CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 14355

_id acadia13_425
id acadia13_425
authors Moukheiber, Carol
year 2013
title Sensual Embodiment: When Morphological Computation Shapes Domestic Objects
doi https://doi.org/10.52842/conf.acadia.2013.425
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 425-426
summary IM BLANKY (2011) and CURTAIN (2013) are augmented textile prototypes set within the context of the domestic environment. The projects are informed by the concept of embodiment within the field of artificial intelligence (AI).
keywords embodiment, IM BLANKY, CURTAIN, textile, shape-memory alloy
series ACADIA
type Research Poster
email
last changed 2022/06/07 07:58

_id cf2007_331
id cf2007_331
authors Moum, Anita; Tore Haugen and Christian Koch
year 2007
title Stretching the Trousers Too Far? Convening societal and ICT development in the architectural and engineering practice
source Computer Aided Architectural Design Futures / 978-1-4020-6527-9 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Futures / 978-1-4020-6527-9] Sydney (Australia) 11–13 July 2007, pp. 331-344
summary The publicly and privately funded national R&D program ‘Digital Construction’ was initiated in 2003 in order to establish a common platform for interchanging digital information and to stimulate digital integration in the Danish building industry. This paper explores the relation between visions, strategies and tools formulated in the ‘Digital Construction’ program, and the first experiences made from implementing the 3D work method part of the program in an ongoing building project. The discussions in the paper are placed in the complex field between choosing strategies for integrating information and communication technologies on national level, and the effects of these strategies on real life building projects.
series CAAD Futures
email
last changed 2007/07/06 12:47

_id sigradi2013_91
id sigradi2013_91
authors Moural, Ana; Sara Eloy; Miguel Sales Dias; Tiago Pedro
year 2013
title How Space Experimentation Can Inform Design: Immersive Virtual Reality as a Design Tool
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 182 - 186
summary Immersive virtual reality allows us to experience the space even before it’s constructed. In this way, the use of such an environment plays a decisive role in the design process in architecture. The spaces that architects design may now be evaluated in a real scale mode which enable the understanding of problems and/or opportunities that space bring to the buildings. The goal of this paper is to define the methodological framework for using an immersive virtual environment, namely CaveH, in an Architectural design process by exploring the use of real-time rendering. We intend that the developed software and infrastructure will be used in a very easy way as a valid design tool to any professional. Two 3d models were experiment along this research each one of them regarding to a different type of design problem.
keywords Immersive virtual reality; Design; 3D modelling; Cave; Experience
series SIGRADI
email
last changed 2016/03/10 09:55

_id 1f6d
authors Mourshed, M. M., Kelliher, D., Keane, M.
year 2003
title Integrating building energy simulation in the design process
source IBPSA News, Vol. 13, No. 1, pp. 21-26.
summary To significantly increase building energy performance, the use of building simulation software at the earliest has been emphasized. Inherent complexity in data representation, I/O (Input and Output) and Visualization of available software requires specialist knowledge to leverage the potentials offered. Early stages of design are characterized by unstructured and incomplete data which is insufficient as inputs to software based on detailed representations of the systems in the building. Existing simulation software, developed in research organizations are targeted to be used by building services engineers at detailed stages and does not suit the purposes of design community. This article attempts at identifying the reasons behind unpopularity of simulation software in the early stages of design and also argues that a new breed of decision support systems is needed for energy efficient building design.
keywords ArDOT; Energy Simulation; Integration; Environmental Design; Design Process
series other
email
last changed 2003/05/27 17:19

_id sigradi2018_1568
id sigradi2018_1568
authors Mourão Fiuza, Rafael; de Melo Jorge, Leonardo Luna; Guimarães Sampaio, Hugo; Ribeiro Cardoso, Daniel
year 2018
title Brazilian Design: Parametric modeling as memory of vernacular artifacts
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 199-204
summary With the consolidation of digital media, we have seen the expansion of documentation and design modes. Two-dimensional representation was the main mean of communication in projects, however, in a process whose design of the form presents complexity, are no longer considered as adequate solutions. The parametric documentation of the vernacular knowledge of Icapuí boat production carries with it part of the immateriality of the step-by-step of a traditional process, resulting in the description of the complexity of the boat shapes. This article tries to affirm the power of the digital processes for the maintenance of the memory.
keywords Typology; Parametric Design, Heritage, Vernacular Design, Boats
series SIGRADI
email
last changed 2021/03/28 19:59

_id ascaad2022_068
id ascaad2022_068
authors Moustafa, Mohab; Ashour, Shaimaa; Bakir, Ramy
year 2022
title Augmenting Landmarks: Extending "Places" in the Hybrid City
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 731-742
summary Several recent technological advancements are substantially altering how we interact with urban spaces. The existing physical space as we know it now encompasses a plethora of emerging realities into which we shift in and out, resulting in what is called Hybrid Spaces. Augmented Reality (AR) today gives way to forms of hybrid realities that are accessible through our handheld devices, and which allow us to engage with our physical reality in a new way. These devices allow us to access and view digital information that is saturating our urban spaces, and yet appear invisible to the naked eye. When this information is localized, it can be used to augment physical space with virtual overlays. These augmentations may become physically linked to the environment, establishing virtual landmarks that could only be accessed via these handheld or wearable digital portals through digital applications. This gives way to new forms of engaging in real-time with our socio-cultural daily activities. The literature shows that urban space is reimagined through augmented reality (AR) which plays a significant role in introducing new augmented “places” supporting our physical ones as hybrid realities. This paper, accordingly, investigates the notion of location-based AR experiences on landmarks in the urban space in accordance with our spatial memory, and how augmented reality through mobile devices, plays an important role as a gateway between our physical space and the virtual one. It also seeks to understand how these augmentations might insert and employ symbolic or personal meanings to the space, based on our different interpretations. In doing so, we conducted an integrative analytical review of the most recent literature, to study the forms of augmentations in multiple cities, and how they are used as agents in our spatial experience. The paper then introduced a framework that could be used to assess users’ satisfaction and the design considerations of the AR spatial experience. Finally, the paper adopts a few recent AR practices to be assessed by the proposed framework.
series ASCAAD
email
last changed 2024/02/16 13:29

_id caadria2015_109
id caadria2015_109
authors Moya, Rafael
year 2015
title Empirical Evaluation of Three Wind Analysis Tools for Concept Design of an Urban Wind Shelter
doi https://doi.org/10.52842/conf.caadria.2015.313
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 313-322
summary The aim of this investigation was to evaluate the performance of three wind analysis programs used in the early design stage (EDS) of a passive windbreak shelter concept for an urban context. This study compared the different workflows of these programs and the respective visualized results, identifying the differences and limitations of these tools, for design exploration. The programs tested were Autodesk Vasari, ODS-Studio, and ANSYS CFX. The results of this investigation indicate that basic computational fluid dynamics (CFD) programs such as Vasari was found to be more suitable for the observation of large-scale wind phenomena through the whole area of the shelter. Moreover, intermediate CFD tools (functions, usability) such as ODS-Studio can be used more efficiently in detailed visualization of wind interacting with design features. Finally, a more sophisticated CFD program like ANSYS CFX can be incorporated in the early design stage workflow for final verification of results.
keywords CFD; visualisation; wind; pedestrian comfort.
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2014_013
id caadria2014_013
authors Moya, Rafael; Flora Salim and Mani Williams
year 2014
title Pneumosense Project
doi https://doi.org/10.52842/conf.caadria.2014.369
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 369–378
summary The study of wind conditions in the urban context has multiple application areas such as for cleaning pollution through ventilation, analysing wind pressures on building façades, and improving pedestrian comfort. In this context, the Pneumosense project is a student’s project focused in the design of a kinetic system to ameliorate negative impact of wind conditions in pedestrian areas in the city of Melbourne. Its development considers several stages including site analysis, analogue wind tunnel testing, digital simulations with Computational Fluid Dynamic software, material explorations, kinetic component design with Arduino, and rapid prototyping.
keywords Urban aerodynamics; windbreak; wind tunnel simulation; computational fluid dynamics; architectural prototype
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2013_169
id ecaade2013_169
authors Moya, Rafael; Salim, Flora; Williams, Mani and Sharaidin, Kamil
year 2013
title Flexing Wind
doi https://doi.org/10.52842/conf.ecaade.2013.2.069
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 69-78
summary The aims of the Flexing Wind project, investigated in an intensive cross-disciplinary course, were twofold. First was to learn about aerodynamic phenomena around buildings. Second was to explore ways to observe, measure, and control the negative effects of wind around specific pedestrian areas, tram stops, and public sites in Melbourne City. Using tools such as a weather station to collect data and CFD software to simulate aerodynamic phenomena students could study the wind conditions in one of the windiest areas in the Melbourne downtown. Various do-it-yourself tools such as mini wind tunnels, handheld probes and sensors were used to evaluate the performance of potential design options, which lead to prototyping full scale adaptive architectural windbreaks.
wos WOS:000340643600006
keywords Urban aerodynamics; windbreak; wind tunnel simulation; Computational Fluid Dynamics; architectural prototype.
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2014_046
id caadria2014_046
authors Moya, Rafael; Simon Watkins, Yan Ding, Jane Burry and Mark Burry
year 2014
title Aerodynamic Features as Auxiliary Architecture
doi https://doi.org/10.52842/conf.caadria.2014.295
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 295–304
summary This paper presents the experimental study of aerodynamics phenomena in built environments, focused on explorations of environmental wind flow near buildings, pedestrian wind comfort issues and methods of mitigation of wind speed. In addition, it is an overview of an aerodynamic analysis with CFD software for a hypothetical urban shelter design, based on aerodynamic features. The aim is to evaluate the feature’s performance to control wind flow in protection regions for pedestrians.
keywords Urban aerodynamics; CFD simulation; wind discomfort
series CAADRIA
email
last changed 2022/06/07 07:58

_id d956
id d956
authors MS Ibrahim, A Bridges, SC Chase, S Bayoumi, DS Taha
year 2012
title Design grammars as evaluation tools in the first year studio
source Journal of Information Technology in Construction(ITcon) Vol. 17, Special Issue CAAD and innovation , pg. 319-332
summary This paper describes a teaching experience conducted and carried out as part of the coursework of first year students. The workshop is the third of three workshops planned to take place during the course of the first year studio, aimed at introducing new ways of thinking and introducing students to a new pattern of architectural education. The experiment was planned under the theme of “Evaluation” during the final stage. A grammatical approach was chosen to deliver the methodology in the design studio, based on shape grammars.
keywords Shape grammars, Pedagogical grammars, Design education
series journal paper
type normal paper
email
more http://www.itcon.org/data/works/att/2012_21.content.05924.pdf
last changed 2012/09/23 09:26

_id sigradi2016_531
id sigradi2016_531
authors Mu?oz, Patricia
year 2016
title La transferencia y las asociaciones colaborativas [Research implementation and collaborative associations]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.347-351
summary This paper refers to the relation between morphological research in digital fabrication and its application in two areas: technical aids for patients with FOP: Fibrodysplasia Ossificans Progressiva, and education. These activities have proved to be fruitful for everyone involved. We were able to verify the outcomes of our basic research and new questions were introduced by our partners in each area. We describe the design of two products of self help aids and the introduction of two new contents in industrial design undergraduate courses at the FADU, University of Buenos Aires.
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2020_411
id ecaade2020_411
authors Muehlbauer, Manuel, Song, Andy and Burry, Jane
year 2020
title Smart Structures - A Generative Design Framework for Aesthetic Guidance in Structural Node Design - Application of Typogenetic Design for Custom-Optimisation of Structural Nodes
doi https://doi.org/10.52842/conf.ecaade.2020.1.623
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 623-632
summary Virtual prototypes enable performance simulation for building components. The presented research extended the application of generative design using virtual prototypes for interactive optimisation of structural nodes. User-interactivity contributed to the geometric definition of design spaces rather than the final geometric outcome, enabling another stage of generative design for the micro-structure of the structural node. In this stage, the micro-structure inside the design space was generated using fixed topology. In contrast to common optimisation strategies, which converge towards a single optimal outcome, the presented design exploration process allowed the regular review of design solutions. User-based selection guided the evolutionary process of design space exploration applying Online Classification. Another guidance mechanism called Shape Comparison introduced an intelligent control system using an inital image input as design reference. In this way, aesthetic guidance enabled the combined evaluation of quantitative and qualitative criteria in the custom-optimisation of structural nodes. Interactive node design extended the potential for shape variation of custom-optimized structural nodes by addressing the geometric definition of design spaces for multi-scalar structural optimisation.
keywords generative design; evolutionary computation; interactive machine learning; typogenetic design
series eCAADe
email
last changed 2022/06/07 07:58

_id cf2017_630
id cf2017_630
authors Muehlbauer, Manuel; Song, Andy; Burry, Jane
year 2017
title Towards Intelligent Control in Generative Design
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 630-647.
summary This position paper proposes and defines the nature of a framework, which explores ways of integrating control system (CS) with machine intelligence for generative design (GD). This paper elaborates about the implications of and the potential for impact on GD. The framework described in this work can be used as an active tool to drive design processes and support decision making process in early stages of architectural design. This type of system can be either automated in nature or adaptive to regular user input as part of interactive design mechanisms. The module of CS in the framework would allow additional guidance during design and therefore reduce the need of manual input to enable a semi-automated design practice for lengthy generative processes. This study on GD reveals emergent properties of the framework, for example the introduction of intelligent control allows guidance of GD to meet specified performance criteria and intended aesthetic expressions with reduced need for user interaction.
keywords Semi-Automated Design, Evolutionary Architecture, Generative Design, Architectural Optimisation, Artificial Intelligence
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2024_234
id ecaade2024_234
authors Mueller, Lisa-Marie; Andriotis, Charalampos; Turrin, Michela
year 2024
title Using Generative Adversarial Networks to Create 3D Building Geometries
doi https://doi.org/10.52842/conf.ecaade.2024.1.479
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 479–488
summary Generative Artificial Intelligence (AI) promises to make a vast impact across disciplines, including transforming the architectural design process by autonomously generating full building geometries. One form of generative deep learning that has been used to create 2D and 3D representations of objects is Generative Adversarial Networks (GANs). Existing literature, however, has limited applications that utilize 3D data for building geometry generation, with previous studies focused on low-scale 3D geometries suitable for objects such as chairs or cars. This paper develops a new GAN architecture to produce high-resolution feasible building geometry. The training dataset used is a selection of 3D models of single-family homes from an existing database, pre-processed for the specific application. State-of-the-art GAN models are initially tested to establish baseline performance and applicability potential. Then, a systematic study is performed to identify the structure and hyperparameters necessary to successfully fit a GAN to this design task. The successful architecture, named 3DBuildingGAN, uses a combination of Wasserstein loss with gradient penalty, leaky rectified linear units for neuron activation in the generator and the critic, and the root mean squared propagation optimizer with a fixed learning rate. The proposed model generates outputs similar in size, shape, and proportion to the training data with minimal noise in the output. Evaluation of memorization properties indicates open research directions, such as incorporating memorization rejection and training on larger data sets. Finally, the study reflects on how AI algorithms can reshape creativity through data-driven design solutions.
keywords 3D Generative Adversarial Networks, Deep Learning, Artificial Intelligence
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2024_235
id ecaade2024_235
authors Mueller, Lisa-Marie; Andriotis, Charalampos; Turrin, Michela
year 2024
title Data and Parameterization Requirements for 3D Generative Deep Learning Models
doi https://doi.org/10.52842/conf.ecaade.2024.1.615
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 615–624
summary It is now within reach to use generative artificial intelligence (AI) to autonomously generate full building geometries. However, existing literature utilizing 3D data has focused to a limited degree on architecture and engineering disciplines. A critical first step to expanding the use of generative deep learning models in generative design research is making training data available. This study investigates 3D building model data characteristics that make it suitable for generative AI applications. Key data set attributes are identified through a systematic review of the object-containing datasets currently used to train state-of-the-art 3D GANs. These requirements are then compared to attributes of existing available building datasets. This comparison shows that publicly available data sets of 3D building models lack essential characteristics for generative deep learning. Features that make these building models inadequate for the task include but are not limited to, their mesh formats, low resolution and levels of detail, and inclusion of irrelevant geometry. To achieve the desired properties in this work, necessary transformations of the data are incorporated into a tailored preprocessing pipeline. The pipeline is applied to an existing dataset that contains 3D models of single-family homes. The transformed dataset is tested within state-of-the-art GAN models to assess training performance and document future data requirements for applying deep generative design to buildings. Our experiments show promise for the impact that architectural datasets can make on deep learning applications within the discipline. It also highlights the need for additional 3D building model data to increase the diversity and robustness of new designs.
keywords Generative Deep Learning, Data Sets, Generative Adversarial Networks
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia20_38
id acadia20_38
authors Mueller, Stephen
year 2020
title Irradiated Shade
doi https://doi.org/10.52842/conf.acadia.2020.1.038
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 38-46.
summary The paper details computational mapping and modeling techniques from an ongoing design research project titled Irradiated Shade, which endeavors to develop and calibrate a computational toolset to uncover, represent, and design for the unseen dangers of ultraviolet radiation, a growing yet underexplored threat to cities, buildings, and the bodies that inhabit them. While increased shade in public spaces has been advocated as a strategy for “mitigation [of] climate change” (Kapelos and Patterson 2014), it is not a panacea to the threat. Even in apparent shade, the body is still exposed to harmful, ambient, or “scattered” UVB radiation. The study region is a binational metroplex, a territory in which significant atmospheric pollution and the effects of climate change (reduced cloud cover and more “still days” of stagnant air) amplify the “scatter” of ultraviolet wavelengths and UV exposure within shade, which exacerbates urban conditions of shade as an “index of inequality” (Bloch 2019) and threatens public health. Exposure to indirect radiation correlates to the amount of sky visible from the position of an observer (Gies and Mackay 2004). The overall size of a shade structure, as well as the design of openings along its sides, can greatly impact the UV protection factor (UPF) (Turnbull and Parisi 2005). Shade, therefore, is more complex than ubiquitous urban and architectural “sun” and “shadow studies” are capable of representing, as such analyses flatten the three-dimensional nature of radiation exposure and are “blind” to the ultraviolet spectrum. “Safe shade” is contingent on the nuances of the surrounding built environment, and designers must be empowered to observe and respond to a wider context than current representational tools allow.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2009_volker_mueller
id ascaad2009_volker_mueller
authors Mueller, Volker
year 2009
title Conceptual Design Tools: Establishing a framework for specification of concept design tools
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 103-120
summary For considerable time research has been conducted into architectural design activities and the digital tools that support these design activities. Previous research endeavors have focused on specific aspects of digital tools and design processes and have yielded correspondingly focused insights. This effort attempts to build a framework that allows assembling insights from research across the domain of digitally supported facilities design in order to develop a cohesive set of design tool specifications. This design tool specification framework in combination with a review of existing research will allow identification of areas for future investigation to rethink concept tool design.
series ASCAAD
email
last changed 2009/06/30 08:12

_id ascaad2014_015
id ascaad2014_015
authors Mueller, Volker
year 2014
title Second Generation Prototype of a Design Performance Optimization Framework
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 199-209
summary The integration of performance evaluation into the building design process becomes increasingly important in order to respond to demands on contemporary design with respect to the future of our built and natural environments. This paper presents work on the second iteration of an implementation of a design performance optimization framework that attempts to respond to the challenges of integrating analysis and optimization into the design process. Main challenges addressed are speed of feedback through implementation on the cloud, utilizing parallelization of computations and availability of results in the computational context of the model through leveraging the parametric nature of the application; The goal is to enable designers in their decision-making throughout the design process with focus on earlier phases of the design process during which changes can be implemented faster and at much lower costs than in later phases of design or even during construction and occupation.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2013_180
id ecaade2013_180
authors Mueller, Volker and Strobbe, Tiemen
year 2013
title Cloud-Based Design Analysis and Optimization Framework
doi https://doi.org/10.52842/conf.ecaade.2013.2.185
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 185-194
summary Integration of analysis into early design phases in support of improved building performance has become increasingly important. It is considered a required response to demands on contemporary building design to meet environmental concerns. The goal is to assist designers in their decision making throughout the design of a building but with growing focus on the earlier phases in design during which design changes consume less effort than similar changes would in later design phases or during construction and occupation.Multi-disciplinary optimization has the potential of providing design teams with information about the potential trade-offs between various goals, some of which may be in conflict with each other. A commonly used class of optimization algorithms is the class of genetic algorithms which mimic the evolutionary process. For effective parallelization of the cascading processes occurring in the application of genetic algorithms in multi-disciplinary optimization we propose a cloud implementation and describe its architecture designed to handle the cascading tasks as efficiently as possible.
wos WOS:000340643600018
keywords Cloud computing; design analysis; optimization; generative design; building performance.
series eCAADe
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 717HOMELOGIN (you are user _anon_475668 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002