CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 3217

_id 450c
authors Akin, Φmer
year 1990
title Computational Design Instruction: Toward a Pedagogy
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 302-316
summary The computer offers enormous potential both in and out of the classroom that is realized only in limited ways through the applications available to us today. In the early days of the computer it was generally argued that it would replace the architect. When this idea became obsolete, the prevailing opinion of proponents and opponents alike shifted to the notion of the computer as merely adding to present design capabilities. This idea is so ingrained in our thinking that we still speak of "aiding" design with computers. It is clear to those who grasp the real potential of this still new technology - as in the case of many other major technological innovations - that it continues to change the way we design, rather than to merely augment or replace human designers. In the classroom the computer has the potential to radically change three fundamental ingredients: student, instruction, and instructor. It is obvious that changes of this kind spell out a commensurate change in design pedagogy. If the computer is going to be more than a passive instrument in the design studio, then design pedagogy will have to be changed, fundamentally. While the practice of computing in the studio continues to be a significant I aspect of architectural education, articulation of viable pedagogy for use in the design studio is truly rare. In this paper the question of pedagogy in the CAD studio will be considered first. Then one particular design studio taught during Fall 1988 at Carnegie Mellon University will be presented. Finally, we shall return to issues of change in the student, instruction, and instructor, as highlighted by this particular experience.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 15:16

_id a936
authors Boesjes, E.
year 1988
title The Structure of the Automation Process; Implications for CAAD
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 59-69
summary In this paper we describe the dynamic process of change of computer components, computer products and user-techniques. We will refer to this process as the process of automation. In the first part we describe the structure of the process of automation. This structure consists of components and relations between these components. Some of the relations can be characterised as regularities. In the second part we briefly describe the State of the Art in CAAD. From the State of the Art and the process of automation we can extrapolate the State of the Future in CAAD. This extrapolation doesn't bring us to the future we want. The structure of the process of automation will have to change if we want future CAAD to develop towards an ideal.
series CAAD Futures
last changed 2003/11/21 15:16

_id 0dc3
authors Chambers, Tom and Wood, John B.
year 1999
title Decoding to 2000 CAD as Mediator
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 210-216
doi https://doi.org/10.52842/conf.ecaade.1999.210
summary This paper will present examples of current practice in the Design Studio course of the BDE, University of Strathclyde. The paper will demonstrate an integrated approach to teaching design, which includes CAD among other visual communication techniques as a means to exploring design concepts and the presentation of complex information as part of the design process. It will indicate how the theoretical dimension is used to direct the student in their areas of independent study. Projects illustrated will include design precedents that have involved students in the review and assessment of landmarks in the history of design. There will be evidence of how students integrate DTP in the presentation of site analysis, research of appropriate design precedents and presentation of their design solutions. CADET underlines the importance of considering design solutions within the context of both our European cultural context and of assessing the environmental impact of design options, for which CAD is eminently suited. As much as a critical method is essential to the development of the design process, a historical perspective and an appreciation of the sophistication of communicative media will inform the analysis of structural form and meaning in a modem urban context. Conscious of the dynamic of social and historical influences in design practice, the student is enabled "to take a critical stand against the dogmatism of the school "(Gadamer, 1988) that inevitably insinuates itself in learning institutions and professional practice.
keywords Design Studio, Communication, Integrated Teaching
series eCAADe
email
last changed 2022/06/07 07:56

_id a1a1
authors Cornick, T. and Bull, S.
year 1988
title Expert Systems for Detail Design in Building
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 117-126
summary Computer-Aided Architectural Design (CAAD) requires detailed knowledge of the construction of building elements to be effective as a complete design aid. Knowledge-based systems provide the tools for both encapsulating the "rules" of construction - i.e. the knowledge of good construction practice gained from experience - and relating those rules to geometric representation of building spaces and elements. The "rules" of construction are based upon the production and performance implications of building elements and how these satisfy various functional criteria. These building elements in turn may be related to construction materials, components and component assemblies. This paper presents two prototype knowledge-based systems, one dealing with the external envelope and the other with the internal space division of buildings. Each is "component specific" and is based upon its own model of the overall construction. This paper argues that "CAAD requires component specific knowledge bases and that integration of these knowledge bases into a knowledge-based design system for complete buildings can only occur if every knowledge base relates to a single coordinated construction model".
series CAAD Futures
last changed 1999/04/03 17:58

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 17:58

_id e8f1
authors Frazer, J.
year 1988
title Plastic Modelling - The Flexible Modelling of the Logic of Structure and Spaces
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 199-208
summary Plastic Modelling is a technique which allows the computer model to be easily developed and manipulated. In particular it models not only building geometry but also logical relationships between elements, components, structure and spaces. It is the author's contention that this approach to solid modelling is particularly suitable for the interactive development of architectural design ideas.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2613
authors Frew, Robert S.
year 1990
title The Organization of CAD Teaching in Design Schools
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 387-392
summary This paper is the result of a survey of European CAD teaching that was conducted in 1987 and 1988. It makes comparisons with teaching at the Yale School of Architecture, and goes on to analyze the issues that should be addressed in a CAD program in a school of architecture.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 476d
authors Gero, J. and Maher, M.
year 1988
title Future Roles of Knowledge-based Systems in the Design Process
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 81-90
summary This paper examines the future roles of knowledge-based systems in the design process. It commences with a brief review of computer-aided design and knowledge-based systems prior to examining the present and future roles of knowledge-based systems in design under the headings of: design analysis/formulation; design synthesis; and design evaluation. The paper concludes with a discussion on design integration, novel design, and detail design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id cd7b
authors Hopgood, F. and Duce, D.
year 1988
title Future Developments in Graphics and Workstations
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 217-252
summary The application of Computer Aided Design has been fragmented so far due to the lack of standards at the hardware and basic software level. The most impressive products have been turn-key systems using custom-built hardware with large software suites developed over a number of years. Such systems have often been difficult to modify and maintain. The very nature of such systems is that they are expensive to produce, have a limited market and, consequently, are expensive. Hardware and software advances over the last few years point to a change in this environment. The trend is towards hardware and software compatibility from the computer suppliers allowing software suppliers to target their offerings at a wider range of products. This produces a competitive market and the downward trend in hardware costs gives the possibility for systems of much lower cost and, consequently, opens up the market to a larger customer base. This paper will concentrate on the developments in single user workstations and graphics standards which should provide a firm base for this new environment.
series CAAD Futures
last changed 1999/04/03 17:58

_id cf2005_2_22_193
id cf2005_2_22_193
authors HSIEH Chun-Yu
year 2005
title A Preliminary Model of Creativity in Digital Development of Architecture
source Learning from the Past a Foundation for the Future [Special publication of papers presented at the CAAD futures 2005 conference held at the Vienna University of Technology / ISBN 3-85437-276-0], Vienna (Austria) 20-22 June 2005, pp. 63-74
summary Research into the various forms and processes of creativity has been a topic of great interest in the design field for many years. Part of the view is personality, and part of the answer is behavioural. Creativity is also explained through the identity of social values and the whole creative process. This paper proposes to use the interacting creativity model of Csikszentmihalyi as the basic structure, to establish the major criteria of testing creativity in the digital era. This paper demonstrates two facts: first, it confirms that creativity in architecture is truly valuable in the digital age; second, it proves that in the digital era, individuals, cultures and societies are all under the impact of digital technologies, a fact which transforms the model of interacting creativity proposed by Csikszentmihalyi in 1988 into a new model of digital interacting creativity.
keywords creativity, digital media, society, culture
series CAAD Futures
email
last changed 2005/05/05 07:06

_id 21b9
authors Landsdown, J.
year 1988
title Computers and Visualisation of Design Ideas: Possibilities and Promises
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 71-80
summary Drawing in all its various forms, from freehand sketching to detailed technical layout, is a type of modelling that designers find indispensable. In many cases, indeed, drawing is the only form of external modelling a designer uses. It has two basic functions: to assist in the externalisation and development of mental concepts and to help in the presentation of these concepts to others. The current thrust of work in computer graphics - although valuable - tends to concentrate almost exclusively on the presentation aspects and it is now possible to create images almost resembling photographs of real objects as well as production drawings of great accuracy and consistency. This paper summarises some of this presentation work as well as developments which might go further in assisting the activities and processes of design.
series CAAD Futures
last changed 1999/04/03 17:58

_id 4904
authors Lapre, L. and Hudson, P.
year 1988
title Talking about Design: Supporting the Design Process with Different Goals
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 127-136
summary The architectural design process has more than one participant. Each participant has his own way of approaching the information embedded in a design. In the future the CAAD systems of these participants must be able to communicate and exchange information. For a communication of this kind there must be a common ground, a frame of reference, in which these different points of view can be expressed. This frame of reference or model must support participants accessing the same information with different objectives and for different purposes. We shall propose such a model based on research results obtained by the analysis of architectural knowledge and designs. The model incorporates certain aspects drawn from AI.
series CAAD Futures
last changed 1999/04/03 17:58

_id e8bb
authors Lehto, M.
year 1988
title Optical Discs - Their Application in Mass Data Storage
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 189-198
summary Much of the building designer's time is taken up correlating the various sources of information so as to incorporate it in the design within a limited time span. The building information service should be able to provide him or her by the up-to-date information in a user friendly format. Optical disc technology makes it possible to combine different forms of building data into images which can be mass stored and randomly accessed on a single disc, with the minimal response time by personal computer or CAD- workstation. In this paper the use of various forms of optical disc technology in construction industry and the prototype video disc produced by VTT are described.
keywords Construction, Optical Discs, Interactive Video Disc, Mass Storage
series CAAD Futures
last changed 1999/04/03 17:58

_id 0347
authors Maver, T.
year 1988
title Software Tools for the Technical Evaluation of Design Alternatives
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 47-58
summary Designing buildings which 'work' - economically, socially and technically - remains the central challenge for architects. This paper is concerned with the state of development of software tools for the evaluation of the technical issues which are relevant at the conceptual stages, as opposed to the detailed stages, of design decision-making. The technical efficiency of building is of enormous economic importance. The capital investment in building in Europe represents some 12% of the Gross Domestic Product; this capital investment is exceeded by an order of magnitude, however, by the operating costs of buildings over their life span. In turn, these operating costs are exceeded - again by an order of magnitude - by the costs associated with the (human) operations which go on within the building, and on which the design of the building has some impact.
series CAAD Futures
email
last changed 2001/06/04 17:16

_id 651b
authors Maver, Tom and Wagter, Harry (eds.)
year 1988
title CAAD futures ‘87 [Conference Proceedings]
source Second International Conference on Computer Aided Architectural Design Futures / ISBN 0-444-42916-6 / Eindhoven (The Netherlands), 20-22 May 1987, 261 p.
summary The building Industry is Europe's largest single industry employing directly or indirectly 1 in 8 of the working population; yet it is fragmented, ill-organised and unprogressive. Part at least of the cause can be attributed to a failure by the architectural profession to adopt advances in Information Technology - notably Computer Aided Design. The purpose of the series of conferences on CAAD Futures is to chart a route towards a future in which the outcome of current and continuing research and development results in design tools which are acceptable to practioners and which substantially improve the quality of design decision-making and management. The papers which are printed in these proceedings make a significant contribution to our view of the future. Together they cover the range of issues which are the legitimate concern of researchers, developers, vendors, and users of CAAD software; as might be expected, they raise as many questions as they answer and they pose problems as well as reporting progress.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id ed0f
authors Moshe, R. and Shaviv, E.
year 1988
title Natural Language Interface for CAAD System
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 137-148
summary This work explores issues involved in the development of a natural interface for man-machine dialogue in architectural design processes. A hand-touch on an interactive surface is suggested as the best natural-language interface for architectural CAD systems. To allow the development of a rich range of hand-touch natural-language for communicating information and commands to the computer, it is proposed to develop a new type of a touch-panel, for which a set of specifications is presented. A conceptual design of an architectural workstation, having the described touch-panel, is presented. This workstation is characterized by the integration of the entire range of control and communication facilities required for any architectural task into a single interactive unit. The conceptual model for this workstation is the standard size drawing board, on which the architect is accustomed to spread documents, drawings, books and tools, shuffle them around and interchange them freely by using the natural-language interface developed in this work. The potential of the suggested hand-touch natural-language and the proposed workstation are demonstrated by a case-study.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 21b5
authors Mόller, Volker
year 1993
title Introducing CAD to a Big Corporation
source CAAD Futures ‘93 [Conference Proceedings / ISBN 0-444-89922-7] (Pittsburgh / USA), 1993, pp. 497-512
summary The report presents the ongoing activity of introducing CAD to the entire range of facilities planning and management of the Frankfurt Airport Corporation. It addresses issues of organizing the shift from conventional to computer supported planning and facilities management,- the problems of training professionals with various background in the use of new tools; aspects of data validity; regulation of data exchange; and customization of software to the needs of special tasks within the corporation. The report is based on about four years of project runtime. The preparation of the project started in fall 1988. The project proper started in June 1989. It is entering its last year. Up to now about 120 persons have been trained to use CAD.
keywords CAD Introduction, Corporation Setting, Adult Education, Data Integrity, Data Security, Data Exchange, Linkage Between Geometric and Alphanumeric Data, Customized Systems
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 404e
authors Oksala , T.
year 1988
title Logical Models for Rule-based CAAD
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 107-116
summary The aim of this paper is to present the basic results of a theoretic approach to represent architectural individual forms in CAD systems. From the point of view of design methodology and problem solving these descriptions might be conceived' as parts of possible environments satisfying the laws of some design theory in logical sense. This paper describes results in a series of logical studies towards rule and knowledge based systems for design automation. The effective use of programming languages and computers as design aids in architecture presupposes certain capabilities to articulate built environment logically. The use of graphic languages in the description of environmental items e.g. buildings might be theoretically mastered by formal production systems including linguistic, geometric, and spatio-material generation. The combination of the power of formal mechanisms and logical individual calculus offers suitable framework to generate arbitrary e.g. free spatial compositions as types or unique solutions. In this frame it is natural to represent in a coherent way very complex hierarchical parsing of buildings in explicit form as needed in computer implementations. In order to simulate real design work the individual configurations of possible built forms should be designed to satisfy known rules. In the preliminary stage partial solutions to design problems may be discussed in mathematical terms using frameworks like lattices, graphs, or group theoretical considerations of structural, functional, and visual organization of buildings. The capability to produce mathematically sophisticated geometric structures allows us to generalize the approach further. The theoretical design knowhow in architecture can be partly translated in to some logic and represented in a knowledge base. These rules are used as selection criteria for geometric design candidates in the sense of logical model theory and mathematical optimization. The economy of the system can be developed by using suitable conduct mechanisms familiar e.g. from logic programming. The semantics of logic offers a frame to consider computer assisted and formal generation in design. A number of semantic and pragmatic problems, however, remain to be solved. In any case conceptual analyses based on logic are applicable in order to rationally reconstruct architectural goals contributing to the quality of environmental design, which should be the main goal in the development of design systems in near future.
series CAAD Futures
last changed 1999/04/03 17:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 160HOMELOGIN (you are user _anon_245271 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002