CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2654

_id c4be
authors Bock, T., Stricker, D., Fliedner, J. and Huynh, T.
year 1996
title Automatic generation of the controlling-system for a wall construction robot
source Automation in Construction 5 (1) (1996) pp. 15-21
summary In this article we present several important aspects of a software system control. This is designed and developed for a wall assembly robot in an European Esprit III project called ROCCO, RObot assembly system for Computer integrated COnstruction. The system consists of an off-line program for planning of complex assembly tasks and for generating robot actions. The execution is controlled through an adaptive user interface and gives the user the possibilities to switch in an on-line mode command. All the software is designed with the object-oriented concept and implemented in C + +. The wall assembly system is organized on the base of the successive generation of different types of actions, called "Mission", "Task", and "Action". They represent different levels of assembly complexities. Those different actions are organized in a tree structure. Furthermore, the software system can be connected to a CAD-robot simulation software for checking the robot assembly motions. Added to the control system, a recovery module has been implemented for all possible errors during the construction. First the OO-model of the world and of robot activities will be presented. Secondly, several aspects of the algorithm will be explained and at the end we will show the strategy used for the robot motion.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ecaade2023_423
id ecaade2023_423
authors Ghiyasi, Tahmures, Zargar, Seyed Hossein and Baghi, Ali
year 2023
title Layer-by-Layer Pick and Place Collaboration Between Human and Robot Using Optimization
doi https://doi.org/10.52842/conf.ecaade.2023.2.769
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 769–778
summary Robotic pick-and-place (P&P) has been widely utilized in manufacturing and architectural construction since the 1980s. However, the lack of inherent sensing capabilities in robots has limited their ability to adapt and respond to changes in design or environment. To address some of these shortcomings, this paper proposes an interactive robotic brick-laying workflow using a vision-based sensing framework to inform and optimize brick placements in consecutive layers. The proposed implementation is comprised of three major computational frameworks: (1) digitally reconstructing and analyzing the current state of the assembly, (2) optimizing placement targets based on the digital representation of the environment and desired multi-objective optimization goals, and (3) planning robot motion for the next layer of brick-laying. Within this workflow, the vision-based feedback pipeline simultaneously reconstructs and localizes the already-built assembly. This geometric information constitutes the basis for the multi-objective optimization stage. The placement targets are adaptively calculated to build the next layer upon the existing assembly while optimizing for structural stability, accounting for unforeseen deviations between layers, and allowing for human intervention and modification throughout the process. By proposing an interactive robotic brick-laying workflow, the paper explores the prospects for leveraging the capabilities of robotic pick-and-place technology and integrating it with vision-based sensing frameworks to achieve optimal results in construction. Furthermore, by examining the effectiveness of a multi-objective optimization method as an adaptive design driver, this paper contributes to the development of novel computational strategies that can enhance the flexibility and adaptability of robotic construction systems.
keywords Pick-and-place, Human-robot interaction, Robotic fabrication, Multi-objective optimization
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaadesigradi2019_502
id ecaadesigradi2019_502
authors Gozen, Efe
year 2019
title A Framework for a Five-Axis Stylus for Design Fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.1.215
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 215-220
summary This paper proposes a new workflow between design and fabrication phases through the introduction of a novel framework centered around a stylus that is tracked in real-time for five-axis by a single RGB-D camera. Often misconceived as a linear process, urgent reinterpretation of design and fabrication tools is discussed briefly. Similar to how industrial robots have become an enabler for fabrication process in the field of architecture and construction, the necessity for providing a similar tool that would reform the "design" process is underlined. A generic stylus is proposed with interchangeable operations which allows for intuitive, non-obstructive grasp of the user serves as the physical avatar that transform into a virtual representation of a fabrication tool mounted on a six-axis industrial robot arm. User interaction with the apparatus is simulated for the user, and the user is notified of any errors as the interaction is translated for motion planning of a KUKA KR20-3 industrial robot.
keywords Human-Computer Interaction; CAD / CAM; Robotic Motion Control
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id cdrf2021_340
id cdrf2021_340
authors Hao Wu, Ming Lu, XinJie Zhou, and Philip F. Yuan
year 2021
title Application of 6-Dof Robot Motion Planning in Fabrication
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_31
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary . In practical robotic construction work, such as laying bricks and painting walls, obstructing objects are encountered and motion planning needs to be done to prevent collisions. This paper first introduces the background and results of existing work on motion planning and describes two of the most mainstream methods, the potential field method, and the sampling-based method. How to use the probabilistic route approach for motion planning on a 6-axis robot is presented. An example of a real bricklaying job is presented to show how to obtain point clouds and increase the speed of computation by customizing collision and ignore calculations. Several methods of smoothing paths are presented and the paths are re-detected to ensure the validity of the paths. Finally, the flow of the whole work is presented and some possible directions for future work are suggested. The significance of this paper is to confirm that a relatively fast motion planning can be achieved by an improved algorithmic process in grasshopper.
series cdrf
email
last changed 2022/09/29 07:53

_id 5fe7
authors Hoffmann C.M.
year 1989
title Geometric and Solid Modeling
source Morgan Kaufmann
summary Solid modeling is rapidly emerging as a central area of research and de- velopment in such diverse applications as engineering and product design, computer-aided manufacturing, electronic prototyping, o -line robot pro- gramming, and motion planning. All these applications require represent- ing the shapes of solid physical objects, and such representations and basic operations on them can be provided by solid modeling. As a eld, solid modeling spans several disciplines, including mathemat- ics, computer science, and engineering. In consequence, it is a broad subject that must accommodate a diversity of viewpoints and has to meet a diversity of goals. Sometimes, this diversity of goals can lead to con icting demands. Current thinking on the subject views the proper resolution of these con- icts to be application-dependent. That is, it is no longer thought realistic to envision a comprehensive solid-modeling system that satis es the needs of all potential users. Rather, as it is argued, we should concentrate on con- structing a software environment in which many tools for geometric and solid computation are available and can be combined with ease as appropriate for the speci c application under consideration.
series other
last changed 2003/04/23 15:14

_id 094b
authors O´Rourke, J.
year 1998
title Computational Geometry in C
source Cambridge: Cambridge University Press
summary The first edition of this book is recognised as one of the definitive sources on the subject of Computational Geometry. In fact, O'Rourke has a long history in the field, has published many papers on the subject and is responsible for the computer graphics algorithms newsgroup which is where all computer geometers meet to discuss their ideas and problems. Typical problems discussed include how a polygon can be represented, how to calculate its area, how to detect if two polygons intersect and how to calculate the convex hull of a polygon. This leads onto more complex issues such as motion planning and seeing if a robot is able navigate from point x to point y without bumping into objects. The algorithms for these (and other) problems are discussed and many are implemented. In addition, many of the ideas are also discussed from the point of view of three and more dimensions. The only disappointment is that many problems are posed as questions at the end of the chapters and, as far as I could see, you cannot get the answers in the forms of a lecturer's supplement. This is fine in academia but not a lot of use for the commercial world. Due to the range of problems that incorporate computational geometry this book cannot be expected to answer every problem you might have. You will undoubtedly need access to other textbooks but I have been using the first edition of this book for many years and the second edition is a welcome addition to my bookshelf. If I was only allowed one computational geometry book then it would undoubtedly be this one.
series other
last changed 2003/04/23 15:14

_id acadia23_v2_92
id acadia23_v2_92
authors Pinochet, Diego
year 2023
title A Computational Gestural Making Framework: A Multi-modal Approach to Digital Fabrication Mapping Human Gestures to Machine Actions
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 92-103.
summary This research project implements a multimodal body-centric approach to interactive fabrication aimed to test the conversational aspects of a design framework (Figure 1). It focuses on the development of a gesture language as the primary mode of commu- nication, as well as the means to generate effective communication with a machine for design endeavors. To do so, we first developed a gesture recognition system that aims to establish fluid communication with a machine based on three types of gestures: symbolic, exploratory, and sequential. Second, we developed a system for machine vision to detect, recognize, and calculate physical objects in space. Third, we developed a system for robotic motion using path-planning algorithms and reinforcement learning for colli- sion-free machine movement. Finally, those three modules were integrated into a system for human-robot interaction in real time based on gestures. The ultimate goal of this imple- mentation is to establish a multimodal framework for interactive design that is based on human-robotic interaction through the use of gestures as a communication mechanism for exploring computational design potential toward unique and original creations.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id ecaadesigradi2019_280
id ecaadesigradi2019_280
authors Rossi, Gabriella and Nicholas, Paul
year 2019
title Haptic Learning - Towards Neural-Network-based adaptive Cobot Path-Planning for unstructured spaces
doi https://doi.org/10.52842/conf.ecaade.2019.2.201
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 201-210
summary Collaborative Robots, or Cobots, bring new possibilities for human-machine interaction within the fabrication process, allowing each actor to contribute with their specific capabilities. However creative interaction brings unexpected changes, obstacles, complexities and non-linearities which are encountered in real time and cannot be predicted in advance. This paper presents an experimental methodology for robotic path planning using Machine Learning. The focus of this methodology is obstacle avoidance. A neural network is deployed, providing a relationship between the robot's pose and its surroundings, thus allowing for motion planning and obstacle avoidance, directly integrated within the design environment. The method is demonstrated through a series of case-studies. The method combines haptic teaching with machine learning to create a task specific dataset, giving the robot the ability to adapt to obstacles without being explicitly programmed at every instruction. This opens the door to shifting to robotic applications for construction in unstructured environments, where adapting to the singularities of the workspace, its occupants and activities presents an important computational hurdle today.
keywords Architectural Robotics; Neural Networks; Path Planning; Digital Fabrication; Artificial Intelligence; Data
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2016_579
id caadria2016_579
authors Tan, Rachel and Stylianos Dritsas
year 2016
title Clay Robotics: Tool making and sculpting of clay with a six-axis robot
doi https://doi.org/10.52842/conf.caadria.2016.579
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 579-588
summary The objective of the project is to design a reproducible clay sculpting process with an industrial robotic arm using parametric con- trol to directly translate mesh geometry from Computer Aided Design (CAD) environment into a lump of clay. This is accomplished through an algorithmic design process developed in Grasshopper using the C# programming language. The design process is enabled by our robotics modelling and simulation library which provides tools for kinematics modelling, motion planning, visual simulation and networked com- munication with the robotic system. Our process generates robot joint axis angle instructions through inverse kinematics which results into linear tool paths realised in physical space. Unlike common subtrac- tive processes such as Computer Numeric Control (CNC) milling where solid material is often pulverised during machining operations, our process employs a carving technique to remove material by dis- placement and deposition due to the soft and self-adhesive nature of the clay material. Optimisation of self-cleaning paths are implemented and integrated into the sculpting process to increase pathing efficiency and end product quality. This paper documents the process developed, the obstacles faced in motion planning of the robotic system and dis- cusses the potential for creative applications in digital fabrication us- ing advanced machines that in certain terms exceed human capability yet in others are unable to reach the quality of handmade works of art.
keywords Design computation; digital fabrication; architectural robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia16_184
id acadia16_184
authors Vasey; Lauren; Long Nguyen; Tovi Grossman; Heather Kerrick; Danil Nagy; Evan Atherton; David Thomasson; Nick Cote; David Benjamin; George Fitzmaurice; Achim Menges
year 2016
title Collaborative Construction: Human and Robotic Collaboration Enabling the Fabrication and Assembly of a Filament-Wound Structure
doi https://doi.org/10.52842/conf.acadia.2016.184
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 184-195
summary In this paper, we describe an interdisciplinary project and live-exhibit that investigated whether untrained humans and robots could work together collaboratively towards the common goal of building a large-scale structure composed out of robotically fabricated modules using a filament winding process. We describe the fabrication system and exhibition setup, including a custom end effector and tension control mechanism, as well as a collaborative fabrication process in which instructions delivered via wearable devices enable the trade-off of production and assembly tasks between human and robot. We describe the necessary robotic developments that facilitated a live fabrication process, including a generic robot inverse kinematic solver engine for non-spherical wrist robots, and wireless network communication connecting hardware and software. In addition, we discuss computational strategies for the fiber syntax generation and robotic motion planning which mitigated constraints such as reachability, axis limitations, and collisions, and ensured predictable and therefore safe motion in a live exhibition setting. We discuss the larger implications of this project as a case study for handling deviations due to non-standardized materials or human error, as well as a means to reconsider the fundamental separation of human and robotic tasks in a production workflow. Most significantly, the project exemplifies a hybrid domain of human and robot collaboration in which coordination and communication between robots, people, and devices can enhance the integration of robotic processes and computational control into the characteristic processes of construction.
keywords machin vision, cyber-physical systems, internet of things, robotic fabrication, human robot collaboration, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id a620
authors Asanowicz, Alexander
year 1991
title Unde et Quo
doi https://doi.org/10.52842/conf.ecaade.1991.x.t1s
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary To begin with, I would like to say a few words about the problem of alienation of modern technologies which we also inevitably faced while starting teaching CAD at our department. Quite often nowadays a technology becomes a fetish as a result of lack of clear goals in human mind. There are multiple technologies without sense of purpose which turned into pure experiments. There is always the danger of losing purposeness and drifting toward alienation. The cause of the danger lies in forgetting about original goals while mastering and developing the technology. Eventually the original idea is ignored and a great gap appears between technical factors and creativity. We had the danger of alienation in mind when preparing the CAAD curriculum. Trying to avoid the tension between technical and creative elements we agreed not to introduce CAD too soon then the fourth year of studies and continue it for two semesters. One thing was clear - we should not teach the technique of CAD but how to design using a computer as a medium. Then we specified projects. The first was called "The bathroom I dream of" and meant to be a 2D drawing. The four introductory meetings were in fact teaching foundations of DOS, then a specific design followed with the help of AutoCAD program. In the IX semester, for example, it was "A family house" (plans, facades, perspective). "I have to follow them - I am their leader" said L.J. Peter in "The Peter's Prescription". This quotation reflects exactly the situation we find ourselves in teaching CAAD at our department. It means that ever growing students interest in CAAD made us introduce changes in the curriculum. According to the popular saying, "The more one gets the more one wants", so did we and the students feel after the first semester of teaching CAD. From autumn 1991 CAAD classes will be carried from the third year of studying for two consecutive years. But before further planning one major steep had to be done - we decided to reverse the typical of the seventies approach to the problem when teaching programming languages preceded practical goals hence discouraging many learners.

series eCAADe
email
last changed 2022/06/07 07:50

_id ddss2006-hb-487
id DDSS2006-HB-487
authors Chien-Tung Chen and Teng-Wen Chang
year 2006
title 1:1 Spatially Augmented Reality Design Environment
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 487-499
summary With the development of ubiquitous computing (Weiser, 1991), what will become of the traditional media such as pen and sketches, especially in the design education environment? Or what will they be transformed into? In this research, we focus on the interior design process with a particular type of media-1:1 spatially augmented reality design environment (SARDE). In this research, we tried to implement SARDE and have a scenario experiment to check how designers interact with such design media. Furthermore, through this research, we have come to know more about how designers use design media to represent their design dream.
keywords Design & Decision Support Systems, Spatially Augmented Reality, Architecture Education, and Computer Visualization
series DDSS
last changed 2006/08/29 12:55

_id cdb1
authors Cornick, T., Noble, B. and Hallahan, C.
year 1991
title The Limitations of Current Working Practices on the Development of Computer Integrating Modelling in Construction
source computer Integrated Future, CIB W78 Seminar. Calibre, The Netherlands: Eindhoven University of Technology, september, 1991. Unnumbered. includes bibliography
summary For the construction Industry to improve its processes through the application computer-based systems, traditional working practices must first change to support the integrated control of design and construction. Current manual methods of practice accept the limitations of man to process a wide range of building performance and production information simultaneously. However when these limitations are removed, through the applications of computer systems, the constraints of manual methods need no longer apply. The first generation of computer applications to the Construction Industry merely modelled the divided and sequential processes of manual methods i.e. drafting, specification writing, engineering and quantity calculations, estimating, billing, material ordering data-bases and activity planning. Use of these systems raises expectations that connections within the computer between the processes modelled can actually be made and faster and more integrated information processing be achieved. 'Linking' software is then developed. The end result of this approach was that users were able to produce information faster, present it in an impressive manner but, in reality, no perceived improvement in actual building performance, production economy or efficiency was realized. A current government sponsored Teaching Company Programme with a UK design and build company is addressing the problem of how real economic benefit can be realized through improvement in, amongst other things, their existing computer applications. This work is being carried out by both considering an academic conceptual model of how 'designing for production' can be achieved in computer applications and what is immediately realizable in practice by modelling the integration of a limited number of knowledge domains to which computers are already being applied. i.e. billing from design, estimating and buying. This paper describes each area of work and how they are impacting on each other
keywords construction, building process, integration
series CADline
last changed 2003/06/02 13:58

_id ddss9426
id ddss9426
authors Duijvestein, Kees
year 1994
title Integrated Design and Sustainable Building
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary In the international student-project "European Environmental Campus 91 TU Delft Dordrecht" 20 students from 13 European countries worked in september 1991, during three weeks on "EcologicalSketches for the Island of Dordrecht". They worked on four different scales: the region isle of Dordt / the district Stadspolders / the neighbourhood I the house and the block. The environmentaltheme's Energy, Water, Traffic & Noise, Landscape & Soil were together with spatial analyses combined with the different scales. This combination was organised following the scheme mentioned below. The characters stand for the students. During the first period they worked in research groups, during the last period more in design groups. For instance: student L works in the beginning with the students B, G and Q in the research group water. In the last period sheworks with K, M, N and 0 in the design group Neighbourhood. Those students worked earlier in the other research-groups and contribute now in the design-group their thematic environmental knowledge. The results were presented to the Dordrecht council, officials and press. In the next project in september and october 1993 we started earlier with the design groups. Ten Dutch and ten "Erasmus" students worked for six weeks on proposals for the Vinex location Wateringenthe Hague. Each morning they worked in the research groups each afternoon in the design groups. The research groups used the EcoDesign Tools, small applications in Excel on Apple Macintoshto quantify the environmental pressure.
series DDSS
last changed 2003/08/07 16:36

_id 218a
authors Ervin, Stephen M.
year 1991
title Intra-Medium and Inter-Media Constraints
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 365-380
summary Designers work with multiple representations in a variety of media to express and explore different kinds of knowledge. The advantages of multi-media in design are well- known, and exemplified by the current interest in 'hyper-media' approaches to knowledge exploration. A principal activity in working between views in one medium (e.g. plan, section and perspective drawings), or between different representations (diagrams, maps, graphs, pictures, e.g.) is extrapolating decisions made in one view or medium over to others, so that some consistency is maintained, and implications can be explored. The former kind of consistency maintenance (intra-medium) is beginning to be well understood techniques for constraint expression., satisfaction and propagation are starting to appear in 'smart CAD' systems. The latter kind of consistency maintenance inter-media.) is different, less well understood, and will require new mechanisms for constraint management and exploration. Experiments, hypotheses, and solutions in this direction will be central to any effort that seeks to explain, emulate or assist the integrative, synthetic reasoning that characterizes environmental design and planning. This paper examines some of the characteristics and advantages of intra and inter-media constraint exploration, describes a prototype "designers workstation" and some experiments in the context of landscape planning and design, and lays out some directions for development of these ideas in future computer aided design systems.
series CAAD Futures
last changed 1999/04/07 12:03

_id fd70
authors Goldman, Glenn and Zdepski, Michael Stephen (Eds.)
year 1991
title Reality and Virtual Reality [Conference Proceedings]
doi https://doi.org/10.52842/conf.acadia.1991
source ACADIA Conference Proceedings / ISBN 1-880250-00-4 / Los Angeles (California - USA) October 1991, 236 p.
summary During the past ten years computers in architecture have evolved from machines used for analytic and numeric calculation, to machines used for generating dynamic images, permitting the creation of photorealistic renderings, and now, in a preliminary way, permitting the simulation of virtual environments. Digital systems have evolved from increasing the speed of human operations, to providing entirely new means for creating, viewing and analyzing data. The following essays illustrate the growing spectrum of computer applications in architecture. They discuss developments in the simulation of future environments on the luminous screen and in virtual space. They investigate new methods and theories for the generation of architectural color, texture, and form. Authors address the complex technical issues of "intelligent" models and their associated analytic contents. There are attempts to categorize and make accessible architects' perceptions of various models of "reality". Much of what is presented foreshadows changes that are taking place in the areas of design theory, building sciences, architectural graphics, and computer research. The work presented is both developmental, evolving from the work done before or in other fields, and unique, exploring new themes and concepts. The application of computer technology to the practice of architecture has had a cross disciplinary effect, as computer algorithms used to generate the "unreal" environments and actors of the motion picture industry are applied to the prediction of buildings and urban landscapes not yet in existence. Buildings and places from history are archeologically "re-constructed" providing digital simulations that enable designers to study that which has previously (or never) existed. Applications of concepts from scientific visualization suggest new methods for understanding the highly interrelated aspects of the architectural sciences: structural systems, environmental control systems, building economics, etc. Simulation systems from the aerospace industry and computer media fields propose new non-physical three-dimensional worlds. Video compositing technology from the television industry and the practice of medicine are now applied to the compositing of existing environments with proposed buildings. Whether based in architectural research or practice, many authors continue to question the development of contemporary computer systems. They seek new interfaces between human and machine, new methods for simulating architectural information digitally, and new ways of conceptualizing the process of architectural design. While the practice of architecture has, of necessity, been primarily concerned with increasing productivity - and automation for improved efficiency, it is clear that university based studies and research continue to go beyond the electronic replication of manual tasks and study issues that can change the processes of architectural design - and ultimately perhaps, the products.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id 1ecb
authors Hallberg, Gun
year 1991
title Theories and Methods in Full-Scale Studies
source Proceedings of the 3rd European Full-Scale Modelling Conference / ISBN 91-7740044-5 / Lund (Sweden) 13-16 September 1990, pp. 34-37
summary By full-scale experiments we are studying functional dimensions and spatial requirements in the planning laboratory. That means, that by working in a place where the spatial dimensions could be altered and the consequences studied, we make trials to arrive at acceptable dimensions. Test subjects and various experimental set-ups enable us to study building function requirements in what we think, a quite fruitful way.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
more http://info.tuwien.ac.at/efa
last changed 2003/08/25 10:12

_id 403a
authors Karstila, K., Björk, B.C. and Hannus, M.
year 1991
title A Conceptual Framework for Design and Construction Information
source The Computer Integrated Future, CIB W78 Seminar. september, 1991. Unnumbered : ill. includes bibliography
summary This paper tries to sketch out a conceptual framework model for design and construction information. This conceptual model is formed by extending the Finnish RATAS building product data model to include also construction activities, resources, costs, organizations, contracts, etc. and relationships between them. The overall conceptual framework model can be used to extract conceptual submodels related to the information needs of particular participants of the construction process. As an example of different views to design and construction information the views of design, cost estimating and production planning discussed in the paper. The framework model can also be used to define the position of traditional classification systems and general databases in the construction information process
keywords construction, product modeling, building, information, design process
series CADline
email
last changed 2003/06/02 14:41

_id 2d77
authors Korte, Michael
year 1991
title CASOB - Simultaneous Surveying and Drawing
doi https://doi.org/10.52842/conf.ecaade.1991.x.t7p
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary Accurate planning and economical building within an existing structure require a complex building analysis based upon detailed scale plans. Work has shown unsatisfactory of measuring tools: (1.) Recording of measurements with meterrule and measuring tape often results in mistakes and wasted time. Since the data is not digitalized the measurements cannot be used by a CAD system. (2.) Commercially available CAD software is made only for new planning but not for planning with an existing structure. Up till now architects who predominantly work with existing structures were not able to take advantage of products in the software- and hardware market which would satisfy their needs. The problems already begin with the search for appropriate tools for the surveying of existing structures and the simplest possible transfer of the data to a CAD System. There is an increased demand for quality surveying of existing structures. In Germany, far more than 60 % of all construction planning is related to existing structures. Due to the special situation in the five new states this percentage will grow significantly. Other countries will find themselves in a similar situation. A large number of precise and analytical surveys of existing structures will be needed in a relative short time. Time pressure and stress factors at construction sites call for quality planning and economical construction which can only be accomplished with reliable and exact surveying of structures. Frustrating experiences in the field have led me to develop systems for the surveying of existing structures. With CASOB (Computer Aided Surveying of Buildings) we have a tool today that simultaneously surveys and creates a CAD compatible drawing.

series eCAADe
last changed 2022/06/07 07:50

_id c65f
authors Littlefair, P.J.
year 1991
title Site Layout Planning for Daylight and Sunlight
source Building Research Establishment Report
summary This guide gives advice on site layout planning to achieve good sunlight and daylight within buildings and adjacent open spaces such as gardens. It includes methods that allow for the calculation of sunlight or daylight levels at 4 different latitudes within the UK and for different times of the year. An additional section discusses the subject of site layout and design for obtaining maximum solar energy. This guide supersedes the original Department of the Environment document Sunlight and Daylight. BRE 209 has sections for the following:- * Light from the Sky. * New development. * Existing Buildings. * Adjoining development land. * Sunlighting. * New development. * Existing Buildings. * Gardens & open spaces. * Passive solar design. * Other issues. * View. * Privacy. * Security. * Access. * Enclosure. * Microclimate. * Solar dazzle. * Appendix A. Indicators to calculate access to sunlight, skylight and solar radiation. * Appendix B. A waldram diagram to calculate vertical sky component. * Appendix C. Interior daylighting recommendations. * Appendix D. Plotting the no-sky line. * Appendix E. Rights to light. * Appendix F. Setting alternative target values for skylight access. * Appendix G. Calculation of sun on the ground. * Appendix H. Definitions.
series report
last changed 2003/04/23 15:14

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 132HOMELOGIN (you are user _anon_410483 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002