CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 17570

_id ecaade2022_99
id ecaade2022_99
authors Hemmerling, Marco and Salzberger, Max
year 2022
title InterACT – Laboratory for architecture, crafts, technology
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 557–566
doi https://doi.org/10.52842/conf.ecaade.2022.1.557
summary The InterACT research project focuses on the use of computational design and manufacturing methods in the construction of self-build projects based on wooden structures. The goal is the interdisciplinary development and realization of a prototypical laboratory on the university campus in Cologne. At the intersection of craftsmanship and architecture, the project aims to generate, collect and share interdisciplinary knowledge. The InterACT Lab is intended to function as a hybrid learning and research space, uniting theory and practice. Moreover, the project should make the concept of networked learning and research visible beyond the academic boundaries. The entire development of the project has been set-up as a participative and collaborative learning process, involving students in the conceptual design, decision making and the production of the building components as well as in the assembly of the structure, using digital tools as a common base and connector throughout the process. The paper presents the didactic concept and discusses the findings of the various steps from the early design phase to the realization of a first prototype in scale 1:1.
keywords Didactics, Architectural Curriculum, Design Build Projects, Open Educational Resources (OER), Wood Construction, Digital Fabrication
series eCAADe
email
last changed 2024/04/22 07:10

_id 47c5
authors Weiler, Kevin J.
year 1986
title Topological Structures for Geometric Modeling
source Computer and Systems Engineering, Rensselaer Polytechnic Institute
summary Geometric modeling technology for representing three-dimensional objects has progressed from early wireframe representations, through surface representations, to the most recent representation, solid modeling. Each of these forms has many possible representations. The boundary representation technique, where the surfaces, edges, and vertices of objects are represented explicitly, has found particularly wide application. Many of the more sophisticated versions of boundary representations explicitly store topological information about the positional relationships among surfaces, edges, and vertices. This thesis places emphasis on the use of topological information about the shape being modeled to provide a framework for geometric modeling boundary representations and their implementations, while placing little constraint on the actual geometric surface representations used. The major thrusts of the thesis fall into two areas of geometric modeling. First, a theoretical basis for two-manifold solid modeling boundary topology representation is developed. The minimum theoretical and minimum practical topological adjacency information required for the unambiguous topological representation of manifold solid objects is determined. This provides a basis for checking the correctness of existing and proposed representations. The correctness of the winged edge structure is also explored, and several new representations which have advantages over existing techniques are described and their sufficiency verified. Second, a non-two-manifold boundary geometric modeling topology representation is developed which allows the unified and simultaneous representation of wireframe, surface, and solid modeling forms, while featuring a representable range beyond what is achievable in any of the previous modeling forms. In addition to exterior surface features, interior features can be modeled, and non-manifold features can be represented directly. A new data structure, the Radial Edge structure, which provides access to all topological adjacencies in a non-manifold boundary representation, is described and its completeness is verified. A general set of non-manifold topology manipulation operators is also described which is independent of a specific data structure and is useful for insulating higher levels of geometric modeling functionality from the specifics and complexities of underlying data structures. The coordination of geometric and topological information in a geometric modeling system is also discussed.
series thesis:MSc
last changed 2003/02/12 22:37

_id eea9
authors Weiler, Kevin
year 1980
title Polygon Comparison Using a Graph Representation
source SIGGRAPH '80 Conference Proceedings July, 1980. vol. 14 ;no. 3: pp. 10-18 : ill. includes bibliography.
summary All of the information necessary to perform the polygon set operations (union, intersection, and difference) and therefore polygon clipping can be generated by a single application of a process called polygon comparison. This process accepts two or more input polygons and generates one or more polygons as output. These output polygons contain unique homogenous areas, each falling within the domain of one or more input polygons. Each output polygon is classified by the list of input polygons in which its area may be found. The union contour of all input is also generated, completing all of the information necessary to perform the polygon set operations. This paper introduces a polygon comparison algorithm which features reduced complexity due to its use of a graph data representation. The paper briefly introduces some of the possible approaches to the general problem of polygon comparison including the polygon set and clipping problems. The new algorithm is then introduced and explained in detail. The algorithm is sufficiently general to compare sets of concave polygons with holes. More than two polygons can be compared at one time; all information for future comparisons of subsets of the original input polygon sets is available from the results of the initial application of the process. The algorithm represents polygons using a graph of the boundaries of the polygons. These graphs are imbedded in a two dimensional geometric space. The use of the graph representation simplifies the comparison process considerably by eliminating many special cases from explicit consideration. Polygon operations like the ones described above are useful in a variety of application areas, especially those which deal with problems involving two dimensional or projected two dimensional geometric areas. Examples include VLSI circuit design, cartographic and demographic applications, and polygon clipping for graphic applications such as viewport clipping, hidden surface and line removal, detailing, and shadowing
keywords boolean operations, clipping, graphs, polygons, computational geometry, algorithms
series CADline
last changed 1999/02/12 15:10

_id ecaade2023_79
id ecaade2023_79
authors Hemmerling, Marco and Salzberger, Max
year 2023
title :metabolon - A prototypical approach towards sustainable housing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 333–338
doi https://doi.org/10.52842/conf.ecaade.2023.1.333
summary The :metabolon project demonstrates resource-saving, renewable and circular building materials, space-saving design, and construction methods through two experimental housing prototypes. Designed as research demonstrators, the model houses exemplify individual work and living spaces with minimal space requirements and efficient, multifunctional use of spaces. The houses, based on the modular timber construction system INTERACT developed by the CODE-ARCH research unit at the Cologne University of Applied Sciences, feature efficient use of space and rely on a digital production chain. The project aims to showcase innovative and sustainable architecture and promote a holistic life cycle approach, including monitoring energy consumption, material use, user behavior, and well-being. The paper discusses the architectural concept and process steps, including the integration of technical aspects and the further development of the INTERACT system.
keywords Design-Build Project, Sustainable Construction, Open Educational Resources (OER), Digital Design and Fabrication
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia11_40
id acadia11_40
authors Weinstock, Michael
year 2011
title The Architecture of Flows: Integrated Infrastructures and the ‘Metasystem’ of Urban Metabolism
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 40-43
doi https://doi.org/10.52842/conf.acadia.2011.040
summary The traditional approach to urban design studies has been based on what can be described as a generalised anatomical model, e.g., functional zoning coupled to metaphors such as green areas serving as the ‘lungs’ of cities. Despite the frequent use of biological metaphors, urban design has generally proceeded from an understanding of cities as static arrays of buildings and infrastructures that exist in, but are distinct from, stable environments. But this approach does not reflect the dynamic systems of cities throughout history, nor their close coupling to the dynamics of their local environment, climate and ecology, and now the global dynamics of culture and economy. The limitations of this approach, in which cities are treated as discrete artefacts, rather than nodes interconnected by multiple networks, are compounded by the legal and regulatory boundary of the city usually being defined as an older core, so that cities are regarded as something quite separate from their surrounding territory. All cities have administrative boundaries, but cities are very rarely either physically or energetically contained within those administrative boundaries. In the past, cities gathered most of the energy and materials they needed from their immediate local territory, and trade linked systems of cities across whole regions. The growth and vitality of many cities are no longer dependent on the spatial relationship with their immediate environs but on the regional and global flows of resources. The flow of materials, information and energy through cities comes from far outside their physical and regulatory (municipal) boundaries. Cities now extend their metabolic systems over very great distances, so that the extended territory of the urban metabolism of a city and its geographical ‘place’ are often completely decoupled.
series ACADIA
type keynote paper
email
last changed 2022/06/07 07:58

_id ascaad2010_089
id ascaad2010_089
authors Hemmerling, Marco
year 2010
title Origamics
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 89-96
summary Folding strategies in architecture have been explored since the 1990s – if not before – as a method to generate spatial and structural concepts by applying complex geometries. These strategies are generally related to an analogue working method that involves paper folded models rather than digital form finding processes. Against this background the paper focuses on the impact and possibilities of folding principles from origami for the digital design process in using parametric software to generate integral and adaptive systems within an experimental and intuitive design approach.
series ASCAAD
email
last changed 2011/03/01 07:36

_id sigradi2013_54
id sigradi2013_54
authors Hemmerling, Marco
year 2013
title Simple Complexities: A Rule-based Approach to Architectural Design
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 324 - 327
summary The paper discusses rule-based design strategies that allow for the generation of spatial complexity based on simple principles and taking as well the parameters of construction into account. The presented case studies as part of the academic project „Simple Complexities“ focused on the early integration of optimization parameters, regarding structural performance, physical properties and material specification as well as aspects of fabrication to inform the architectural design. The clear conception of a computation-process whose rules lead to certain formal and structural consequences is the necessary first step towards an architecture that is both structurally interesting and systematically coherent.
keywords Performance based design; Rule-based design; Computational Design and construction; Complexity
series SIGRADI
email
last changed 2016/03/10 09:53

_id sigradi2017_025
id sigradi2017_025
authors Hemmerling, Marco
year 2017
title Architecture by numbers - An interdisciplinary approach towards computational design and architectural geometry
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.180-185
summary Architecture has always relied on mathematics to achieve proportioned aesthetics, structural performance, and reasonable construction. Computational tools have now given architects the means to design and build spatial concepts that would have been inconceivable even ten years ago. Against this background the paper discusses an educational approach that focuses on the early integration of computational principles, regarding the definition of geometry as well as material and fabrication parameters to inform the architectural design. Three case studies illustrate the interdisciplinary approach, conceived and carried out jointly by the Department of Architecture and the Department of Mathematics.
keywords Curriculum; Architectural Geometry; Architecture and Mathematics; Computational Design and Fabrication.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaadesigradi2019_319
id ecaadesigradi2019_319
authors Hemmerling, Marco
year 2019
title TransDigital - A cooperative educational project between architecture and crafts
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 341-348
doi https://doi.org/10.52842/conf.ecaade.2019.1.341
summary Even though the computer acts as an effective interface for the cooperation of various actors involved in the construction, the success of a project depends crucially on the socio-cultural characteristics and disciplinary boundary conditions of the people involved. In addition to the technological challenges of digitisation, different working methods, requirements and objectives often represent an obstacle to the successful cooperation and execution of architectural projects. This is where we as a university are challenged to point out new ways that are geared to the future requirements of our professions and, as it were, integrate individual professional profiles. Against this background, the cooperative education project brought together architecture students and trainees in the carpentry trade in order to help them gain an understanding for their respective differing approaches and for their own expertise at an early stage in training, and thus experience the added value of a cooperative working method. The teaching of digital design and planning methods as well as the use of computer-aided production technologies were the vehicles for networked cooperation and integrative learning.
keywords cooperative learning; interdisciplinary collaboration; architecture curriculum; digital design and fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id sigradi2022_191
id sigradi2022_191
authors Hemmerling, Marco
year 2022
title INTERCOM 2.0 – A web-based platform for collaborative design processes
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 823–832
summary Next to the advantages of consistent 3D planning, the Building Information Modeling (BIM) method also places new demands on the actors and thus primarily causes a change in the way of working. Against this background the paper discusses the development of the web-based BIM platform INTERCOM for collaborative planning processes in academia and AEC that enables monitoring, processing and assessment in a location and time independent environment. In addition to the technical advantages, a deeper, active and flexible discussion is intended to be created, involving all project partners. As such, INTERCOM is based on the openBIM idea and provides open access for all participants with a high degree of networking for solving complex planning tasks. The research showcases a further development of a previously implemented prototype and discusses the findings from the first academic projects, focussing on the collaborative workflow and the decision making throughout the design process.
keywords Building Information Modeling (BIM), Collabroative Design Process, Common Data Environment (CDE), Architecture Curriculum
series SIGraDi
email
last changed 2023/05/16 16:57

_id ecaade2008_079
id ecaade2008_079
authors Hemmerling, Marco; Knaack, Ulrich; Schulz, Jens-Uwe
year 2008
title Complexity in Digital Architectural Design
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 85-90
doi https://doi.org/10.52842/conf.ecaade.2008.085
summary The association of complexity and geometry was the starting point for an academic project at the chair of Computer Aided Design in Detmold. The students were asked to analyze a complex structure - taken from nature, art, technology or society - regarding the underlying geometrical rules and principles. The translation of these abstract geometric principles (logarithmic spiral, polyhedron, rotational solids, mesh-work, double helix…) into a three-dimensional structure was then realized in Rhinoceros. The 3D-modeling was followed by a transformation- and optimization-process of the initial shape by using the evolutionary principles of mutation and selection. The set-up for these variations followed predefined rules and principles for the manipulation of the original structure.
keywords Geometry, Complexity, Computer Aided Design, Architecture
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2012_185
id ecaade2012_185
authors Hemmerling, Marco; Lemberski, David
year 2012
title Sparkler: The Vitruvian Man vs. Buckminster Fuller
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 127-132
doi https://doi.org/10.52842/conf.ecaade.2012.2.127
wos WOS:000330320600012
summary Every production technique requires a focus on their specifi c demands and possibilities. This paper shows the whole design, optimization and production process includingpreliminary studies, preliminary design, form-fi nding and assembly based on a case study. All needed data for optimization in external software and for digital production is derived from a central parametric model programmed in Grasshopper. The result in a collaborative process between theory/practice, human/machine, software/hardware and analogue/digital is the Sparklerpavilion.
keywords Parametric Modelling; Digital Fabrication; Computational Design and Construction; CAAD curriculum
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2008_163
id ecaade2008_163
authors Hemmerling, Marco; Lemberski, David
year 2008
title Anaglyph Representation as Medium for Spatial Design
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 209-214
doi https://doi.org/10.52842/conf.ecaade.2008.209
summary The paper discusses the use and possible applications of stereoscopic projection and anaglyph representation for the design-process and visualization of architectural spaces and three-dimensional objects. As the topic of stereoscopic vision is quiet broad and has a long tradition in various fields (photography, art, virtual reality) the paper focuses on the implementation of anaglyph representation in 3D-Modeling-Software as a tool to support spatial perception within the design process. Against this background and based on a test-series with 113 students the benefits and conditions of spatial perception, vision and sense using anaglyph representation are examined.
keywords stereoscopic vision, spatial perception, anaglyph representation
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2016_363
id sigradi2016_363
authors Hemmerling, Marco; Mazzucchi, Alessio
year 2016
title Colonna Curva: A case study on curved folding for the production of architectural components []
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.677-680
summary The research presented in the paper focuses on computational folding. Besides the well-known straight folded structures, like the classical Miura fold, curved folding opens up more complex spatial configurations and delivers at the same time more performative structural effects, as the bended surfaces resulting from the curved crease folding enhance the overall-stiffness of the structure. Against this background the paper discusses the potential of curved folding techniques for the design and fabrication of architectural components. The findings are illustrated in a case study that documents the prototypical realization of a curved column in scale 1:1.
keywords Curved folding; developable surfaces; deployable structures; parametric design; digital fabrication
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2010_211
id ecaade2010_211
authors Hemmerling, Marco; Tiggemann, Anke
year 2010
title Emotive Spaces: Spatial interpretations based on the book “Der Ohrenzeuge” by Elias Canetti
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.125-132
doi https://doi.org/10.52842/conf.ecaade.2010.125
wos WOS:000340629400013
summary Focusing on a design methodology that is inspired by emotional conditions rather than rational specifications the paper describes the translation of literature into virtual spaces. In his book „Der Ohrenzeuge“ Elias Canetti describes 50 surreal characters, which were analyzed in the first step due to their anthropological features. The following interpretation of these featuresinto spatial qualities, using visualization software as an expressive medium, wasrealized by the definition of parameters for geometry, light, material and camera settings to achieve a spatial analogy of the given characters. The experimental approach led to a deeper understanding of spatial qualities in respect to atmospheric impressions and triggered at the same time the application of digital tools for an intuitive design process.
keywords Character; Atmosphere; Anthropological spaces; Visualization; Literature
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2014_157
id sigradi2014_157
authors Hemmerling, Marco; Ulrich Nether
year 2014
title Generico - A case study on performance-based design
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 126-129
summary The paper discusses a case study for a seating element that takes into account human factors as well as aspects of structural performance, material properties and production parameters within an integrative design approach. Generico is a prototype for a new way of design thinking, developed with a holistic approach. The design is based on the requirements of comfortable sitting and responds to load forces and ergonomic conditions. The Generico chair – resulting from an all-embracing line of thought, from design to production, is an ideal field of application for 3D-printing-technology as it allows for an optimal material distribution.
keywords Human-centered design; Performance-based design; Generative design; Structural analysis; Additive manufacturing
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2009_016
id caadria2009_016
authors Hemsath, Timothy L. ; Ronald Bonnstetter, Leen-Kiat Soh and Robert Williams
year 2009
title Digital CADCAM Pedagogy
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 277-284
doi https://doi.org/10.52842/conf.caadria.2009.277
summary Prototype manufacturing as an educational tool has been very successful at the college level in architecture and engineering design. This paper discusses an innovative inquiry-based learning approach rather than the problem-based learning models commonly utilized by other similar programs. For example, several research-funded technology projects (e.g., Cappelleri et al. 2007) look at involving students in problembased learning exercises (e.g., building robots); however, these exercises (while providing valuable experiences) have predetermined outcomes ingrained by the teachers, the project structure, and the components used to construct the devices. Therefore, inquisitive and creative problem solving is limited to the “kit-of-parts” in their approach to solving the problem. The inquiry-based CADCAM pedagogy model is more concerned with the process of solving a problem through the vehicle of prototyping than with the specificity of the design project itself. This approach has great potential. First, the need to solve the problem drives learning on multiple levels, integrating interdisciplinary ideas into the problem and solution. Second, the problem interlocks disciplines through inquiry knowledge building in team exercises. Finally, it encourages diversity and flexibility by allowing students to look at problems from multiples perspectives and points of view.
keywords Inquiry-based education: CAD; CAM; pedagogy
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2010_017
id ecaade2010_017
authors Hemsath, Timothy L.
year 2010
title Searching for Innovation Through Teaching Digital Fabrication
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.21-30
doi https://doi.org/10.52842/conf.ecaade.2010.021
wos WOS:000340629400001
summary The use of digital fabrication in the discourse and education of architectural students has become a common skill in many schools of architecture. There is a growing demand for computer-aided design (CAD) skills, computer-aided manufacturing (CAM) logic, programming and fabrication knowledge in student education. The relevance of fabrication tools for architecture and design education goes beyond mere competence and can pursue innovation in what Branko Koleravic (2003) observed, “The digital age has radically reconfigured the relationship between conception and production, creating a direct digital link between what can be conceived and what can be built through “file-to-factory” processes of computer numerically controlled (CNC) fabrication”. However, there has been very little written about what students are actually learning through digital fabrication courses and the relevance of the skills required for innovation in the field of digital fabrication.
keywords CAD; CAM; Pedagogy; Curriculum
series eCAADe
email
last changed 2022/06/07 07:49

_id ascaad2012_011
id ascaad2012_011
authors Hemsath, Timothy L.
year 2012
title Hybridizing Digital Fabrication Techniques
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 103-114
summary The use of digital fabrication in the production and making of architecture is becoming a prevalent vehicle for the design process. As a result, there is a growing demand for computer-aided design (CAD) skills, computer-aided manufacturing (CAM) logic, parametric modeling and digital fabrication in student education. This paper will highlight three student projects that look to ingrate computational prototyping with digital fabrication techniques in the production of architecture. The goal is to hybridize fabrication techniques of sectioning, tessellating and folding to educate students in CAD, CAM, parametric modeling and digital fabrication. Rather than repeating conventional approaches or recreating from precedent, mixing techniques challenges students to understand the CAD technique or parameters for modeling, translate for CAM production and deal with real world constraints of materials, time and tectonics. In the end, these projects are critical of the digital and projectively speculate on the architectural detail in an age of digital ubiquity.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_011.pdf
last changed 2012/05/15 20:46

_id acadia09_291
id acadia09_291
authors Hemsath, Timothy L.; McCracken, Brian; Russell, Darin
year 2009
title Decon Recon: Parametric CADCAM Deconstruction Research
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 291-293
doi https://doi.org/10.52842/conf.acadia.2009.291
summary The deconstruction (DeCon) and repurposing (ReCon) of existing structures and materials are worthwhile and relevant endeavors given the potential for such procedures to be more economically and environmentally sustainable than conventional construction methods. Conventional construction methods often utilize virgin materials for the production of architecture, requiring extensive energy to harvest, process, and manufacture the materials for use. Today, we must face the fact that we exist in a carbon-sensitive economy, and demand design approaches that reduce architecture’s impact on the environment. Our goal was to develop a CADCAM ReCon design methodology that would have the potential to mitigate carbon consumption. To explore this goal, students engaged a design research project that looked for novel and innovative approaches to the DeCon and ReCon of an existing barn. The student researchers created parametric models and surface designs derived from the existing materials. The digitally fabricated tectonic design constructions resulted in economical, novel, and material-efficient design methodologies for DeCon and ReCon.
keywords Fabrication, environment, CADCAM, Parametric Design
series ACADIA
type Short paper
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 878HOMELOGIN (you are user _anon_648285 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002