CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 1998

_id 9964
authors Augenbroe, G. and Winkelmann, F.
year 1991
title Integration of Simulation into the Building Design Process
source J.A. Clarke, J.W. Mitchell, and R.C. Van de Perre (eds.), Proceedings, Building Simulation '91 IBPSA Conference, pp. 367-374
summary We describe the need for a joint effort between design researchers and simulation tool developers in formulating procedures and standards for integrating simulation into the building design process. We review and discuss current efforts in the US and Europe in the development of next-generation simulation tools and design integration techniques. In particular, we describe initiatives in object-oriented simulation environments (including the US Energy 'Kernel System, the Swedish Ida system, the UK Energy Kernel System, and the French ZOOM program.) and consider the relationship of these environments to recent R&D initiatives in design integration (the COMBINE project in Europe and the AEDOT project in the US).
series other
last changed 2003/11/21 15:16

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id caadria2020_231
id caadria2020_231
authors Doe, Robert
year 2020
title sensMOD - Computational Design through the lens of Henri Lefebvre's Spatial Theory
doi https://doi.org/10.52842/conf.caadria.2020.1.701
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 701-710
summary Spatial productivity is the first of the elements comprising sensMOD, a student elective that implemented a methodology addressing the exigent need of our time for transformation in the architecture, engineering and construction (AEC) sector. The second and third elements of sensMOD are parts and interaction which focus attention on the nature of complexity and connectivity in our networked world. The paper proposes a methodology that was used to guide the teaching of an elective for third year architecture students at a UK university. Its wider purpose is to contribute to discussion concerning the dysfunctional state of an AEC sector that needs to consider its productivity as projections of wider networks of resource and energy relationships. Henri Lefebvre's spatial theory (1991) guides the narrative and formulation of sensMOD.
keywords computational design; spatial productivity; modularity; interaction design
series CAADRIA
email
last changed 2022/06/07 07:55

_id 6f3e
authors Eastman, Charles M. and Lang, Jurg
year 1991
title Experiments in Architectural Design Development Using CAD
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 49-64
summary The need to explore development techniques in computer-based design is reviewed. Some premises are given for design development using computers, including integrating multiple representations, the use of object-based modeling and the importance of visual analysis and 3-D modeling. We then present techniques used in a UCLA design studio that explored methods of computer-based design development based on these premises. The two main methods used were hierarchical object structures and multi-representational coordination. They were applied using conventional CAD systems. Some lessons learned from this class are reviewed.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id ecaade2007_073
id ecaade2007_073
authors Francis, Sabu
year 2007
title Web Based Collaborative Architectural Practice Using a Fractal System
doi https://doi.org/10.52842/conf.ecaade.2007.727
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 727-734
summary I have been working on an architecture representation system in India since 1991; that markedly deviates from the need of traditional drawings as we know. Over three million square feet of work has been done that took advantage of this system as it was being developed. The system has now matured sufficiently to be put into practice as a comprehensive architectural system of practice. It takes advantage of creation of just-in-time dynamic multi-organizations that can get formed (and dismantled) over the Internet on a project to project basis. The raison d’être of the representation system is that it would expose the “source-code” (metaphorically) of any work of architecture to stakeholders, much the same way as an open-source software project exposes the internal representation to fellow developers. I believe the design of architecture must go through an “open source” process in order to produce socially responsible designs. Such a stance is explained in this paper. The paper also explains the system in detail; its mathematical basis and justifies the need for such an approach. It also explores how a collaborative practice can be put into place using the system in the context of Internet technologies.
keywords Collaborative practice, fractals, representation system
series eCAADe
email
last changed 2022/06/07 07:50

_id 673a
authors Fukuda, T., Nagahama, R. and Sasada, T.
year 1997
title Networked Interactive 3-D design System for Collaboration
doi https://doi.org/10.52842/conf.caadria.1997.429
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 429-437
summary The concept of ODE (Open Design Environment) and corresponding system were presented in 1991. Then the new concept of NODE. which is networked version of ODE. was generated to make wide area collaboration in 1994. The aim of our research is to facilitate the collaboration among the various people involved in the design process of an urban or architectural project. This includes various designers and engineers, the client and the citizens who may be affected by such a project. With the new technologies of hyper medium, network, and component architecture, we have developed NODE system and applied in practical use of the collaboration among the various people. This study emphasizes the interactive 3-D design tool of NODE which is able to make realistic and realtime presentation with interactive interface. In recent years, ProjectFolder of NODE system, which is a case including documents, plans, and tools to proceed project., is created in the World Wide Web (WWW) and makes hyper links between a 3-D object and a text, an image. and other digital data.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 728f
authors Gross, Mark D.
year 1991
title Grids in Design and CAD
doi https://doi.org/10.52842/conf.acadia.1991.033
source Reality and Virtual Reality [ACADIA Conference Proceedings / ISBN 1-880250-00-4] Los Angeles (California - USA) October 1991, pp. 33-43
summary The grid is a useful device for expressing design rules about the placement of elements in a layout. By expressing position rules for elements in relation to a grid, a designer can systematically organize decisions in a layout design problem. Grids and placement rules offer a discipline that can help a designer work effectively to lay out complex designs, and it can also facilitate group design work. Unfortunately, computer supported drawing systems often cannot support this way of working because they lack a sufficiently rich implementation of grids. The Grid Manager module of the CoDraw program shows enhancements useful for architectural Computer Assisted Design. These enhancements would enable more effective ways of using the computer as a design tool.
series ACADIA
email
last changed 2022/06/07 07:51

_id 01c8
authors Gross, Mark D.
year 1991
title Programming 2-Way Constraints in CODRAW
source 1991. [8] p. : ill. includes bibliography
summary Constraints based drawing programs require users to understand and manage relationships between drawing elements. By establishing constraint relationship among elements the user effectively programs the drawing's behavior. This programming task requires a more sophisticated visual interface than conventional drawing programs provide. Users must have available - in a convenient format - information about the structure of the constraints that determine the drawing's interactive edit behavior. This format must support editing and debugging. CoDraw is a constraint based drawing program that can be interactively extended by its users. This paper describes the CoDraw program and its programming interface
keywords constraints, drafting, user interface
series CADline
last changed 2003/06/02 10:24

_id 39e0
id 39e0
authors Jablonski, Allen D.
year 1991
title Integrated Component-based Computer Design Modeling System: The Implications of Control Parameters on the Design Process
source New Jersey Institute of Technology, Newark, NJ Graduate Thesis - Master's Program College of Architecture
summary The design process is dependent on a clear order of integrating and managing all of the control parameters that impact on a building's design. All component elements of a building must be defined by their: Physical and functional relations; Quantitative and calculable properties; Component and/or system functions. This requires a means of representation to depict a model of a building that can be viewed and interpreted by a variety of interested parties. These parties need different types of representation to address their individual control parameters, as each component instance has specific implications on all of the control parameters.

Representations are prepared for periodic design review either manually through hand-drawn graphics and handcrafted models; or with the aid of computer aided design programs. Computer programs can profoundly increase the speed and accuracy of the process', as well as provide a level of integration, graphic representation and simulation, untenable through a manual process.

By maintaining a single control model in an Integrated Component-based Computer Design Modeling System (ICCDMS), interested parties could access the design model at any point during the process. Each party could either: 1. Analyze individual components, or constraints of the model, for interferences against parameters within that party's control; or 2. Explore design alternatives to modify the model, and verify the integration of the components or functions, within the design model, as allowable in relation to other control parameters.

keywords Architectural Design; Data Processing
series thesis:MSc
type extended abstract
email
more http://www.library.njit.edu/etd/1990s/1990/njit-etd1990-005/njit-etd1990-005.html
last changed 2006/09/25 09:04

_id e7fb
authors Leclercq, Pierre
year 1991
title Students in Efficient Energy Management
doi https://doi.org/10.52842/conf.ecaade.1991.x.e7o
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary The LEMA presents Strategy II, the new version of his CAL software in thermal design of building. Based on his latest experiences using the first prototypes, the present programme provides an complete human interface and interesting tools for decision taking. A first educational experience with this software is described. Strategy II has been studied in 1990 by two twin teams: one is the LEMA (Laboratoire d'Etudes Méthodologiques Architecturales) and the other one is the CTE (Centre des Technologies de l'Education), parts of the University of Liège, in Belgium.

series eCAADe
last changed 2022/06/07 07:50

_id c65f
authors Littlefair, P.J.
year 1991
title Site Layout Planning for Daylight and Sunlight
source Building Research Establishment Report
summary This guide gives advice on site layout planning to achieve good sunlight and daylight within buildings and adjacent open spaces such as gardens. It includes methods that allow for the calculation of sunlight or daylight levels at 4 different latitudes within the UK and for different times of the year. An additional section discusses the subject of site layout and design for obtaining maximum solar energy. This guide supersedes the original Department of the Environment document Sunlight and Daylight. BRE 209 has sections for the following:- * Light from the Sky. * New development. * Existing Buildings. * Adjoining development land. * Sunlighting. * New development. * Existing Buildings. * Gardens & open spaces. * Passive solar design. * Other issues. * View. * Privacy. * Security. * Access. * Enclosure. * Microclimate. * Solar dazzle. * Appendix A. Indicators to calculate access to sunlight, skylight and solar radiation. * Appendix B. A waldram diagram to calculate vertical sky component. * Appendix C. Interior daylighting recommendations. * Appendix D. Plotting the no-sky line. * Appendix E. Rights to light. * Appendix F. Setting alternative target values for skylight access. * Appendix G. Calculation of sun on the ground. * Appendix H. Definitions.
series report
last changed 2003/04/23 15:14

_id 7508
authors Montgomery, D.C.
year 1991
title Design and Analysis of Experiments
source John Wiley, Chichester
summary Learn How to Achieve Optimal Industrial Experimentation Through four editions, Douglas Montgomery has provided statisticians, engineers, scientists, and managers with the most effective approach for learning how to design, conduct, and analyze experiments that optimize performance in products and processes. Now, in this fully revised and enhanced Fifth Edition, Montgomery has improved his best-selling text by focusing even more sharply on factorial and fractional factorial design and presenting new analysis techniques (including the generalized linear model). There is also expanded coverage of experiments with random factors, response surface methods, experiments with mixtures, and methods for process robustness studies. The book also illustrates two of today's most powerful software tools for experimental design: Design-Expert(r) and Minitab(r). Throughout the text, You'll find output from these two programs, along with detailed discussion on how computers are currently used in the analysis and design of experiments. You'll also learn how to use statistically designed experiments to: * Obtain information for characterization and optimization of systems * Improve manufacturing processes * Design and develop new processes and products * Evaluate material alternatives in product design * Improve the field performance, reliability, and manufacturing aspects of products * Learn how to conduct experiments effectively and efficiently Other important textbook features: * Student version of Design-Expert(r) software is available. * Web site (www.wiley.com/college/montgomery) offers supplemental text material for each chapter, a sample syllabus, and sample student projects from the author's Design of Experiments course at Arizona State University.
series other
last changed 2003/04/23 15:14

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 3105
authors Novak, T.P., Hoffman, D.L., and Yung, Y.-F.
year 1996
title Modeling the structure of the flow experience
source INFORMS Marketing Science and the Internet Mini-Conference, MIT
summary The flow construct (Csikszentmihalyi 1977) has recently been proposed by Hoffman and Novak (1996) as essential to understanding consumer navigation behavior in online environments such as the World Wide Web. Previous researchers (e.g. Csikszentmihalyi 1990; Ghani, Supnick and Rooney 1991; Trevino and Webster 1992; Webster, Trevino and Ryan 1993) have noted that flow is a useful construct for describing more general human-computer interactions. Hoffman and Novak define flow as the state occurring during network navigation which is: 1) characterized by a seamless sequence of responses facilitated by machine interactivity, 2) intrinsically enjoyable, 3) accompanied by a loss of self-consciousness, and 4) selfreinforcing." To experience flow while engaged in an activity, consumers must perceive a balance between their skills and the challenges of the activity, and both their skills and challenges must be above a critical threshold. Hoffman and Novak (1996) propose that flow has a number of positive consequences from a marketing perspective, including increased consumer learning, exploratory behavior, and positive affect."
series other
last changed 2003/04/23 15:50

_id cf2009_poster_43
id cf2009_poster_43
authors Oh, Yeonjoo; Ellen Yi-Luen Do, Mark D Gross, and Suguru Ishizaki
year 2009
title Delivery Types And Communication Modalities In The Flat-Pack Furniture Design Critic
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary A computer-based design critiquing system analyzes a proposed solution and offers critiques (Robbins 1998). Critiques help designers identify problems as well as opportunities to improve their designs. Compared with human critics, today’s computer-based critiquing systems deliver feedback in quite restricted manner. Most systems provide only negative evaluations in text; whereas studio teachers critique by interpreting the student’s design, introducing new ideas, demonstrating and giving examples, and offering evaluations (Bailey 2004; Uluoglu 2000) using speech, writing, and drawing to communicate (Anthony 1991; Schön 1983). This article presents a computer-based critiquing system, Flat-pack Furniture Design Critic (FFDC). This system supports multiple delivery types and modalities, adapting the typical system architecture of constraint-based intelligent tutors (Mitrovic et al. 2007).
keywords Critiquing system, design critiquing
series CAAD Futures
type poster
email
last changed 2009/07/08 22:12

_id 6028
authors Sachs, E., Roberts, A. and Stoops, D.
year 1991
title 3-draw: A tool for designing 3D shapes
source IEEE Computer Graphics & Applications, pp. 18-25
summary A fundamentally new type of CAD system for designing shape that is intuitive, easy to use, and powerful is presented. It is based on a paradigm that can be described as designing directly in 3-D. By virtue of two hand-held sensors, designers using 3-Draw to sketch their ideas in the air feel as if they're actually holding and working on objects. Current design practice and related work are reviewed, and current work on 3-Draw is summarized. To capture the flavor of 3-Draw, construction of a sample model of a 12-m yacht is described. 3-Draw's features and data structures are discussed.
series journal paper
last changed 2003/04/23 15:14

_id avocaad_2001_19
id avocaad_2001_19
authors Shen-Kai Tang, Yu-Tung Liu, Yu-Sheng Chung, Chi-Seng Chung
year 2001
title The visual harmony between new and old materials in the restoration of historical architecture: A study of computer simulation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the research of historical architecture restoration, scholars respectively focus on the field of architectural context and architectural archeology (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000) or on architecture construction and the procedure of restoration (Shi, 1988, 1989; Chiu, 1990). How to choose materials and cope with their durability becomes an important issue in the restoration of historical architecture (Dasser, 1990; Wang, 1998).In the related research of the usage and durability of materials, some scholars deem that, instead of continuing the traditional ways that last for hundreds of years (that is to replace new materials with old ones), it might be better to keep the original materials (Dasser, 1990). However, unavoidably, some of the originals are much worn. Thus we have to first establish the standard of eliminating components, and secondly to replace identical or similar materials with the old components (Lee, 1990). After accomplishing the restoration, we often unexpectedly find out that the renewed historical building is too new that the sense of history is eliminated (Dasser, 1990; Fu, 1997). Actually this is the important factor that determines the accomplishment of restoration. In the past, some scholars find out that the contrast and conflict between new and old materials are contributed to the different time of manufacture and different coating, such as antiseptic, pattern, etc., which result in the discrepancy of the sense of visual perception (Lee, 1990; Fu, 1997; Dasser, 1990).In recent years, a number of researches and practice of computer technology have been done in the field of architectural design. We are able to proceed design communication more exactly by the application of some systematic softwares, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and so on (Lawson, 1995; Liu, 1996). The application of computer technology to the research of the preservation of historical architecture is comparatively late. Continually some researchers explore the procedure of restoration by computer simulation technology (Potier, 2000), or establish digital database of the investigation of historical architecture (Sasada, 2000; Wang, 1998). How to choose materials by the technology of computer simulation influences the sense of visual perception. Liu (2000) has a more complete result on visual impact analysis and assessment (VIAA) about the research of urban design projection. The main subjects of this research paper focuses on whether the technology of computer simulation can extenuate the conflict between new and old materials that imposed on visual perception.The objective of this paper is to propose a standard method of visual harmony effects for materials in historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example).There are five steps in this research: 1.Categorize the materials of historical architecture and establish the information in digital database. 2.Get new materials of historical architecture and establish the information in digital database. 3.According to the mixing amount of new and old materials, determinate their proportion of the building; mixing new and old materials in a certain way. 4.Assign the mixed materials to the computer model and proceed the simulation of lighting. 5.Make experts and the citizens to evaluate the accomplished computer model in order to propose the expected standard method.According to the experiment mentioned above, we first address a procedure of material simulation of the historical architecture restoration and then offer some suggestions of how to mix new and old materials.By this procedure of simulation, we offer a better view to control the restoration of historical architecture. And, the discrepancy and discordance by new and old materials can be released. Moreover, we thus avoid to reconstructing ¡§too new¡¨ historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ddss9483
id ddss9483
authors Shyi, Gary C.-W. and Huang, Tina S.-T.
year 1994
title Constructing Three-Dimensional Mental Models from Two-Dimensional Displays
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary In the present study we adopted the tasks and the experimental procedures used in a recent series of study by Cooper (1990, 1991) for the purpose of examining how we utilized two-dimensional information in a line-drawing of visual objects to construct the corresponding three-dimensional mental structure represented by the 2-D displays. We expected that the stimulus materials we used avoided some of the problems that Cooper's stimuli had, and with that we examined the effect of complexity on the process of constructing 3-D models from 2-D displays. Such a manipulation helps to elucidate the difficulties of solving problems that require spatial abilities. We also investigated whether or not providing information representing an object viewed from different standpoints would affect the construction of the object's 3-D model. Some researchers have argued that 3-D models, once constructed, should be viewer-independent or viewpoint-invariant, while others have suggested that 3-D models are affected by the viewpoint of observation. Data pertinent to this issue are presented and discussed.
series DDSS
last changed 2003/08/07 16:36

_id 90cc
authors Sohrt, W. and Bruderlin, B.D.
year 1991
title Interaction with Constraints in 3D Modeling
source Proceedings of ACM/SIGGRAPH Symposium on Solid Modeling and CADCAM Applications, Austin, TX
summary The purpose of our research is to simplify and improve the effectiveness of the interactive definition of geometric objects in computer aided geometric modeling. To achieve this goal, two ways of defining geometric objects are combined and interfaced 1) the definition of objects by graphical interaction and 2) the specification of objects by geometric constraints. To demonstrate the practicability of the proposed approach, a geometric modeling system was implemented. In this system, interactive modeling operations automatically generate constraints to maintain the properties intended by their invocatio~ and constraints, in turn, determine the degrees of freedom for further int eractive mouse-controlled modeling operations. A symbolic geometric constraint solver is employed for solvings ystems of constraints. Group hierarchies are utilized for representing dependencies and for locfllzing systems of constraints.
series other
last changed 2003/04/23 15:50

_id 2c7b
authors Stenvert, Ronald
year 1993
title The Vector-drawing as a Means to Unravel Architectural Communication in the Past
doi https://doi.org/10.52842/conf.ecaade.1993.x.q9a
source [eCAADe Conference Proceedings] Eindhoven (The Netherlands) 11-13 November 1993
summary Unlike in painting, in architecture one single person never controls the whole process between conception and realization of a building. Ideas of what the building will eventually look like, have to be conveyed from patron to the actual builders, by way of drawings. Generally the architect is the key-figure in this process of communication of visual ideas. Nowadays many architects design their new buildings by using computers and Computer-Aided (Architectural) Design programs like AutoCad and VersaCAD. Just like traditional drawings, all these computer drawings are in fact vector-drawings; a collection of geometrical primitives like lines, circle segments etc. identified by the coordinates of their end points. Vector-based computer programs can not only be used to design the future, but also as a means to unravel the architectural communication in the past. However, using the computer as an analyzing tool for a better comprehension of the past is not as simple as it seems. Historical data from the past are governed by unique features of date and place. The complexity of the past combined with the straightforwardness of the computer requires a pragmatic and basic approach in which the computer acts as a catalytic agent, enabling the scholar to arrive manually at his own - computer-assisted - conclusions. From this it turns out that only a limited number of projects of a morphological kind are suited to contribute to new knowledge, acquired by the close-reading of the information gained by way of meaningful abstraction. An important problem in this respect is how to obtain the right kind of architectural information. All four major elements of the building process - architect, design, drawing and realization - have their own different and gradually shifting interpretations in the past. This goes especially for the run-of-the-mill architecture which makes up the larger part of the historical urban environment. Starting with the architect, one has to realize that only a very limited part of mainstream architecture was designed by architects. In almost all other cases the role of the patron and the actual builder exceeds that of the architect, even to the extent that they designed buildings themselves. The position of design and drawing as means of communication also changed in the past. Until the middle of the nineteenth century drawings were not the chief means of communication between architects and builders, who got the gist of the design from a model, or, encountering problems, simply asked the architect or supervisor. From the nineteenth century onwards the use of drawings became more common, but almost never represented the building entirely "as built". In 1991 I published my Ph.D. thesis: Constructing the past: computerassisted architectural-historical research: the application of image-processing using the computer and Computer-Aided Design for the study of the urban environment, illustrated by the use of treatises in seventeenth-century architecture (Utrecht 1991). Here, a reconstruction of this historical communication process will be presented on the basis of a project studying the use of the Classical orders as prescribed in various architectural treatises, compared to the use of the orders in a specific group of still existing buildings in The Netherlands dating from the late sixteenth and entire seventeenth century. Comparisons were made by using vector-drawings. Both the illustrations in the the treatises and actual buildings were "translated" into computer-drawings and then analyzed.

series eCAADe
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 99HOMELOGIN (you are user _anon_343289 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002