CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 17638

_id eaea2015_t1_paper06
id eaea2015_t1_paper06
authors Lu, Shaoming
year 2015
title Port Heritage: Urban Memory of Harbor Cities (Case Study of Shanghai)
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.71-81
summary Through literary review on historical ports from the 1st Opium War to 1949, this paper mainly focuses on the elements and value of modern ports along the Huangpu River from Baoshan to Minhang. These ports with historical events, places and objects are viewed as urban heritage to arise people’s attention to this kind of memory place during the process of urban transformation. Port heritage with unique material relics and immaterial information makes a great contribution to recalling the massive memory and making identity of the port city, which should be preserved definitely.
keywords port heritage; urban memory
series EAEA
email
last changed 2016/04/22 11:52

_id caadria2018_067
id caadria2018_067
authors Lu, Shuai and Guo, Cong
year 2018
title Investigation on the Potential of Improving Daylight Efficiency of Office Buildings by Optimized Curved Facades
doi https://doi.org/10.52842/conf.caadria.2018.2.113
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 113-121
summary With the rapid development of digital design methods, irregular curved shapes have been more and more widely used in buildings, which not only enriches the appearances of buildings, but also provide new possibilities of improving building performance by shape designs. However, existing researches regarding building performance and shapes mostly focus on regular shapes, while curved shapes are rarely explored. This paper aims to employ design optimization method to explore the improvement of building performance that curved shapes could contribute. Specifically, office buildings are chosen as an example and the potential of improving the daylight efficiency of them by optimized curved facades are investigated. Three major cities and two orientations are involved in the investigation. The results prove that curved facades do have significant potential to improve the daylight efficiency of office buildings, and an average improvement of 0.2032 is achieved by the optimized curved facades in the 6 cases conducted in this research in terms of the area-weighted average UDI (useful daylight illuminance) compared with the same building with plane facade.
keywords Curved Facade; Daylight; Building Performance; Design Optimization; Office Building
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_046
id caadria2018_046
authors Lu, Siliang and Cochran Hameen, Erica
year 2018
title Integrated IR Vision Sensor for Online Clothing Insulation Measurement
doi https://doi.org/10.52842/conf.caadria.2018.1.565
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 565-573
summary As one of the most important building systems, HVAC plays a key role in creating a comfortable thermal environment. Predicted Mean Vote (PMV), an index that predicts the mean value of the votes of a large group of persons on the thermal sensation scale, has been adopted to evaluate the built environment. Compared to environmental factors, clothing insulation can be much harder to measure in the field. The existing research on real-time clothing insulation measurement mainly focuses on expensive infrared thermography (IR) cameras. Therefore, to ensure cost-effectiveness, the paper has proposed a solution consisting of a normal camera, IR and air temperature sensors and Arduino Nanos to measure clothing insulation in real-time. Moreover, the algorithm includes the initialization from clothing classification with pre-trained neural network and optimization of the clothing insulation calculation. A total of 8 tests have been conducted with garments for spring/fall, summer and winter. The current results have shown the accuracy of T-shirt classification can reach over 90%. Moreover, compared with the results with IR cameras and reference values, the accuracies of the proposed sensing system vary with different clothing types. Research shall be further conducted and be applied into the dynamic PMV-based HVAC control system.
keywords clothing insulation; skin temperature; clothing classification; IR temperature sensor; Optimization
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_530
id caadria2019_530
authors Lu, Siliang, Wang, Shihan, Cochran Hameen, Erica, Shi, Jie and Zou, Yue
year 2019
title Comfort-Based Integrative HVAC System with Non-Intrusive Sensing in Office Buildings
doi https://doi.org/10.52842/conf.caadria.2019.1.785
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 785-794
summary Heating, ventilation and air-conditioning system plays a key role in shaping the built environment. The effective and efficient HVAC operations not only achieve energy savings but also create a more comfortable environment for occupant indoors. Since current HVAC systems with fixed schedules cannot guarantee the operation with high energy efficiency and provision of comfortable thermal environment for occupants, it is of great importance to develop new paradigm of HVAC system framework, especially in the open-plan office environment so that everyone could work under their preferred thermal environment. Moreover, compared to environment-related factors to thermal comfort, sensing systems for occupant-related factors such as clothing insulation, metabolic rate, skin temperature have not had standardized yet and most of sensing systems for occupant-related factors may either result in privacy issue or are too intrusive. Hence, it is necessary to develop a new non-intrusive and less private sensing framework for monitoring individual thermal comfort in real-time. Therefore, this paper proposes an integrative comfort-based personalized cooling system with the operation of the centralized systems in office buildings. The results show that such integrative and interactive HVAC system for workplaces has advantages over thermal comfort improvements and energy savings.
keywords Adaptive thermal comfort; Non-intrusive personalized cooling system; Occupant-responsive HVAC control; Intelligent workplace
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2017_104
id caadria2017_104
authors Lu, Xiao, Dounas, Theodoros, Spaeth, Benjamin, Bissoonauth, Chitraj and Galobardes, Isaac
year 2017
title Robotic Simulation of Textile as Concrete Reinforcement and Formwork
doi https://doi.org/10.52842/conf.caadria.2017.863
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 863-872
summary New possibilities of concrete constructions in architecture, the traditional formwork can be gradually replaced by the use of flexible textile. At the same time textile reinforcement combined with fabric formwork, introduces an innovative integrated solution in the fabrication of concrete. Based on a simple understanding of the textile weaving and knitting techniques, this project concentrates on the architectural production and the structural optimization of the textile as both concrete reinforcement and formwork. Furthermore, we present a robotic simulation of the process that develops using a series of computational experiments to research the sequence of weaving and/or knitting. Through the computational process and the design simulations, the research is firmly rooted in analog and digital exploration of material and its implementation in architecture, with particular emphasis on the convergence of robotics and computation. Note that the paper deals mainly with the software and weaving simulation as part of a larger research project, without dealing with the production of physical artefacts.
keywords robotic weaving; textile-reinforcement; parametric design; lightweight structure; textile-reinforced concrete
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2020_257
id caadria2020_257
authors Lu, Yao, Birol, Eda Begum, Johnson, Colby, Hernandez, Christopher and Sabin, Jenny
year 2020
title A Method for Load-responsive Inhomogeneity and Anisotropy in 3D Lattice Generation Based on Ellipsoid Packing
doi https://doi.org/10.52842/conf.caadria.2020.1.395
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 395-404
summary 3D lattice structures are gaining widespread application in multiple design fields. While the number of projects that utilize load-responsive inhomogeneous and anisotropic 3D lattices in design applications increase, accessible and effective algorithmic generation methodologies remain lacking. This paper addresses this gap by introducing a novel computational method for controlled load-responsive inhomogeneity and anisotropy in 3D lattice generation. The presented methods employ a responsive Ellipsoid Packing algorithm informed by the global tensor field of the packing geometry, followed by a Kissing Ellipsoids algorithm to generate the lattice. Load specific anisotropy and inhomogeneity in the ellipsoid packing process is achieved in response to the magnitude and directionality values of the global tensor field and specialized responsive lattices are easily generated. The proposed Ellipsoid Packing workflow is compared to various common lattice generation algorithms. Results show improvement in mechanical performance.
keywords 3D lattice; ellipsoid packing; bio-inspired; algorithmic design; ceramic brick
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia22pr_166
id acadia22pr_166
authors Lu, Yao; Seyedahmadian, Alireza; Chhadeh, Philipp Amir; Cregan, Matthew; Bolhassani, Mohammad; Schneider, Jens; Yost, Joseph Robert; Brennan, Gareth; Akbarzadeh, Masoud
year 2022
title Tortuca: An Ultra-Thin Funicular Hollow Glass Bridge
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 166-171.
summary Designed with Polyhedral Graphic Statics (PGS), a geometry-based structural form-finding method, Tortuca presents an efficient and innovative structural system constructed by the dry assembly of thirteen hollow glass units (HGU). It also proposes a new language for glass that is carefully treated, structurally informed, fabrication-aware, and environmentally responsible. 
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id caadria2020_164
id caadria2020_164
authors Lu, Yi-Heng, Wang, Shih-Yuan, Sheng, Yu-Ting, Lin, Che-Wei, Pang, Yu-Hsuan and Hung, Wei-Tse
year 2020
title Transient Materialization – Robotic Metal Curving
doi https://doi.org/10.52842/conf.caadria.2020.2.423
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 423-432
summary This paper introduces the notion of transient materialization to investigate a novel approach of robotic fabrication. Transient materialization explores a new logic of materialization that takes the advantage of differentiated material states to generate form at a particular moment through computation and fabrication technologies. Specifically, this design research explains a unique design and fabrication process, opening up a new method of materializing architectural form that emerges from the interweaving of data, the material capacity (plastic deformation), timing, and machine capacity. Hence, to examine this research direction, this paper conducts an experimental project, Robotic Metal Curving, through hands-on material experiments, as well as the development of algorithms, robot motion, and prototyping machines. This experiment utilizes an induction heating technique in cooperation with a six-axis industrial robotic arm and fabrication equipment used to shape each metal rod into a three-dimensional curve at a transient moment. In addition, the project focuses not only on developing a robotic metal curving system but also apply this technique in large scale by fabricating a wire-frame structure.
keywords Robotic Fabrication; Digital Fabrication; Metal Bending
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2021_196
id caadria2021_196
authors Lu, Yueheng, Tian, Runjia, Li, Ao, Wang, Xiaoshi and Jose Luis, Garcia del Castillo Lopez
year 2021
title CubiGraph5K - Organizational Graph Generation for Structured Architectural Floor Plan Dataset
doi https://doi.org/10.52842/conf.caadria.2021.1.081
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 81-90
summary In this paper, a novel synthetic workflow is presented for procedural generation of room relation graphs of floor plans from structured architectural datasets. Different from classical floor plan generation models, which are based on strong heuristics or low-level pixel operations, our method relies on parsing vectorized floor plans to generate their intended organizational graph for further graph-based deep learning. This research work presents the schema for the organizational graphs, describes the generation algorithms, and analyzes its time/space complexity. As a demonstration, a new dataset called CubiGraph5K is presented. This dataset is a collection of graph representations generated by the proposed algorithms, using the floor plans in the popular CubiCasa5K dataset as inputs. The aim of this contribution is to provide a matching dataset that could be used to train neural networks on enhanced floor plan parsing, analysis and generation in future research.
keywords Graph Theory; Algorithm; Architecture Design Dataset; Organizational Graph
series CAADRIA
email
last changed 2022/06/07 07:59

_id ddss2006-pb-235
id DDSS2006-PB-235
authors Luca Caneparo, Francesco Guerra, and Elena Masala
year 2006
title UrbanLab - Generative platform for urban and regional design
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 235-251
summary UrbanLab is a computer system supporting urban and regional design. The papers outlines two leading aspects of this large research project, aimed respectively to make explicit the dynamic of the design in its time and geographic dimensions, and to interactively represent the interplay of some, explicitly, recognised factors, for instance the role of a multitude of different (local) actors in the design process. UrbanLab has been applied to several projects at different scales. We consider the applications to dynamically and interactively generating models of an Alpine valley. The modelling in the spatial and temporal dimensions provided us with the elements to study the evolution over the next twenty years.
keywords Generative modelling, Participatory design, DSS, GIS, Software agent, Urban design, Regional design
series DDSS
last changed 2006/08/29 12:55

_id lasg_whitepapers_2016_050
id lasg_whitepapers_2016_050
authors Lucinda Presley, Becky Carrol, Rob Gorbet
year 2016
title Promoting Creative and Innovative Thinking in the Classroom: The Role of Living Architecture Systems
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada pp. 050 - 061
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
email
last changed 2019/07/29 14:00

_id eee5
authors Luczak, H., Beitz, W., Springer, J. and Langner, T.
year 1991
title Frictions and Frustrations in Creative-Informatory Work with Computer Aided Design -- CAD-Systems -- Congress I: Work with Terminals: HEALTH ASPECTS: WORKLOAD, STRESS AND STRAIN AND IRREGULAR WORKING HOURS; Causes and Measures of Stress
source Proceedings of the Fourth International Conference on Human-Computer Interaction 1991 v.1 pp. 175-179
summary The effects of computer aided design work on the design process are analysed by field experiments. The study focuses on the influence of 3 different design tasks (standard tasks) and 11 CAD-systems (2D and 3D), taking into account the performance and strain measurements of 43 subjects (15 design engineers, 8 technicians, 17 draughtsmen, 3 trainees). The 3 standard tasks differ in performance measurements, especially in time spent on task, quantity of generated elements, not in the quality of the solution. The kind of CAD-system influences the time spent on task as well as the design performance, with significant differences of up to 100%. The same tendency can be diagnosed in a comparison of 2D and 3D systems. During the use of different functions of the CAD-system, strain effects are identified by cross-correlation with continuously measured physiological parameters, even with CAD-functions which should reduce stresses of routine work. Deficits and complications in the handling of CAD-systems increase with the complexity of the system and thus cause an antinome effect on performance and strain of its operators: creativity is reduced by frictions and frustrations in system handling even if operators are highly trained.
keywords Stressor Analysis; Performance Measurement; Field-Experiment; Design Process
series other
last changed 2002/07/07 16:01

_id sigradi2004_036
id sigradi2004_036
authors Lucía Gómez; Lola Vico
year 2004
title Infografia aplicada al patrimonio cultural: El caso del ninfeo de campetti (Veio) [Infographics Applied to Cultural Heritage: The Case of "Ninfeo de Campetti (Veio)"]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This paper presents the results of an in-depth study and virtual reconstruction of the Nymphaeum of Veio, in the archaeological zone of Villa Campetti, Rome. The study consisted in analysing the vestiges and enlightening the findings with a thorough literature review about the Nymphaeum itself as well as about contemporary and similar constructions. A digital model was then elaborated, as an attempt to recreate the Nymphaeum of Veio as it may have stood during the Roman period. The Nymphaeum had been decorated with roman frescoes of the III style, now highly deteriorated. The virtual reconstruction intends to reproduce the harmony of volumes, structure and paintings of the chamber. It also helps to better understand its configuration. This kind of reconstruction, based on historical and architectural research, offers great possibilities in the world or architectonic and archaeological heritage, allows the recovery and analysis of spaces otherwise lost forever.
series SIGRADI
email
last changed 2016/03/10 09:55

_id af46
authors Lue, Q.
year 1993
title Computer aided descriptive geometry
source Vienna University of Technology
summary The main aim of this thesis is the creation of a software package for descriptive geometry. Why there is a need for such a descriptive geometry software? In descriptive geometry the ability of space perception is trained by solving spatial problems graphically with the use of a few constructions: Hence the solution of each problem consists of two parts: 1) 3D-part: After analyzing the spatial problem it is cleared how to proceed step by step in space. 2) 2D-part: Due to the basic rules of descriptive geometry for each step of the solving strategy the corresponding 2D-construction has to be carried out graphically. By use of CAD-DG the 2nd part can be replaced again by a 3D-part: Each step is solved using the basic routines offered in the menu. That means that each step is solved analytically but instead of any output of numbers the solution is immediately displayed in the main views on the screen. Therefore the user neither needs to apply formulas of analytic geometry nor has to take care of any coordinates. He still works directly with geometric objects in a graphic representation
keywords Descriptive Geometry; Computer Graphics; Education; Interactive Graphic Software Package; Programming Technique; Educational Software
series thesis:PhD
more http://www.arcs.ac.at/dissdb/rn020701
last changed 2003/02/12 22:37

_id ascaad2006_paper3
id ascaad2006_paper3
authors Luesche, Andreas and Salim Elwazani
year 2006
title Adapting Digital Technologies to Architectural Education Need
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Adapting digital technologies to architecture school settings is a topic of universal interest. Properly construed, adapting digital technologies to architectural education emanates from philosophical underpinnings. For architectural programs, the scientific-artistic attribute notion can be a powerful reference for mapping program mission, goals, and curriculum. A program plan developed with scientific-artistic attributes of performance in mind can tap on the use of digital media from the perspective that the media has scientific-artistic characteristics itself. Implementation of digital technologies adaptation can be challenged, among other things, by scarcity in resources. This paper focuses on the role of digital equipment resources in adaptation. A case in point is the use of digital technologies at the Architecture and Environmental Design Studies (Arch/EDS) Program of Bowling Green State University. The study considered the utilization by the third and fourth year design studio students of the digital resources at the Center for Applied Technology, a College based, but University wide serving unit. The objective of the study was to build up a theoretical understanding of the adaptation problem and come up with strategy guidelines for adapting digital media resources to architectural education. A survey of students and interviews with the Center’s personnel were methods used to collect data. The study has placed the adaptation problem in a philosophical context, turned out a set of theoretical generalizations about digital utilization, and suggested strategy adaptive guidelines. Beyond facilitating adaptation specific to the Arch/EDS Program, the results of the study are bound to affect digital adaptation in a general sense.
series ASCAAD
email
last changed 2007/04/08 19:47

_id acadia03_060
id acadia03_060
authors Luhan, Greg A. (et al.)
year 2003
title Virtual Raves in Synthetic LandscapesHybrid Rave Space
doi https://doi.org/10.52842/conf.acadia.2003.x.f5t
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, p. 432
summary Project Description: The typology of public event spaces has transformed substantially over centuries. Ranges of spatial configurations have been developed with numerous instances and adaptations; many have occurred in our own century as the information needs of the modern society evolved. Bernard Tschumi denotes these phenomena as architectural urbanism where city-generators, functions, and programs combine and intersect in spaces of endless cross programming. Today, derelict industrial spaces [terrain vagues] have become social places that accommodate public activities. New technologies, particularly those associated with electronic media have radically influenced the program and typology of these event-spaces. Yet, in spite of social, technological, and material changes, the essence of the event-structure has not changed, it remains a place of interaction.
series ACADIA
email
last changed 2022/06/07 07:49

_id acadia03_016
id acadia03_016
authors Luhan, Gregory A.
year 2003
title Digital Curricula: Effective Integration of Digital Courses. Stitched-spaces and Digital Permutations
doi https://doi.org/10.52842/conf.acadia.2003.128
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 128-129
summary If, “the purpose of art is to awaken reality” as Paul Klee writes, what then, is the generative purpose of the digital as it relates to architecture? By uniting the traditional ways of knowing with the more contemporary and technologically advanced ways of knowing, the architect then would be able to develop the capacity to visualize and to understand unseen spatial relationships and exploit their latent characteristics. The computer consequently allows a direct synthesis to occur between the original idea and its formal application, in a sense providing new questions to old answers.
series ACADIA
email
last changed 2022/06/07 07:59

_id acadia06_000
id acadia06_000
authors Luhan, Gregory A., Anzalone, P., Cabrinha, M., Clarke, C. (eds.)
year 2006
title Synthetic Landscapes
doi https://doi.org/10.52842/conf.acadia.2006
source Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture, Louisville, KY USA, 12-15 October 2006/ ISBN 0-9789463-0-8, Library of Congress Control Number 2006934211
series ACADIA
email
last changed 2022/06/07 07:49

_id acadia06_064
id acadia06_064
authors Luhan, Gregory A.
year 2006
title Synthetic Making
doi https://doi.org/10.52842/conf.acadia.2006.064
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 64-67
summary Various approaches of virtual and physical modeling have led to a synthetic form of making that is plastic and scalable in nature. This shift from traditional forms of representing and generating architecture now offers a better possibility of full-scale construction and fabrication processes and links transparently to industry. Architects are beginning to dynamically inform the visioning processes of assemblies and design through a range of precise subassemblies. Further to this end, the synthetic techniques and materials are opening up avenues for designers to investigate a range of fibers and fabrics that radically transform light and color renditions, and texture. Investigations in the realm of traditional materials such as stone, wood, and concrete continue to evolve, as do their associated methods of making. As a result of synthetic technologies, architects today have the possibility to work along side industry engineers and professionals to design castings, moldings, patterns, and tools that challenge not only the architectural work of art, but industrial and product design as well. This cultural shift from physical space to virtual space back to physical space and the combination of hand-, digital-, and robotic-making offers a unique juxtaposition of the built artifact to its manufacturing that challenges both spatial conventions and also the levels of precision and tolerance by which buildings are assembled. Traditional forms of documentation for example result typically in discrepancies between the drawn and the actualized which are now challenged by the level of precision and tolerance at the virtual level. It is within this context that leading-edge architects and designers operate today. Yet, how the profession and the academy respond to these opportunities remains an open line of inquiry and addressing these concerns opens up the rich potential enabled through synthetic making.
series ACADIA
email
last changed 2022/06/07 07:59

_id ecaade2021_284
id ecaade2021_284
authors Luis, Orozco, Krtschil, Anna, Wagner, Hans-Jakob, Simon, Bechert, Amtsberg, Felix, Skoury, Lior, Knippers, Jan and Menges, Achim
year 2021
title Design Methods for Variable Density, Multi-Directional Composite Timber Slab Systems for Multi-Storey Construction
doi https://doi.org/10.52842/conf.ecaade.2021.1.303
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 303-312
summary This paper presents an agent-based method for the design of complex timber structures. This method features a multi-level agent simulation, that relies on a feedback loop between agent systems and structural simulations that update the agent environment. Such an approach can usefully be applied for the design of variable density timber slab systems, where material arrangements based on structural, fabrication, and architectural boundary conditions are necessary. Such arrangements can lead to multi-directional spanning slabs that can accept pointwise supports in unique layouts. We discuss the implementation of such a method on the basis of the structural design of a pavilion-scale multi-storey testing setup. The presented method enables a more versatile approach to the design of multi-storey timber buildings, which should increase their applicability to a diverse range of building typologies.
keywords Agent-Based Modelling; Robotic Timber Construction; Computational Design; Multi-Storey Timber Buildings
series eCAADe
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 881HOMELOGIN (you are user _anon_136943 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002