influence social interaction.
keywords full paper, materials & adaptive systems, materials/adaptive systems, computation.
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id 2004_148
id 2004_148
authors Fatah gen. Schieck, A., Penn, A., Mottram, C., Strothmann, C., Ohlenburg, J., Broll, W. and Aish, F.
year 2004
title Interactive Space Generation through Play - Exploring Form Creation and the Role of Simulation on the Design Table
doi https://doi.org/10.52842/conf.ecaade.2004.148
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 148-158
summary In this paper we report on recent developments in ARTHUR: an approach to support complex design and planning decisions for architects together with the simulation of pedestrian movement and the integration of existing CAD tools on the design table. Following a brief introduction, past and current work that has taken a similar approach will be reviewed. Next we describe a scenario that integrates agent-based simulations of pedestrian movement with space creation, and then give an overview of the system before finally discussing findings related to recent user evaluation studies of the system. This paper suggests that the integration of simulated pedestrian movement on the design table, while going through a cycle of reflection-in-action, plays a vital role in exploring possible design solutions and encourages new and different ways of thinking about design problems.
keywords Tangible User Interface, Pedestrian Simulation, Collaboration, Augmented Reality (AR), CAD Integration
series eCAADe
last changed 2022/06/07 07:55

_id 2004_184
id 2004_184
authors Fatah gen. Schieck, Ava
year 2004
title Using Multiple Input Devices
doi https://doi.org/10.52842/conf.ecaade.2004.184
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 184-194
summary The field of computer graphics has developed significantly over the last decade. However, most current CAD systems support only the two most common input devices: a mouse and a keyboard. In addition to that few, if any, systems make it easy for the user or the programmer to add and use new input devices. People tend to use both hands to manipulate 3D real world objects; one hand is used to orient the object while the other hand is used to perform some operation on it. The same thing could be applied to computer modelling in the conceptual phase of the design process. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands. This paper investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. It demonstrates that using multiple input devices can offer many opportunities for form generation resulting in visually rich forms. However, the experimental results demonstrated that regulations are needed to avoid developing inefficient two-handed interfaces.
keywords Modelling Interactively, Architectural Design Tools at the Conceptual Phase, Affordable Low-Cost Solution, Multiple Input Devices MID
series eCAADe
last changed 2022/06/07 07:55

_id caadria2014_075
id caadria2014_075
authors Fernando, Ruwan A.
year 2014
title Space Planning and Preliminary Design Using Artificial Life
doi https://doi.org/10.52842/conf.caadria.2014.657
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 657–666
summary The majority of CAD tools are designed for precision modelling of forms. The very earliest stages of design tend to be worked through with traditional media such as sketching with pen or pencil. A reason why this is, stems from the difficulty of drawing or diagramming uncertainty or vague ideas in a traditional CAD application. When a designer is still working through the design, pen and pencil are a means of exploring. While any simple pencil sketch can be imitated using CAD, this is too time consuming and limiting when compared with traditional media. This paper presents research in a prototype for a early stage planning software application using blobs (closed recursively subdivided curves) and ideas from artificial life. While not a replacement for sketching, the aim of this research is to provide a means of diagramming preliminary ideas as exploring the idea of a dialogue between humans and computers. The shapes represented in the software use physics simulations and act as 'soft-bodies' allowing users to manipulate them in various ways. Ideas from artificial life simulations are used to have the shapes interact with each other and produce unexpected configurations. The aim of these interactions is to trigger a response from the user and to allow them to explore configurations that they did not anticipate.
keywords Artificial Life; Space Planning; Generative Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2012_154
id ecaade2012_154
authors Ferreira, M. Piedade; Cabral de Mello, Duarte; Duarte, José Pinto
year 2012
title Embodied Emotions: A Phenomenological Approach to Computation to Explore Empathy Through Architecture
doi https://doi.org/10.52842/conf.ecaade.2012.2.599
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 599-604
summary In this paper we present a PhD research that aims to develop a design methodology that, using computational tools can generate livable spaces that allow the design of user centered architecture. We propose that a “corporeal architecture” might be able to work in a prophylactic or therapeutic way that can face some adversities generated by the contemporary impact of technology in the human body. We are using motion as the basis the tool to simulate the body’s motion as a spatial generator. We hope to understand how an embodied space, generated by motions that refl ect emotions, can create a sense of attunement with its dwellers. We also wish to achieve the holistic stimuli of the human body in a naturally immersive environment, with the induction of the body’s motions in space by the physical properties of the architecture.
wos WOS:000330320600064
keywords Corporeal Architecture; phenomenology; computation (shape grammars); user-centred design; empathy
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2022_154
id ecaade2022_154
authors Ferretti, Maddalena, Di Leo, Benedetta, Quattrini, Ramona and Vasic, Iva
year 2022
title Creativity and Digital Transition in Central Apennine - Innovative design methods and digital technologies as interactive tools to enable heritage regeneration and community engagement
doi https://doi.org/10.52842/conf.ecaade.2022.2.187
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 187–196
summary This contribution proposes strategies of reactivation of the central Apennine of Marche Region in Italy through creative design methods and virtual technologies. The research activities are connected to two related PhD projects: one focusing on architectural and urban design, the other one on heritage digitalization and new technologies and to other research activities of our interdisciplinary team. Cagli, a small town of 8.000 inhabitants, is currently undergoing socio-economic transformations that need to be addressed strategically with a cultural and spatial perspective. The research explores regenerative solutions and local development strategies to enhance the city and its cultural landscape. Participatory processes aided by digital tools and innovative design methods are tested in Cagli’s living lab. The final output of the overall research is a “Reactive Map” combining a trans-scalar and multidisciplinary territorial analysis with visions to identify “potential spaces”. The map is a design tool to define a shared strategy of enhancement of the city and its heritage. With this paper we present one of the methodological steps of the research, a WEB-APP built upon a point clouds database and assessed through a preliminary user test. The highly descriptive 3D environment is able to collect analysis and to be enriched in a participatory way during planned activities of co-thinking. The 3D environment, improved with interviews, plans, historical pictures and other media contents, is also paired with a virtual tour to offer a different representation of the “potential spaces”. The fully boosting 3D digital technology thus represents a viable and effective solution to involve citizens and an innovative and interdisciplinary tool for knowledge advancement in the fields of architectural and urban design and heritage regeneration.
keywords Tangible and Intangible Heritage, Co-Thinking, Trans-Scalar Approach, Narrative, Point Clouds Exploitation, Interactive Annotation, Virtual Reality
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2014_029
id ecaade2014_029
authors Filipa Osório, Alexandra Paio and Sancho Oliveira
year 2014
title Interaction with a Kinetic Folded Surface
doi https://doi.org/10.52842/conf.ecaade.2014.2.605
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 605-612
summary Kinetic systems offers new perspectives and design innovation in research and practice. These systems have been used by architects as an approach that embeds computation intelligence to create flexible and adaptable architectural spaces according to users changing needs and desires as a way to respond to an increasingly technological society. The presented research attempts to answer to this question based on the results of a multidisciplinary on-going work developed at digital fabrication laboratory Vitruvius Fablab-IUL in Lisbon. The main goal is to explore the transformation of the shape of a construction by mechanisms which allow adaptation either to environmental conditions or to the needs of the user. This paper reports the initial development of a kinetic system based on an origami foldable surface actuated by a user. The user can manipulate a small scale model of the surface and evaluate at all times if it is achieving the desired geometry.
wos WOS:000361385100063
keywords Kinetic systems; interactive architecture; responsive surfaces; origami geometry; folded surfaces
series eCAADe
email
last changed 2022/06/07 07:50

_id 43f0
id 43f0
authors Flynn, D., van Schaik, P., Blackman, T., Fencott, P.C., Hobbs, B., & Calderon, C.
year 2003
title DEVELOPING A VIRTUAL REALITY-BASED METHODOLOGY FOR PEOPLE WITH DEMENTIA: A FEASIBILITY STUDY.
source Journal of CyberPsychology and Behavior, Vol6, Number6, 2003.
summary The aim of this study was to examine the feasibility of virtual reality (VR) technology for use by persons with dementia (PWD). Data were obtained directly from six PWD regarding their experiences with a virtual environment (VE) of a large outdoor park. A user-centered method was developed to assess: (a) presence; (b) user inputs; (c) display quality; (d) simulation fidelity; and (e) overall system usability. The extent to which PWD could perform four functional activities in the VE was also investigated (e.g., mailing a letter). In addition, physical and psychological well-being of PWD while interacting with the VE was assessed objectively by recording heart rate during the VR sessions and subjectively with discrete questionnaire items and real-time prompts. Symptom profiles associated with simulator sickness were assessed with an adapted version of the Simulator Sickness Questionnaire. The study found that PWD to some extent experienced presence; perceived that objects were realistic and moved naturally; generally felt in control of the interaction; and demonstrated little difficulty using a joystick for navigation. The study also demonstrated that VR is an appropriate medium for assessing functional behavior within the context of an ecologically valid VE. PWD did not experience any significant increase in symptoms associated with simulator sickness, or detriments to their psychological and physical well-being. These findings demonstrated that it is feasible to work in VEs with PWD.
keywords Dementia, VR
series journal paper
type normal paper
email
last changed 2005/12/02 11:36

_id 0544
authors Foley, et.al.
year 1990
title Computer Graphics Principles and Practice
source Addison-Wesley
summary Computer Graphics: Principles and Practice is the most exhaustive overview of computer graphics techniques available. This textbook's 21 chapters cover graphics hardware, user interface software, rendering, and a host of other subjects. Assuming a solid background in computer science or a related field, Computer Graphicsgives example programs in C and provides exercises at the end of each chapter to test your knowledge of the material. The guide has over 100 beautiful, four-color photographs that illustrate important topics and algorithms, such as ray tracing and bump maps, and also inspire you to acquire the skills necessary to produce them. Encyclopedic in its coverage, the book has a good table of contents so that you can immediately turn to information on the z-Buffer algorithm or the chapter on animation.
series other
last changed 2003/04/23 15:14

_id d104
authors Foley, J.D., Van Dam A., Feiner, S.K. and Hughes, J.F.
year 1990
title Computer Graphics, principle and practice
source Addison-Wesley, New York
summary Computer Graphics: Principles and Practice is the most exhaustive overview of computer graphics techniques available. This textbook's 21 chapters cover graphics hardware, user interface software, rendering, and a host of other subjects. Assuming a solid background in computer science or a related field, Computer Graphicsgives example programs in C and provides exercises at the end of each chapter to test your knowledge of the material. The guide has over 100 beautiful, four-color photographs that illustrate important topics and algorithms, such as ray tracing and bump maps, and also inspire you to acquire the skills necessary to produce them. Encyclopedic in its coverage, the book has a good table of contents so that you can immediately turn to information on the z-Buffer algorithm or the chapter on animation.
series other
last changed 2003/04/23 15:14

_id cbbb
authors Forrest, Robin A.
year 1971
title Interactive Interpolation and Approximation by Bezier Polynomials
source The Computer Journal May, 1971. vol. 15: pp. 71-79 : ill. includes bibliography.
summary One of the main problems in computer-aided design is how to input shape information to the computer. The paper describes a method developed for the interactive interpolation and approximation of curves which has been found in practice to provide a natural interface between the mathematically unsophisticated user and the computer
keywords user interface, CAD, Bezier, computational geometry, curves, curved surfaces
series CADline
last changed 2003/06/02 13:58

_id bsct_fotiadou
id bsct_fotiadou
authors Fotiadou, Angeliki
year 2007
title Analysis of Design Support for Kinetic Structures
source Vienna University of Technology; Building Science & Technology
summary This thesis attempts the formation and systemization of a basis of knowledge and information, which is indispensable to turn a design support for kinetic structures into representation by means of a 3d animating program. Representation of kinetic structures by means of the existing ordinary software sources is possible; Nevertheless, such representation lacks of different important features and functions and results eventually in the total absence of a real model of the construction, which is valuable to the user of the program especially in the field of the kinetics, where everything depends on the movement: design not only requires, but demands for visualisation. A personal interest in kinetic architecture and therefore in the physical movement of structural elements in a building, as well as an attempt to “fathom” the possibility of changing this concept to visualization and modern reality by the use of a software are the main incentives of this master thesis. First, a general research will be performed in order to check the existence of similar or semisimilar proposals. The area in which the research will be held is the Bibliography in kinetic architecture and parametric design. A comparison of animation and 3D prototype software in well-known programs will focus on whether virtual weather conditions are considered as a parameter to the animation of the structure of the programs and case studies of several existing kinetic structures will be performed, in order to point out flaws and/or helpful commands in the programs in connection with the presentation of kinetic architecture. Criteria for the choice of the software: ability to customise and to produce geometric modelling, animation in relation to time (video animation) and the simulation after taking into consideration weather factors. Finally, using the computer and the scripting language, based probably on the theory of parametric design and primitive instancing, a realistic simulation of different elements will be performed in relation to variable measurements of luminance, ventilation and temperature so as to render feasible the construction of a whole structure. The results of the thesis will be used in the future as the basic knowledge in the creation of software for simulation of kinetic architecture. This program will be used as a tool for the architect to present a building, where kinetic architecture will be applied and to create simulation of the kinetic movement through a library of the existing prefabricated elements which will be created with the help of this thesis.
keywords Kinetic architecture, 3D designing software, scripting, programming
series thesis:MSc
email
more http://cec.tuwien.ac.at
last changed 2007/07/16 17:51

_id ascaad2009_samir_foura
id ascaad2009_samir_foura
authors Foura, Samir and Samira Debache
year 2009
title Thermal Simulation In Residential Building Within Computer Aided Architectural Design: Integrated model
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 235-243
summary Nowadays, the architectural profession is seeking a better energy saving in the design of buildings. The fear of energy shortage in the very near future, together with the rapid rise in energy prices, put pressure on researchers on this field to develop buildings with more efficient heating systems and energy systems. This work is concerned mainly with the development of a software program analyzing comfort in buildings integrated in CAD architectural systems. The problem of presenting the computer with information concerning the building itself has been overcome through integration of thermal analysis with the building capabilities of CAD system. Mainly, such experience concerns the rules for calculating heat loss and heat gain of buildings in Algeria, The program has been developed in order to demonstrate the importance of the innovation of the computer aided-architectural-design field (CAAD) in the technology of buildings such as the three dimensional modeling offering environmental thermal analysis. CAAD is an integrated architectural design system which can be used to carry out many tasks such as working drawings, perspectives and thermal studies, etc., all from the same data. Results are obtained in tabular form or in graphical output on the visual display. The principle of this program is that all input data should be readily available to the designer at the early stages of the design before the user starts to run the integrated model. Particular attention is given to the analysis of thermal aspects including solar radiation gains. Average monthly energy requirement predictions have been estimated depending on the building design aspect. So, this integrated model (CAAD and simulation comfort) is supposed to help architects to decide on the best options for improving the design of buildings. Some of these options may be included at the early design stages analysis. Indications may also be given on how to improve the design. The model stored on CAAD system provides a valuable data base for all sort analytical programs to be integrated into the system. The amount of time and expertise required to use complex analytical methods in architectural practice can be successfully overcome by integration with CAAD system.
series ASCAAD
email
last changed 2009/06/30 08:12

_id 6947
authors Foxley, Eric, McGettrick, A. D. and van Leeuwen, J. (consulting editors)
year 1985
title UNIX for Super Users
source xiv, 213 p. Wokingham, England: Addison-Wesley Pub. Co., 1985. includes index -- (International Computer Science Series)
summary For the person responsible for managing a UNIX system. A description of key management functions like : Bringing up the system and taking it down, creation of new login names, maintenance of file-store security, monitoring user resource usage, and machine performance considerations. Outlines of shell scripts and C programs for various system management function are given. All major versions, at the time, of UNIX and its derivatives are covered
keywords UNIX, operating systems
series CADline
last changed 2003/06/02 13:58

_id 2068
authors Frazer, John
year 1995
title AN EVOLUTIONARY ARCHITECTURE
source London: Architectural Association
summary In "An Evolutionary Architecture", John Frazer presents an overview of his work for the past 30 years. Attempting to develop a theoretical basis for architecture using analogies with nature's processes of evolution and morphogenesis. Frazer's vision of the future of architecture is to construct organic buildings. Thermodynamically open systems which are more environmentally aware and sustainable physically, sociologically and economically. The range of topics which Frazer discusses is a good illustration of the breadth and depth of the evolutionary design problem. Environmental Modelling One of the first topics dealt with is the importance of environmental modelling within the design process. Frazer shows how environmental modelling is often misused or misinterpreted by architects with particular reference to solar modelling. From the discussion given it would seem that simplifications of the environmental models is the prime culprit resulting in misinterpretation and misuse. The simplifications are understandable given the amount of information needed for accurate modelling. By simplifying the model of the environmental conditions the architect is able to make informed judgments within reasonable amounts of time and effort. Unfortunately the simplications result in errors which compound and cause the resulting structures to fall short of their anticipated performance. Frazer obviously believes that the computer can be a great aid in the harnessing of environmental modelling data, providing that the same simplifying assumptions are not made and that better models and interfaces are possible. Physical Modelling Physical modelling has played an important role in Frazer's research. Leading to the construction of several novel machine readable interactive models, ranging from lego-like building blocks to beermat cellular automata and wall partitioning systems. Ultimately this line of research has led to the Universal Constructor and the Universal Interactor. The Universal Constructor The Universal Constructor features on the cover of the book. It consists of a base plug-board, called the "landscape", on top of which "smart" blocks, or cells, can be stacked vertically. The cells are individually identified and can communicate with neighbours above and below. Cells communicate with users through a bank of LEDs displaying the current state of the cell. The whole structure is machine readable and so can be interpreted by a computer. The computer can interpret the states of the cells as either colour or geometrical transformations allowing a wide range of possible interpretations. The user interacts with the computer display through direct manipulation of the cells. The computer can communicate and even direct the actions of the user through feedback with the cells to display various states. The direct manipulation of the cells encourages experimentation by the user and demonstrates basic concepts of the system. The Universal Interactor The Universal Interactor is a whole series of experimental projects investigating novel input and output devices. All of the devices speak a common binary language and so can communicate through a mediating central hub. The result is that input, from say a body-suit, can be used to drive the out of a sound system or vice versa. The Universal Interactor opens up many possibilities for expression when using a CAD system that may at first seem very strange.However, some of these feedback systems may prove superior in the hands of skilled technicians than more standard devices. Imagine how a musician might be able to devise structures by playing melodies which express the character. Of course the interpretation of input in this form poses a difficult problem which will take a great deal of research to achieve. The Universal Interactor has been used to provide environmental feedback to affect the development of evolving genetic codes. The feedback given by the Universal Interactor has been used to guide selection of individuals from a population. Adaptive Computing Frazer completes his introduction to the range of tools used in his research by giving a brief tour of adaptive computing techniques. Covering topics including cellular automata, genetic algorithms, classifier systems and artificial evolution. Cellular Automata As previously mentioned Frazer has done some work using cellular automata in both physical and simulated environments. Frazer discusses how surprisingly complex behaviour can result from the simple local rules executed by cellular automata. Cellular automata are also capable of computation, in fact able to perform any computation possible by a finite state machine. Note that this does not mean that cellular automata are capable of any general computation as this would require the construction of a Turing machine which is beyond the capabilities of a finite state machine. Genetic Algorithms Genetic algorithms were first presented by Holland and since have become a important tool for many researchers in various areas.Originally developed for problem-solving and optimization problems with clearly stated criteria and goals. Frazer fails to mention one of the most important differences between genetic algorithms and other adaptive problem-solving techniques, ie. neural networks. Genetic algorithms have the advantage that criteria can be clearly stated and controlled within the fitness function. The learning by example which neural networks rely upon does not afford this level of control over what is to be learned. Classifier Systems Holland went on to develop genetic algorithms into classifier systems. Classifier systems are more focussed upon the problem of learning appropriate responses to stimuli, than searching for solutions to problems. Classifier systems receive information from the environment and respond according to rules, or classifiers. Successful classifiers are rewarded, creating a reinforcement learning environment. Obviously, the mapping between classifier systems and the cybernetic view of organisms sensing, processing and responding to environmental stimuli is strong. It would seem that a central process similar to a classifier system would be appropriate at the core of an organic building. Learning appropriate responses to environmental conditions over time. Artificial Evolution Artificial evolution traces it's roots back to the Biomorph program which was described by Dawkins in his book "The Blind Watchmaker". Essentially, artificial evolution requires that a user supplements the standard fitness function in genetic algorithms to guide evolution. The user may provide selection pressures which are unquantifiable in a stated problem and thus provide a means for dealing ill-defined criteria. Frazer notes that solving problems with ill-defined criteria using artificial evolution seriously limits the scope of problems that can be tackled. The reliance upon user interaction in artificial evolution reduces the practical size of populations and the duration of evolutionary runs. Coding Schemes Frazer goes on to discuss the encoding of architectural designs and their subsequent evolution. Introducing two major systems, the Reptile system and the Universal State Space Modeller. Blueprint vs. Recipe Frazer points out the inadequacies of using standard "blueprint" design techniques in developing organic structures. Using a "recipe" to describe the process of constructing a building is presented as an alternative. Recipes for construction are discussed with reference to the analogous process description given by DNA to construct an organism. The Reptile System The Reptile System is an ingenious construction set capable of producing a wide range of structures using just two simple components. Frazer saw the advantages of this system for rule-based and evolutionary systems in the compactness of structure descriptions. Compactness was essential for the early computational work when computer memory and storage space was scarce. However, compact representations such as those described form very rugged fitness landscapes which are not well suited to evolutionary search techniques. Structures are created from an initial "seed" or minimal construction, for example a compact spherical structure. The seed is then manipulated using a series of processes or transformations, for example stretching, shearing or bending. The structure would grow according to the transformations applied to it. Obviously, the transformations could be a predetermined sequence of actions which would always yield the same final structure given the same initial seed. Alternatively, the series of transformations applied could be environmentally sensitive resulting in forms which were also sensitive to their location. The idea of taking a geometrical form as a seed and transforming it using a series of processes to create complex structures is similar in many ways to the early work of Latham creating large morphological charts. Latham went on to develop his ideas into the "Mutator" system which he used to create organic artworks. Generalising the Reptile System Frazer has proposed a generalised version of the Reptile System to tackle more realistic building problems. Generating the seed or minimal configuration from design requirements automatically. From this starting point (or set of starting points) solutions could be evolved using artificial evolution. Quantifiable and specific aspects of the design brief define the formal criteria which are used as a standard fitness function. Non-quantifiable criteria, including aesthetic judgments, are evaluated by the user. The proposed system would be able to learn successful strategies for satisfying both formal and user criteria. In doing so the system would become a personalised tool of the designer. A personal assistant which would be able to anticipate aesthetic judgements and other criteria by employing previously successful strategies. Ultimately, this is a similar concept to Negroponte's "Architecture Machine" which he proposed would be computer system so personalised so as to be almost unusable by other people. The Universal State Space Modeller The Universal State Space Modeller is the basis of Frazer's current work. It is a system which can be used to model any structure, hence the universal claim in it's title. The datastructure underlying the modeller is a state space of scaleless logical points, called motes. Motes are arranged in a close-packing sphere arrangement, which makes each one equidistant from it's twelve neighbours. Any point can be broken down into a self-similar tetrahedral structure of logical points. Giving the state space a fractal nature which allows modelling at many different levels at once. Each mote can be thought of as analogous to a cell in a biological organism. Every mote carries a copy of the architectural genetic code in the same way that each cell within a organism carries a copy of it's DNA. The genetic code of a mote is stored as a sequence of binary "morons" which are grouped together into spatial configurations which are interpreted as the state of the mote. The developmental process begins with a seed. The seed develops through cellular duplication according to the rules of the genetic code. In the beginning the seed develops mainly in response to the internal genetic code, but as the development progresses the environment plays a greater role. Cells communicate by passing messages to their immediate twelve neighbours. However, it can send messages directed at remote cells, without knowledge of it's spatial relationship. During the development cells take on specialised functions, including environmental sensors or producers of raw materials. The resulting system is process driven, without presupposing the existence of a construction set to use. The datastructure can be interpreted in many ways to derive various phenotypes. The resulting structure is a by-product of the cellular activity during development and in response to the environment. As such the resulting structures have much in common with living organisms which are also the emergent result or by-product of local cellular activity. Primordial Architectural Soups To conclude, Frazer presents some of the most recent work done, evolving fundamental structures using limited raw materials, an initial seed and massive feedback. Frazer proposes to go further and do away with the need for initial seed and start with a primordial soup of basic architectural concepts. The research is attempting to evolve the starting conditions and evolutionary processes without any preconditions. Is there enough time to evolve a complex system from the basic building blocks which Frazer proposes? The computational complexity of the task being embarked upon is not discussed. There is an implicit assumption that the "superb tactics" of natural selection are enough to cut through the complexity of the task. However, Kauffman has shown how self-organisation plays a major role in the early development of replicating systems which we may call alive. Natural selection requires a solid basis upon which it can act. Is the primordial soup which Frazer proposes of the correct constitution to support self-organisation? Kauffman suggests that one of the most important attributes of a primordial soup to be capable of self-organisation is the need for a complex network of catalysts and the controlling mechanisms to stop the reactions from going supracritical. Can such a network be provided of primitive architectural concepts? What does it mean to have a catalyst in this domain? Conclusion Frazer shows some interesting work both in the areas of evolutionary design and self-organising systems. It is obvious from his work that he sympathizes with the opinions put forward by Kauffman that the order found in living organisms comes from both external evolutionary pressure and internal self-organisation. His final remarks underly this by paraphrasing the words of Kauffman, that life is always to found on the edge of chaos. By the "edge of chaos" Kauffman is referring to the area within the ordered regime of a system close to the "phase transition" to chaotic behaviour. Unfortunately, Frazer does not demonstrate that the systems he has presented have the necessary qualities to derive useful order at the edge of chaos. He does not demonstrate, as Kauffman does repeatedly, that there exists a "phase transition" between ordered and chaotic regimes of his systems. He also does not make any studies of the relationship of useful forms generated by his work to phase transition regions of his systems should they exist. If we are to find an organic architecture, in more than name alone, it is surely to reside close to the phase transition of the construction system of which is it built. Only there, if we are to believe Kauffman, are we to find useful order together with environmentally sensitive and thermodynamically open systems which can approach the utility of living organisms.
series other
type normal paper
last changed 2004/05/22 14:12

_id a241
authors Freund, Dwight D.
year 1986
title A Note : An Interactive Procedure for Constructing Line and Circle Tangencies
source IEEE Computer Graphics and Applications. April, 1986. vol. 6: pp. 59-63 : ill. includes bibliography
summary This note describes a procedure that enables a designer or draftsperson with limited mathematical training to discover interactively the construction of a wide variety of tangency and intersection problems. Requiring very little code to implement, it supplements the standard tangency constructions available on commercial turnkey computer-aided-design systems with a flexibility unavailable even through the inclusion of the numerous special-purpose algorithms available in the literature
keywords drawings, circles, computational geometry, user interface
series CADline
last changed 2003/06/02 10:24

_id ecaade2008_184
id ecaade2008_184
authors Fricker, Pia; Hovestadt, Ludger; Braach, Markus; Dillenburger, Benjamin; Fritz, Oliver; Rüdenauer, Kai; Lemmerzahl, Steffen
year 2008
title Form Follows Structure?
doi https://doi.org/10.52842/conf.ecaade.2008.451
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 451-458
summary This paper can be viewed as the continued development of a research project presented at last year’s eCAADe. The project focused on the potential and possibilities of cooperation among architects, investors with concrete building projects, and researchers at the university level working on generative design and parametric construction. After having spent several years of research on design techniques in a purely academic setting at the university we see, contrary to our fears, that reality and the integration of concrete factors such as budget, time management, etc. does not diminish but rather improves the quality of our work. This work is not primarily concerned with the development of a new architectural language but the intelligent use of modern computer technology based on digitized planning processes defined as ‘complex building design’. Designs developed in this manner can be distinguished by certain characteristics, the evaluation of which is a point critically discussed in the following paper.
keywords Generative Design, Collaborative Design, Parametric Design, User Participation in Design, Case Study, Strategic Design
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2008_183
id ecaade2008_183
authors Fricker, Pia; Wartmann, Christoph; Hovestadt, Ludger
year 2008
title Processing: Programming Instead of Drawing
doi https://doi.org/10.52842/conf.ecaade.2008.525
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 525-530
summary The following paper essentially focuses on the innovative use of an open-source programming language, called ‘Processing’, in the architecture curriculum and the development of a line of teaching beginning with Processing and ending with object-oriented programming in Java. This represents one creative possibility through which students are able to overcome the typically difficult step of learning a programming language and simultaneously learn how to apply it as a design tool.
keywords CAAD curriculum, CAAD research, User Participation in Design, Programming instead of Drawing
series eCAADe
email
last changed 2022/06/07 07:50

_id ddss9214
id ddss9214
authors Friedman, A.
year 1993
title A decision-making process for choice of a flexible internal partition option in multi-unit housing using decision theory techniques
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Recent demographic changes have increased the heterogeneity of user groups in the North American housing market. Smaller households (e.g. elderly, single parent) have non-traditional spatial requirements that cannot be accommodated within the conventional house layout. This has created renewed interest in Demountable/Flexible internal partition systems. However, the process by which designers decide which project or user groups are most suited for the use of these systems is quite often complex, non-linear, uncertain and dynamic, since the decisions involve natural processes and human values that are apparently random. The anonymity of users when mass housing projects are conceptualized, and the uncertainty as to the alternative to be selected by the user, given his/her constantly changing needs, are some contributing factors to this effect. Decision Theory techniques, not commonly used by architects, can facilitate the decision-making process through a systematic evaluation of alternatives by means of quantitative methods in order to reduce uncertainty in probabilistic events or in cases when data is insufficient. The author used Decision Theory in the selection of flexible partition systems. The study involved a multi-unit, privately initiated housing project in Montreal, Canada, where real site conditions and costs were used. In this paper, the author outlines the fundamentals of Decision Theory and demonstrates the use of Expected Monetary Value and Weighted Objective Analysis methods and their outcomes in the design of a Montreal housing project. The study showed that Decision Theory can be used as an effective tool in housing design once the designer knows how to collect basic data.
series DDSS
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 489HOMELOGIN (you are user _anon_264475 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002