CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 17627

_id eaea2015_t1_paper06
id eaea2015_t1_paper06
authors Lu, Shaoming
year 2015
title Port Heritage: Urban Memory of Harbor Cities (Case Study of Shanghai)
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.71-81
summary Through literary review on historical ports from the 1st Opium War to 1949, this paper mainly focuses on the elements and value of modern ports along the Huangpu River from Baoshan to Minhang. These ports with historical events, places and objects are viewed as urban heritage to arise people’s attention to this kind of memory place during the process of urban transformation. Port heritage with unique material relics and immaterial information makes a great contribution to recalling the massive memory and making identity of the port city, which should be preserved definitely.
keywords port heritage; urban memory
series EAEA
email
last changed 2016/04/22 11:52

_id caadria2018_067
id caadria2018_067
authors Lu, Shuai and Guo, Cong
year 2018
title Investigation on the Potential of Improving Daylight Efficiency of Office Buildings by Optimized Curved Facades
doi https://doi.org/10.52842/conf.caadria.2018.2.113
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 113-121
summary With the rapid development of digital design methods, irregular curved shapes have been more and more widely used in buildings, which not only enriches the appearances of buildings, but also provide new possibilities of improving building performance by shape designs. However, existing researches regarding building performance and shapes mostly focus on regular shapes, while curved shapes are rarely explored. This paper aims to employ design optimization method to explore the improvement of building performance that curved shapes could contribute. Specifically, office buildings are chosen as an example and the potential of improving the daylight efficiency of them by optimized curved facades are investigated. Three major cities and two orientations are involved in the investigation. The results prove that curved facades do have significant potential to improve the daylight efficiency of office buildings, and an average improvement of 0.2032 is achieved by the optimized curved facades in the 6 cases conducted in this research in terms of the area-weighted average UDI (useful daylight illuminance) compared with the same building with plane facade.
keywords Curved Facade; Daylight; Building Performance; Design Optimization; Office Building
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_046
id caadria2018_046
authors Lu, Siliang and Cochran Hameen, Erica
year 2018
title Integrated IR Vision Sensor for Online Clothing Insulation Measurement
doi https://doi.org/10.52842/conf.caadria.2018.1.565
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 565-573
summary As one of the most important building systems, HVAC plays a key role in creating a comfortable thermal environment. Predicted Mean Vote (PMV), an index that predicts the mean value of the votes of a large group of persons on the thermal sensation scale, has been adopted to evaluate the built environment. Compared to environmental factors, clothing insulation can be much harder to measure in the field. The existing research on real-time clothing insulation measurement mainly focuses on expensive infrared thermography (IR) cameras. Therefore, to ensure cost-effectiveness, the paper has proposed a solution consisting of a normal camera, IR and air temperature sensors and Arduino Nanos to measure clothing insulation in real-time. Moreover, the algorithm includes the initialization from clothing classification with pre-trained neural network and optimization of the clothing insulation calculation. A total of 8 tests have been conducted with garments for spring/fall, summer and winter. The current results have shown the accuracy of T-shirt classification can reach over 90%. Moreover, compared with the results with IR cameras and reference values, the accuracies of the proposed sensing system vary with different clothing types. Research shall be further conducted and be applied into the dynamic PMV-based HVAC control system.
keywords clothing insulation; skin temperature; clothing classification; IR temperature sensor; Optimization
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_530
id caadria2019_530
authors Lu, Siliang, Wang, Shihan, Cochran Hameen, Erica, Shi, Jie and Zou, Yue
year 2019
title Comfort-Based Integrative HVAC System with Non-Intrusive Sensing in Office Buildings
doi https://doi.org/10.52842/conf.caadria.2019.1.785
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 785-794
summary Heating, ventilation and air-conditioning system plays a key role in shaping the built environment. The effective and efficient HVAC operations not only achieve energy savings but also create a more comfortable environment for occupant indoors. Since current HVAC systems with fixed schedules cannot guarantee the operation with high energy efficiency and provision of comfortable thermal environment for occupants, it is of great importance to develop new paradigm of HVAC system framework, especially in the open-plan office environment so that everyone could work under their preferred thermal environment. Moreover, compared to environment-related factors to thermal comfort, sensing systems for occupant-related factors such as clothing insulation, metabolic rate, skin temperature have not had standardized yet and most of sensing systems for occupant-related factors may either result in privacy issue or are too intrusive. Hence, it is necessary to develop a new non-intrusive and less private sensing framework for monitoring individual thermal comfort in real-time. Therefore, this paper proposes an integrative comfort-based personalized cooling system with the operation of the centralized systems in office buildings. The results show that such integrative and interactive HVAC system for workplaces has advantages over thermal comfort improvements and energy savings.
keywords Adaptive thermal comfort; Non-intrusive personalized cooling system; Occupant-responsive HVAC control; Intelligent workplace
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2017_104
id caadria2017_104
authors Lu, Xiao, Dounas, Theodoros, Spaeth, Benjamin, Bissoonauth, Chitraj and Galobardes, Isaac
year 2017
title Robotic Simulation of Textile as Concrete Reinforcement and Formwork
doi https://doi.org/10.52842/conf.caadria.2017.863
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 863-872
summary New possibilities of concrete constructions in architecture, the traditional formwork can be gradually replaced by the use of flexible textile. At the same time textile reinforcement combined with fabric formwork, introduces an innovative integrated solution in the fabrication of concrete. Based on a simple understanding of the textile weaving and knitting techniques, this project concentrates on the architectural production and the structural optimization of the textile as both concrete reinforcement and formwork. Furthermore, we present a robotic simulation of the process that develops using a series of computational experiments to research the sequence of weaving and/or knitting. Through the computational process and the design simulations, the research is firmly rooted in analog and digital exploration of material and its implementation in architecture, with particular emphasis on the convergence of robotics and computation. Note that the paper deals mainly with the software and weaving simulation as part of a larger research project, without dealing with the production of physical artefacts.
keywords robotic weaving; textile-reinforcement; parametric design; lightweight structure; textile-reinforced concrete
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2022_302
id ecaade2022_302
authors Lu, Xin, Meng, Zeyuan, Rodriguez, Alvaro Lopez and Pantic, Igor
year 2022
title Reusable Augmented Concrete Casting System - Accessible method for formwork manufacturing through holographic guidance
doi https://doi.org/10.52842/conf.ecaade.2022.1.371
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 371–380
summary Reinforced concrete has been one of the essential materials for modern architecture for the last hundred years. Its use is entirely global, having been adopted by all cultures and styles since its invention in the late 19th century. Although its value is excellent due to its low cost, durability and adaptability, its environmental impact is significant, being, in fact, one of the most polluting industries in the world (Babor et al. 2009). This experimental project will research a more sustainable use of concrete, exploring a new form of reusable concrete formwork that will ideally reduce the CO2 footprint by removing wood waste in the casting process and replacing it with adaptable metal components. The modular part-based system for the concrete casting also attempts to simplify one of the current complexities for concrete construction, the Skilled-Labour shortage. (Yusoff et al. 2021). To mitigate this problem, the project also proposes using an Augmented Assembly logic for the casting parts to guide the ensemble and dismantle the formwork through an optimised algorithmic logic. The use of Augmented Reality as a replacement for traditional paper instructions will facilitate access to more workers to this construction art and potentially improve access to optimised use of concrete in developing communities with restricted building technological resources.
keywords Mixed Reality, Distributed Manufacturing, Augmented Manufacturing, Sustainability, Computational Design, Concrete Casting
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2020_257
id caadria2020_257
authors Lu, Yao, Birol, Eda Begum, Johnson, Colby, Hernandez, Christopher and Sabin, Jenny
year 2020
title A Method for Load-responsive Inhomogeneity and Anisotropy in 3D Lattice Generation Based on Ellipsoid Packing
doi https://doi.org/10.52842/conf.caadria.2020.1.395
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 395-404
summary 3D lattice structures are gaining widespread application in multiple design fields. While the number of projects that utilize load-responsive inhomogeneous and anisotropic 3D lattices in design applications increase, accessible and effective algorithmic generation methodologies remain lacking. This paper addresses this gap by introducing a novel computational method for controlled load-responsive inhomogeneity and anisotropy in 3D lattice generation. The presented methods employ a responsive Ellipsoid Packing algorithm informed by the global tensor field of the packing geometry, followed by a Kissing Ellipsoids algorithm to generate the lattice. Load specific anisotropy and inhomogeneity in the ellipsoid packing process is achieved in response to the magnitude and directionality values of the global tensor field and specialized responsive lattices are easily generated. The proposed Ellipsoid Packing workflow is compared to various common lattice generation algorithms. Results show improvement in mechanical performance.
keywords 3D lattice; ellipsoid packing; bio-inspired; algorithmic design; ceramic brick
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia22pr_166
id acadia22pr_166
authors Lu, Yao; Seyedahmadian, Alireza; Chhadeh, Philipp Amir; Cregan, Matthew; Bolhassani, Mohammad; Schneider, Jens; Yost, Joseph Robert; Brennan, Gareth; Akbarzadeh, Masoud
year 2022
title Tortuca: An Ultra-Thin Funicular Hollow Glass Bridge
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 166-171.
summary Designed with Polyhedral Graphic Statics (PGS), a geometry-based structural form-finding method, Tortuca presents an efficient and innovative structural system constructed by the dry assembly of thirteen hollow glass units (HGU). It also proposes a new language for glass that is carefully treated, structurally informed, fabrication-aware, and environmentally responsible. 
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id caadria2020_164
id caadria2020_164
authors Lu, Yi-Heng, Wang, Shih-Yuan, Sheng, Yu-Ting, Lin, Che-Wei, Pang, Yu-Hsuan and Hung, Wei-Tse
year 2020
title Transient Materialization – Robotic Metal Curving
doi https://doi.org/10.52842/conf.caadria.2020.2.423
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 423-432
summary This paper introduces the notion of transient materialization to investigate a novel approach of robotic fabrication. Transient materialization explores a new logic of materialization that takes the advantage of differentiated material states to generate form at a particular moment through computation and fabrication technologies. Specifically, this design research explains a unique design and fabrication process, opening up a new method of materializing architectural form that emerges from the interweaving of data, the material capacity (plastic deformation), timing, and machine capacity. Hence, to examine this research direction, this paper conducts an experimental project, Robotic Metal Curving, through hands-on material experiments, as well as the development of algorithms, robot motion, and prototyping machines. This experiment utilizes an induction heating technique in cooperation with a six-axis industrial robotic arm and fabrication equipment used to shape each metal rod into a three-dimensional curve at a transient moment. In addition, the project focuses not only on developing a robotic metal curving system but also apply this technique in large scale by fabricating a wire-frame structure.
keywords Robotic Fabrication; Digital Fabrication; Metal Bending
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2021_196
id caadria2021_196
authors Lu, Yueheng, Tian, Runjia, Li, Ao, Wang, Xiaoshi and Jose Luis, Garcia del Castillo Lopez
year 2021
title CubiGraph5K - Organizational Graph Generation for Structured Architectural Floor Plan Dataset
doi https://doi.org/10.52842/conf.caadria.2021.1.081
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 81-90
summary In this paper, a novel synthetic workflow is presented for procedural generation of room relation graphs of floor plans from structured architectural datasets. Different from classical floor plan generation models, which are based on strong heuristics or low-level pixel operations, our method relies on parsing vectorized floor plans to generate their intended organizational graph for further graph-based deep learning. This research work presents the schema for the organizational graphs, describes the generation algorithms, and analyzes its time/space complexity. As a demonstration, a new dataset called CubiGraph5K is presented. This dataset is a collection of graph representations generated by the proposed algorithms, using the floor plans in the popular CubiCasa5K dataset as inputs. The aim of this contribution is to provide a matching dataset that could be used to train neural networks on enhanced floor plan parsing, analysis and generation in future research.
keywords Graph Theory; Algorithm; Architecture Design Dataset; Organizational Graph
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2016_539
id caadria2016_539
authors Lublasser, E.; J. Braumann, D. Goldbach and S. Brell-Cokcan
year 2016
title Robotic Forming: Rapidly Generating 3D Forms and Structures through Incremental Forming
doi https://doi.org/10.52842/conf.caadria.2016.539
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 539-548
summary The past years have seen significant developments in the area of robotic design interfaces. Building upon visual programming environments, these interfaces now allow the creative industry to de- fine even complex fabrication processes in an easy, accessible way, while providing instant, production-immanent feedback. However, while these software tools greatly speed up the programming of robot- ic arms, many processes are still inherently slow: Subtractive process- es need to remove a large amount of material with comparably small tools, while additive processes are limited by the speed of the extruder and the properties of the extruded material. In this research we present a new method for incrementally shaping transparent polymer materi- als with a robotic arm, without requiring heat or dies for deep- drawing, thus allowing us to rapidly fabricate individual panels within a minimum of time.
keywords Incremental forming; robotic fabrication; visual programming
series CAADRIA
email
last changed 2022/06/07 07:59

_id ddss2006-pb-235
id DDSS2006-PB-235
authors Luca Caneparo, Francesco Guerra, and Elena Masala
year 2006
title UrbanLab - Generative platform for urban and regional design
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 235-251
summary UrbanLab is a computer system supporting urban and regional design. The papers outlines two leading aspects of this large research project, aimed respectively to make explicit the dynamic of the design in its time and geographic dimensions, and to interactively represent the interplay of some, explicitly, recognised factors, for instance the role of a multitude of different (local) actors in the design process. UrbanLab has been applied to several projects at different scales. We consider the applications to dynamically and interactively generating models of an Alpine valley. The modelling in the spatial and temporal dimensions provided us with the elements to study the evolution over the next twenty years.
keywords Generative modelling, Participatory design, DSS, GIS, Software agent, Urban design, Regional design
series DDSS
last changed 2006/08/29 12:55

_id ddss9208
id ddss9208
authors Lucardie, G.L.
year 1993
title A functional approach to realizing decision support systems in technical regulation management for design and construction
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Technical building standards defining the quality of buildings, building products, building materials and building processes aim to provide acceptable levels of safety, health, usefulness and energy consumption. However, the logical consistency between these goals and the set of regulations produced to achieve them is often hard to identify. Not only the large quantities of highly complex and frequently changing building regulations to be met, but also the variety of user demands and the steadily increasing technical information on (new) materials, products and buildings have produced a very complex set of knowledge and data that should be taken into account when handling technical building regulations. Integrating knowledge technology and database technology is an important step towards managing the complexity of technical regulations. Generally, two strategies can be followed to integrate knowledge and database technology. The main emphasis of the first strategy is on transferring data structures and processing techniques from one field of research to another. The second approach is concerned exclusively with the semantic structure of what is contained in the data-based or knowledge-based system. The aim of this paper is to show that the second or knowledge-level approach, in particular the theory of functional classifications, is more fundamental and more fruitful. It permits a goal-directed rationalized strategy towards analysis, use and application of regulations. Therefore, it enables the reconstruction of (deep) models of regulations, objects and of users accounting for the flexibility and dynamics that are responsible for the complexity of technical regulations. Finally, at the systems level, the theory supports an effective development of a new class of rational Decision Support Systems (DSS), which should reduce the complexity of technical regulations and restore the logical consistency between the goals of technical regulations and the technical regulations themselves.
series DDSS
last changed 2003/08/07 16:36

_id ddssup9615
id ddssup9615
authors Lucardie, L., de Gelder, J. and Duursma, C.
year 1996
title Matching the Knowledge Needs of Trade and Industry: Advanced and Operational Knowledge Based Systems
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary Complex tasks that are being performed in trade and industry such as diagnosis, engineering and planning, increasingly require rapid and easy access to large amounts of complicated knowledge. To cope with these demands on trade and industry, advanced automated support for managing knowledge seems to be needed. Knowledge based systems are claimed to match these needs. However, to deal with the vast volume and complexity of knowledge through knowledge based systems, preconditions at three computer systems levels should be fulfilled. At the first level, called the knowledge level, the development of knowledge based systems requires a well-elaborated theory of the nature of knowledge that helps to get a clear and consistent definition of knowledge. By providing guidelines for selecting and developing methodologies and for organising the mathematical functions underlying knowledge representation formalisms, such a definition significantly advances the process of knowledge engineering. Here, we present the theory of functional object-types as a theory of the nature of knowledge. At the second level, called the symbol level, the representation formalisms used must be compatible with the chosen theory of the nature of knowledge. The representation formalisms also have to be interpretable as propositions representing knowledge, so that their knowledge level import can be assessed. Furthermore, knowledge representation formalisms have to play a causal role in the intelligent behaviour of the knowledge based system. At the third level, called the systems level, a knowledge based system should be equipped with facilities that enable an effective management of the representation formalisms used. Yet other system facilities are needed to allow the knowledge base to communicate with existing computer systems used in the daily practice of trade and industry, for instance Database Management Systems, Geographical Information Systems and Computer Aided Design Systems. It should be taken into account that these systems may run in different networks and on different operating systems. A real-world knowledge based system that operates in the field of soil contamination exemplifies the development of an advanced and operational knowledge-based system that complies with the preconditions at each computer systems level.
series DDSS
last changed 2003/08/07 16:36

_id 8573
authors Lucardie, L., De Gelder, J. and Huijsing, A.
year 1995
title The Advanced Knowledge Transfer System
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 163-171
summary The joint application of decision tables and Prolog seems to meet all the necessary requirements to be met by a language or modelling knowledge. Despite the high complementarity of decision tables and Prolog, it appears that they still yield a language with certain drawbacks. The Advanced Knowledge Transfer System (AKTS) has been developed to take advantage of this complementarity and simultaneously eliminate these drawbacks. To show the capabilities of AKT three knowledge-based systems in the building and construction sector are described which recently have been developed using AKTS.
keywords Knowledge-Based Systems, Modelling Language, Decision Tables, Prolog
series CAAD Futures
last changed 1999/08/03 17:16

_id ddss9463
id ddss9463
authors Lucardie, Larry
year 1994
title A Functional Framework For Conceptual Modelling
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary A conceptual model is not only indispensable for the design and implementation of knowledge based systems, but also for their validation, modification, maintenance and enhancement. Experience indicates, however, that in many cases reality is not well reflected in a full-fledged conceptual model. What is systematically lacking in the prevailing conceptualization methods is a well-developed theory of knowledge that underlies conceptualization methods: a theory that precedes the process of forming meaningful classifications and that precedes the specification of a conceptual model. To date, conceptualization methods are based on the probabilistic assumption that, in essence, all conditions necessary for creating a classification, are provided initially and can easily be revealed by utilizing mathematical measures of similarity. Another frequently occurring prototypical assumption is that for creating a classification, necessary conditions are sufficient. Furthermore, it is assumed that the categories of conditions are a priori fixed and unconditional. That conceptualizing takes place without any explicit background knowledge about goals of classifications and without contextual influences and that categorizations have an unconditional status are not viewed as problems. In contrast to these approaches, the functional view states that relevant descriptive attributes are not necessarily a priori given but should be acquired through knowledge about goals of classifications and about contexts. It is also asserted that an explicit concern for necessary conditions will not suffice for capturing the dynamics of reality. Furthermore, the functional view puts forward that a goal- and context-oriented strategy leads to the reconstruction of new attributes and categorizations with a dynamic status. The aim of this paper is to discuss the theoretic and practical merits of the functional view compared to the probabilistic and prototype approaches. Conceptual models developed in the Computer Integrated Manufacturing-Project will serve as illustrations for the main ideas.
series DDSS
email
last changed 2003/08/07 16:36

_id lasg_whitepapers_2016_050
id lasg_whitepapers_2016_050
authors Lucinda Presley, Becky Carrol, Rob Gorbet
year 2016
title Promoting Creative and Innovative Thinking in the Classroom: The Role of Living Architecture Systems
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada pp. 050 - 061
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
email
last changed 2019/07/29 14:00

_id eee5
authors Luczak, H., Beitz, W., Springer, J. and Langner, T.
year 1991
title Frictions and Frustrations in Creative-Informatory Work with Computer Aided Design -- CAD-Systems -- Congress I: Work with Terminals: HEALTH ASPECTS: WORKLOAD, STRESS AND STRAIN AND IRREGULAR WORKING HOURS; Causes and Measures of Stress
source Proceedings of the Fourth International Conference on Human-Computer Interaction 1991 v.1 pp. 175-179
summary The effects of computer aided design work on the design process are analysed by field experiments. The study focuses on the influence of 3 different design tasks (standard tasks) and 11 CAD-systems (2D and 3D), taking into account the performance and strain measurements of 43 subjects (15 design engineers, 8 technicians, 17 draughtsmen, 3 trainees). The 3 standard tasks differ in performance measurements, especially in time spent on task, quantity of generated elements, not in the quality of the solution. The kind of CAD-system influences the time spent on task as well as the design performance, with significant differences of up to 100%. The same tendency can be diagnosed in a comparison of 2D and 3D systems. During the use of different functions of the CAD-system, strain effects are identified by cross-correlation with continuously measured physiological parameters, even with CAD-functions which should reduce stresses of routine work. Deficits and complications in the handling of CAD-systems increase with the complexity of the system and thus cause an antinome effect on performance and strain of its operators: creativity is reduced by frictions and frustrations in system handling even if operators are highly trained.
keywords Stressor Analysis; Performance Measurement; Field-Experiment; Design Process
series other
last changed 2002/07/07 16:01

_id sigradi2004_036
id sigradi2004_036
authors Lucía Gómez; Lola Vico
year 2004
title Infografia aplicada al patrimonio cultural: El caso del ninfeo de campetti (Veio) [Infographics Applied to Cultural Heritage: The Case of "Ninfeo de Campetti (Veio)"]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This paper presents the results of an in-depth study and virtual reconstruction of the Nymphaeum of Veio, in the archaeological zone of Villa Campetti, Rome. The study consisted in analysing the vestiges and enlightening the findings with a thorough literature review about the Nymphaeum itself as well as about contemporary and similar constructions. A digital model was then elaborated, as an attempt to recreate the Nymphaeum of Veio as it may have stood during the Roman period. The Nymphaeum had been decorated with roman frescoes of the III style, now highly deteriorated. The virtual reconstruction intends to reproduce the harmony of volumes, structure and paintings of the chamber. It also helps to better understand its configuration. This kind of reconstruction, based on historical and architectural research, offers great possibilities in the world or architectonic and archaeological heritage, allows the recovery and analysis of spaces otherwise lost forever.
series SIGRADI
email
last changed 2016/03/10 09:55

_id af46
authors Lue, Q.
year 1993
title Computer aided descriptive geometry
source Vienna University of Technology
summary The main aim of this thesis is the creation of a software package for descriptive geometry. Why there is a need for such a descriptive geometry software? In descriptive geometry the ability of space perception is trained by solving spatial problems graphically with the use of a few constructions: Hence the solution of each problem consists of two parts: 1) 3D-part: After analyzing the spatial problem it is cleared how to proceed step by step in space. 2) 2D-part: Due to the basic rules of descriptive geometry for each step of the solving strategy the corresponding 2D-construction has to be carried out graphically. By use of CAD-DG the 2nd part can be replaced again by a 3D-part: Each step is solved using the basic routines offered in the menu. That means that each step is solved analytically but instead of any output of numbers the solution is immediately displayed in the main views on the screen. Therefore the user neither needs to apply formulas of analytic geometry nor has to take care of any coordinates. He still works directly with geometric objects in a graphic representation
keywords Descriptive Geometry; Computer Graphics; Education; Interactive Graphic Software Package; Programming Technique; Educational Software
series thesis:PhD
more http://www.arcs.ac.at/dissdb/rn020701
last changed 2003/02/12 22:37

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 881HOMELOGIN (you are user _anon_682753 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002