CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2514

_id 7f64
authors Harfmann, A.C., Swerdloff, L.M. and Kalay, Y.E.
year 1986
title The Terminal Crit
doi https://doi.org/10.52842/conf.acadia.1986.079
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 79-87
summary Numerous attempts have been made to develop formal design methods with -the purpose of increasing the predictability, consistency and dissemination of the design process and improving the quality of the objects produced. The ill- structured nature of design, and the perception of design activities as intuitive and experience dependent have frustrated many of the efforts to structure these process. The growing complexity of the built environment and advances in technology have led to a more rigorous effort to understand and externalize creative activities. Computer aided design tools have recently been playing an important role in the evolution of the design process as a rationally defined activity. The use of- computers for drafting, analysis, and 2 or 3 dimensional modeling is rapidly becoming an accepted method in many design schools and practitioners. A next logical step in the externalization of the design process is to endow the computer with the ability to manipulate and critique parts of the design. Under this scenario, the "terminal crit" is redefined to mean critiques that are carried out by both the designer and the computer. The paper presents the rationalization of the design process as a continuum into which CAD has been introduced. The effects of computers on the design process are studied through a specific incorporation of CAD tools into a conventional design studio, and a research project intended to advance the role of CAD in design.
series ACADIA
email
last changed 2022/06/07 07:49

_id e26f
authors Kalay, Y. (ed.)
year 1987
title Computability of Design
source New York: Wiley & Sons
summary Computer-aided design (CAD) has promised to transform the art and science of architectural design. Yet, despite some significant achievements in the past 3 decades, it has so far failed to do so. This stimulating volume, derived from a symposium held at SUNY, Buffalo in December 1986, explores the reasons why design is so difficult to support by computational means, and what can be done to alleviate this difficulty. Written by an interdisciplinary panel of experts, it presents a varied and comprehensive view of the ways creative design processes can be modelled. The contributors do not all reach the same conclusions, which makes this book lively reading. Topics are arranged into four parts: constructing models of the design process, the computational representation of design knowledge (including spatial information and implicit design intent), methods for computing the design process as a whole (including mathematical programming, expert systems, and shape grammars), and the integration of CAD with traditional design practices.
series other
last changed 2003/04/23 15:14

_id c55f
authors Kalay, Yehuda E.
year 1986
title The Impact of CAD On Architectural Design Education in the United States
doi https://doi.org/10.52842/conf.ecaade.1986.348
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 348-355
summary Computer-Aided Design (CAD) began to appear in schools of architecture in the United States over 15 years ago. By 1982, over 50% of all accredited schools of architecture in North America included some form of CAD in their curricula. This number has continued to steadily increase. For the most part, the use of CAD has been restricted to the few individuals working on special "CAD projects" and to the researchers developing CAD products. The reasons for this limitation have included the low availability, difficulty of use, restricted access and high cost of the CAD systems, as well as limited faculty and administrative support. Recently, however, partly due to the introduction of micro- computer CAD software, and partly due to the growing awareness of the importance of CAD in architectural education and practice, some schools have begun to introduce CAD as part of the general design curriculum.
series eCAADe
email
last changed 2022/06/07 07:52

_id 2312
authors Carrara, G., Kalay Y.E. and Novembri, G.
year 1992
title Multi-modal Representation of Design Knowledge
doi https://doi.org/10.52842/conf.ecaade.1992.055
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 55-66
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if computers are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer-aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the multimodal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process Goals, Knowledge Representation, Semantic Networks
series eCAADe
email
last changed 2022/06/07 07:55

_id 4bd2
authors Carrara, G., Kalay, Y.E. and Novembri, G.
year 1992
title A Computational Framework for Supporting Creative Architectural Design
source New York: John Wiley & Sons, 1992. pp. 17-34 : ill. includes Bibliography
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of performance criteria. The process comprises three distinct operations: (1) Definition of the desired set of performance criteria (design goals); (2) generation of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to the predefined criteria. Difficulties arise in performing each one of the three operations, and in combining them into a purposeful unified process. Computational techniques were developed to assist each of the three operations. A comprehensive and successful computational design assistant will have to recognize the limitations of current computational techniques, and incorporate a symbiosis between the machine and the human designer. This symbiosis comprises allocating design tasks between the designer and the computer in a manner that is most appropriate for the task at hand. The task allocation must, therefore, be done dynamically, responding to the changing circumstances of the design process. This report proposes a framework for such a symbiotic partnership, which comprises four major components: (1) User interface and design process control; (2) design goals; (3) evaluators; (4) database
keywords architecture, knowledge base, systems, design process, control
series CADline
email
last changed 2003/06/02 14:41

_id 42eb
authors Chastain, Th., Kalay, Y.E. and Peri, C.
year 2002
title Square peg in a round hole or horseless carriage? Reflections on the use of computing in architecture
source Automation in Construction 11 (2) (2002) pp. 237-248
summary We start with two paradigms that have been used to describe the relationship of computation methods and tools to the production of architecture. The first is that of forcing a square peg into a round hole –– implying that the use of a tool is misdirected, or at least poorly fits the processes that have traditionally been part of an architectural design practice. In doing so, the design practice suffers from the use of new technology. The other paradigm describes a state of transformation in relationship to new technology as a horseless carriage in which the process is described in obsolete and `backward' terms. The implication is that there is a lack of appreciation for the emerging potentials of technology to change our relationship with the task. The paper demonstrates these two paradigms through the invention of drawings in the 14th Century, which helped to define the profession of architecture. It then goes on to argue that modern computational tools follow the same paradigms, and like drawings, stand to bring profound changes to the profession of architecture as we know it.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ad51
authors Chastain, Th., Kalay, Y.E. and Peri, Ch.
year 1999
title Square Peg in a Round Hole or Horseless Carriage? Reflections on the Use of Computing in Architecture
doi https://doi.org/10.52842/conf.acadia.1999.004
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 4-15
summary We start with two paradigms that have been used to describe the relationship of computation methods and tools to the production of architecture. The first is that of forcing a square peg into a round hole — implying that the use of a tool is mis-directed, or at least poorly fits the processes that have traditionally been part of an architectural design practice. In doing so, the design practice suffers from the use of new technology. The other paradigm describes a state of transformation in relation-ship to new technology as a horseless carriage in which the process is described in obsolete and ‘backward’ terms. The impli-cation is that there is a lack of appreciation for the emerging potentials of technology to change our relationship with the task. The paper demonstrates these two paradigms through the invention of drawings in the 14th century, which helped to define the profession of Architecture. It then goes on to argue that modern computational tools follow the same paradigms, and like draw-ings, stand to bring profound changes to the profession of architecture as we know it.
series ACADIA
email
last changed 2022/06/07 07:55

_id 4248
authors Kalay, Y.E. and Skibniewski, M.J.
year 1995
title Automation in Construction: Fulfilling the promise
source Automation in Construction 4 (1) (1995) pp. 1-3
summary Three years ago, Elsevier Science B.V. has embarked on one of the most important endeavors for the A/E/C community, worldwide. With the help of three dedicated individuals, it has inaugurated a new refereed journal devoted to discussing, critically examining and disseminating the latest developments affecting the processes that lead to the design, construction and use of buildings and other facilities. Unlike other jour-nals in this field, Automation in Construction has been dedicated to exploring the processes and tools used by the A/E/C community, rather than its products. It has been dedicated to issues concerning the A/ E / C community specifically, and to methods, practices and tools that make use of computers in particular, thereby filling a void which existed, until its inauguration, within the A/E/C community's publications.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/06/02 09:30

_id 07c6
authors Kalay, Y.E., Harfmann, A.C. and Swerdloff, L.M.
year 1985
title ALEX: A Knowledge-Based Architectural Design System
doi https://doi.org/10.52842/conf.acadia.1985.096
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 96-108
summary A methodology for the development of a knowledge-based computer-aided design system and its experimental application in the domain of single family house design are presented.

The methodology involves integrating within a unified design environment, tools and techniques that have been independently developed in various disciplines (including knowledge representation, information management, geometric modeling, human,machine interface, and architectural design). By assuming the role of active design partners, the resulting systems are expected to increase the productivity of designers, improve the quality of their products, and reduce cost and lead time of the design process as a whole.

ALEX (Architecture Learning Expert), a particular application of this methodology, is a prototype knowledge-based CAD system in the domain of single family house design. It employs user-interactive, goal directed heuristic search strategies in a solution space that consists of a network of objects. Message-based change propagation techniques, guided by domain-specific knowledge, are used to ensure database integrity and well-formedness.

The significance of the methodology and its application is threefold: it furthers our knowledge of the architectural design process, explores the utilization of knowledge engineering methods in design, and serves as a prototype for developing the next generation of computer-aided architectural design systems.

series ACADIA
email
last changed 2022/06/07 07:52

_id 3d2f
authors Kalay, Y.E., Khemlani, L. and JinWon, C.
year 1998
title An integrated model to support distributed collaborative design of buildings
source Automation in Construction 7 (2-3) (1998) pp. 177-188
summary The process of designing, constructing and managing buildings is fragmented, and involves many participants interacting in complex ways over a prolonged period of time. Currently, sequential communication among the participants is the norm. Consequently, while individual parts of the project may be optimized, the optimality of the overall project suffers. It is our view that the quality of the overall project can be significantly improved (in terms of time, money, and quality of design) if there was a tighter, non-sequential collaboration among the participants. Additional improvements will accrue if the participants were provided with discipline-specific design and evaluation tools, which assist them in performing their tasks. This paper describes the development of an integrated design environment, which is intended to facilitate such collaboration. It comprises a semantically-rich, object-oriented database, which forms the basis for shared design decisions. The database is augmented by knowledge-based query and update operators. Geometric and semantic editing tools round out the environment.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 4f90
authors Kalay, Y.E.
year 1998
title P3: Computational environment to support design collaboration
source Automation in Construction 8 (1) (1998) pp. 37-48
summary The work reported in this paper addresses the paradoxical state of the construction industry (also known as A/E/C, for Architecture, Engineering and Construction), where the design of highly integrated facilities is undertaken by severely fragmented teams, leading to diminished performance of both processes and products. The construction industry has been trying to overcome this problem by partitioning the design process hierarchically or temporally. While these methods are procedurally efficient, their piecemeal nature diminishes the overall performance of the project. Computational methods intended to facilitate collaboration in the construction industry have, so far, focused primarily on improving the flow of information among the participants. They have largely met their stated objective of improved communication, but have done little to improve joint decision-making, and therefore have not significantly improved the quality of the design project itself. We suggest that the main impediment to effective collaboration and joint decision-making in the A/E/C industry is the divergence of disciplinary `world-views', which are the product of educational and professional processes through which the individuals participating in the design process have been socialized into their respective disciplines. To maximize the performance of the overall project, these different world-views must be reconciled, possibly at the expense of individual goals. Such reconciliation can only be accomplished if the participants find the attainment of the overall goals of the project more compelling than their individual disciplinary goals. This will happen when the participants have become cognizant and appreciative of world-views other than their own, including the objectives and concerns of other participants. To achieve this state of knowledge, we propose to avail to the participants of the design team highly specific, contextualized information, reflecting each participant's valuation of the proposed design actions. P3 is a semantically-rich computational environment, which is intended to fulfill this mission. It consists of: (1) a shared representation of the evolving design project, connected (through the World Wide Web) to (2) individual experts and their discipline-specific knowledge repositories; and (3) a computational project manager makes the individual valuations visible to all the participants, and helps them deliberate and negotiate their respective positions for the purpose of improving the overall performance of the project. The paper discusses the theories on which the three components are founded, their function, and the principles of their implementation.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ee8e
authors Kalay, Y.E.
year 1999
title Performance-based design
source Automation in Construction 8 (4) (1999) pp. 395-409
summary Even before Louis Sullivan coined the phrase `Form Follows Function,' architectural researchers have sought, to no avail, a causal relationship between these two primary constituents of the building enterprise. This paper attempts to explain why this quest has been futile, and proposes a performance-based design paradigm, instead of the prevailing process-based paradigms. It suggests that the driving force behind any design activity is the desire to achieve a qualitative solution for a particular combination of form and function in a specific context. Furthermore, it suggests that quality can only be determined by a multi-criteria, multi-disciplinary performance evaluation, which comprises a weighted sum of several satisfaction/behavior functions. The paper develops a performance-based design methodology and demonstrates its application in an experimental, knowledge-based CAD system.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 68fb
authors Khemlani, L., Timerman, A., Benne, B. and Kalay, Y.E.
year 1998
title Intelligent representation for computer-aided building design
source Automation in Construction 8 (1) (1998) pp. 49-71
summary At the core of any computational system that can support design development, analysis, and evaluation is an “intelligent” building representation which should be able to represent all the different components that make up a building, along with the manner in which they come together. In other words, the representation must be informationally complete and semantically rich. The paper discusses these two criteria and briefly reviews other research efforts aimed at developing building representations for computer-aided design that attempt to meet them. Our solution to this problem is then presented. It is aimed primarily at the schematic design phase, the rationale for which is also stated. Taking the view that buildings are unique assemblies of discrete, mostly standardized components, our representation is clearly divided into two components: the Object Database (ODB) which stores detailed information about various building elements, and the Project Database (PDB) which holds information about how these elements are assembled to make up a particular building. An ODB may be shared by many building projects, while the PDB must necessarily be unique to each. The data schemas of both the PDB and the ODB are described in detail and their computational implementation, to the extent that it has been completed, is illustrated.
series journal paper
last changed 2003/03/05 13:12

_id 2de7
authors Lachmi, K., Beatrice, B., Timerman, A. and Kalay, Y.E.
year 1997
title Semantically Rich Building Representation
doi https://doi.org/10.52842/conf.acadia.1997.207
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 207-227
summary At the core of any computational system that can support design development, analysis, and evaluation is a building representation which should be able to represent all the different components that make up a building, along with the manner in which they come together. In other words, the representation must be informationally complete and semantically rich. The paper discusses these two criteria in detail, and briefly reviews other research efforts aimed at developing building representations for CAAD that attempt to meet them. Our solution to this problem is then presented. It is aimed primarily at the schematic design phase, the rationale for which is also stated. Taking the view that buildings are unique assemblies of discrete, mostly standardized components, our representation is clearly divided into two components: the Object Database (ODB) which stores detailed information about various building elements, and the Project Database (PDB) which holds information about how these elements are assembled to make up a particular building. An ODB may be shared by many building projects, while the PDB must necessarily be unique to each. The data schemas of both the PDB and the ODB are described in detail and their computational implementation, to the extent that it has been completed, is illustrated.

series ACADIA
email
last changed 2022/06/07 07:52

_id c804
authors Richens, P.
year 1994
title Does Knowledge really Help?
source G. Carrara and Y.E. Kalay (Eds.), Knowledge-Based Computer-Aided Architectural Design, Elsevier
summary The Martin Centre CADLAB has recently been established to investigate software techniques that could be of practical importance to architects within the next five years. In common with most CAD researchers, we are interested in the earlier, conceptual, stages of design, where commercial CAD systems have had little impact. Our approach is not Knowledge-Based, but rather focuses on using the computer as a medium for design and communication. This leads to a concentration on apparently superficial aspects such as visual appearance, the dynamics of interaction, immediate feedback, plasticity. We try to avoid building-in theoretical attitudes, and to reduce the semantic content of our systems to a low level on the basis that flexibility and intelligence are inversely related; and that flexibility is more important. The CADLAB became operational in January 1992. First year work in three areas – building models, experiencing architecture, and making drawings – is discussed.
series other
more http://www.arct.cam.ac.uk/research/pubs/
last changed 2003/03/05 13:19

_id 678e
authors Aish, Robert
year 1986
title Three-dimensional Input and Visualization
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 68-84
summary The aim of this chapter is to investigate techniques by which man-computer interaction could be improved, specifically in the context of architectural applications of CAD. In this application the object being designed is often an assembly of defined components. Even if the building is not actually fabricated from such components, it is usually conceptualized in these terms. In a conventional graphics- based CAD system these components are usually represented by graphical icons which are displayed on the graphics screen and arranged by the user. The system described here consists of three- dimensional modelling elements which the user physically assembles to form his design. Unlike conventional architectural models which are static (i.e. cannot be changed by the users) and passive (i.e. cannot be read by a CAD system), this model is both 'user generated' and 'machine readable'. The user can create, edit and view the model by simple, natural modelling activities and without the need to learn complex operating commands often associated with CAD systems. In particular, the user can view the model, altering his viewpoint and focus of attention in a completely natural way. Conventional computer graphics within an associated CAD system are used to represent the detailed geometry which the different three-dimensional icons may represent. In addition, computer graphics are also used to present the output of the performance attributes of the objects being modelled. In the architectural application described in this chapter an energy- balance evaluation is displayed for a building designed using the modelling device. While this system is not intended to offer a completely free-form input facility it can be considered to be a specialist man-machine interface of particular relevance to architects or engineers.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 2ec8
authors Arditi, Aries and Gillman, Arthur E.
year 1986
title Computing for the Blind User
source BYTE Publication Inc. March, 1986. pp. 199-208. includes some reference notes
summary In this article the authors present some of the human-factors issues specific to non visual personal computing. The authors' concern is with the accuracy, speed, and generality of the blind-user interface, to make computers more accessible and efficient for blind and visually impaired persons
keywords user interface, disabilities
series CADline
last changed 2003/06/02 13:58

_id 242d
authors Atkin, Brian L. and Gill, E. Moira
year 1986
title CAD and Management of Construction Projects
source Journal of Construction Engineering and Management, Vol. 112, December, pp. 557-565
summary The increasing interest in computer-aided design (CAD) has prompted research that is aimed at identifying the opportunities for construction managers and building contractors. It has been found that the use of CAD systems in the U.K. is mainly confined to the production of detailed drawings. Indeed, most of the systems used are 2-D drafting tools and incapable of supporting the integration of even modest amounts of nongraphical (construction) data. On the other hand, many 3-D modeling systems have the potential to integrate construction data, although they appear to be almostignored. The use of 3-D modeling systems is considered to be the most suitable vehicle for successfully integrating these data. However, this is likely to necessitate the introduction of separate databases, preferably of the relational type. The use of 3-D modeling systems in assessing the construction implications of outline designs also presents interesting possibilities and is discussed.
series journal paper
last changed 2003/04/23 15:14

_id 6c8e
authors Barbera, Salvatore and Correnti, Gabriele
year 1986
title Reticular and Linear Planning of Erecting Yards Aided by Personal Computer
doi https://doi.org/10.52842/conf.ecaade.1986.157
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 157-166
summary This study has been carried out during the Course of Ergotecnica Edile hold at the Instituto Dipartimentale di Architettura e Urbanistica of Catania University, and it has been addressed to the students of the Faculty of Civil Engineering (manufacturing and direction of civil works). The present study aims at instructing the students as refers to planning, through computers, erecting yards. Work-planning is specifically important with reference both to the starting program and to the carrying on of the work. Within this context, workplanning is useful as regard the control and contingent correction of the work. In the latter case, divergencies between work-evolution and forecast are of primary value.

series eCAADe
last changed 2022/06/07 07:54

_id a3bd
authors Beretta Covacivich, N., loannilli, M., Lazzari, M., Scandurra E. and Schiavoni U.
year 1986
title Urban Planning Computer Aided Methods
doi https://doi.org/10.52842/conf.ecaade.1986.180
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 180-185
summary In the practice of urban centers analysis and of urban planning projects, a noticeable aspect is the absence of some essential information required in the planning process due to the natural difficulty to manage the numerous data to process.
series eCAADe
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 125HOMELOGIN (you are user _anon_56654 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002