CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 4104

_id e336
authors Achten, H., Roelen, W., Boekholt, J.-Th., Turksma, A. and Jessurun, J.
year 1999
title Virtual Reality in the Design Studio: The Eindhoven Perspective
doi https://doi.org/10.52842/conf.ecaade.1999.169
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 169-177
summary Since 1991 Virtual Reality has been used in student projects in the Building Information Technology group. It started as an experimental tool to assess the impact of VR technology in design, using the environment of the associated Calibre Institute. The technology was further developed in Calibre to become an important presentation tool for assessing design variants and final design solutions. However, it was only sporadically used in student projects. A major shift occurred in 1997 with a number of student projects in which various computer technologies including VR were used in the whole of the design process. In 1998, the new Design Systems group started a design studio with the explicit aim to integrate VR in the whole design process. The teaching effort was combined with the research program that investigates VR as a design support environment. This has lead to increasing number of innovative student projects. The paper describes the context and history of VR in Eindhoven and presents the current set-UP of the studio. It discusses the impact of the technology on the design process and outlines pedagogical issues in the studio work.
keywords Virtual Reality, Design Studio, Student Projects
series eCAADe
email
last changed 2022/06/07 07:54

_id 0ab2
authors Amor, R., Hosking, J., Groves, L. and Donn, M.
year 1993
title Design Tool Integration: Model Flexibility for the Building Profession
source Proceedings of Building Systems Automation - Integration, University of Wisconsin-Madison
summary The development of ICAtect, as discussed in the Building Systems Automation and Integration Symposium of 1991, provides a way of integrating simulation tools through a common building model. However, ICAtect is only a small step towards the ultimate goal of total integration and automation of the building design process. In this paper we investigate the next steps on the path toward integration. We examine how models structured to capture the physical attributes of the building, as required by simulation tools, can be used to converse with knowledge-based systems. We consider the types of mappings that occur in the often different views of a building held by these two classes of design tools. This leads us to examine the need for multiple views of a common building model. We then extend our analysis from the views required by simulation and knowledge-based systems, to those required by different segments of the building profession (e.g. architects, engineers, developers, etc.) to converse with such an integrated system. This indicates a need to provide a flexible method of accessing data in the common building model to facilitate use by different building professionals with varying specialities and levels of expertise.
series journal paper
email
last changed 2003/05/15 21:22

_id f9bd
authors Amor, R.W.
year 1991
title ICAtect: Integrating Design Tools for Preliminary Architectural Design
source Wellington, New Zealand: Computer Science Department, Victoria University
summary ICAtect is a knowledge based system that provides an interface between expert systems, simulation packages and CAD systems used for preliminary architectural design. This thesis describes its structure and development.The principal work discussed in this thesis involves the formulation of a method for representing a building. This is developed through an examination of a number of design tools used in architectural design, and the ways in which each of these describe a building.Methods of enabling data to be transferred between design tools are explored. A Common Building Model (CBM), forming the core of the ICAtect system, is developed to represent the design tools knowledge of a building. This model covers the range of knowledge required by a large set of disparate design tools used by architects at the initial design stage.Standard methods of integrating information from the tools were examined, but required augmentation to encompass the unusual constraints found in some of the design tools. The integration of the design tools and the CBM is discussed in detail, with example methods developed for each type of design tool. These example methods provide a successful way of moving information between the different representations. Some problems with mapping data between very different representations were encountered in this process, and the solutions or ideas for remedies are detailed. A model for control and use of ICAtect is developed in the thesis, and the extensions to enable a graphical user interface are discussed.The methods developed in this thesis demonstrate the feasibility of an integrated system of this nature, while the discussion of future work indicates the scope and potential power of ICAtect.
series other
last changed 2003/04/23 15:14

_id 227a
authors Bourdeau, L., Dubois, A.-M. and Poyet, P.
year 1991
title A Common Data Model for Computer Integrated Building
source computer Integrated Future, CIB W78 Seminar. September, 1991. Unnumbered : some ill. includes bibliography
summary The connection of various building performance evaluation tools in a collaborative way is an essential request to develop true CAD systems. It is a basic requirement for the future of integrated information systems for building projects, where data concerning multiple aspects of the project can be exchanged during the different design steps. This paper deals with the on-going research concerning the generation of a common data model in the framework of a European collaborative action, the COMBINE Project, which is supported by the CEC, General Directorate XII for Research Science and Development, within the JOULE programme. The first step of the research concerns the progressive construction of a conceptual model and the paper focuses on the development of this Integrated Data Model (IDM). The paper reports on the definition of the architecture of the IDM. The main issues and the methodology of the IDM development are presented. The IDM development methodology is based on successive steps dealing with the identification of the data and context which are considered by the Design Tool Prototypes (DTP) to be connected through the IDM, the conceptual integration of this knowledge, and the implementation of the model on an appropriate software environment
keywords standards, integration, communication, building, evaluation, modeling
series CADline
last changed 2003/06/02 14:41

_id 0aba
authors Carrara, Gianfranco, Kalay, Yehuda E. and Novembri, Gabriele
year 1991
title Intelligent Systems for Supporting Architectural Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 191-202
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of objectives. The process comprises three distinct operations: (1) definition of the desired set of performance criteria (design goals); (2) production of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to predefined criteria. Difficulties arise in performing each one of the three operations, as well as in combining them into a purposeful, unified process. First, it is difficult to define the desired performance criteria prior to and independently of, the search for an acceptable solution that achieves them, since many aspects of the desired criteria can only be discovered through the search for an acceptable solution. Furthermore, the search for such a solution may well alter the definition of these criteria, as new criteria and incompatibilities between existing criteria are discovered. Second the generation of a design solution is a task demanding creativity, judgement, and experience, all three of which are difficult to define, teach, and otherwise capture in some explicit manner. Third, it is difficult to evaluate the expected performances of alternative design solutions and to compare them to the predefined criteria. Design parameters interact with each other in complex ways, which cause effects and side effects. Predicting the expected performances of even primary effects involves extrapolating non-physical characteristics from the proposed solution's physical organization, a process which relies on a host of assumptions (physical, sociological, psychological, etc.) and hence is seldom a reliable measure. A fourth problem arises from the need to coordinate the three operations in an iterative process that will converge on an acceptable design solution in reasonable time. Computational techniques that were developed in the past to assist designers in performing the above mentioned activities have shown limitations and proved inadequate to a large degree. In this paper we discuss the work in progress aimed at developing an intelligent support system for building and architectural design, which will be able to play a decisive role in the definition, evaluation and putting into effect of the design choices.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id c81f
authors Chandansing, R.A. and Vos, C.J.
year 1991
title IT - Use in Reinforced Concrete Detailing : The Current State, a Forecasting-Model, and a Future-Concept
source The Computer Integrated Future, CIB W78 Seminar. september, 1991. Unnumbered : ill., tables. includes bibliography
summary This paper describes the current state in the Netherlands, concerning the levels of CAD-systems used, their diffusion in practice and constraints and effects of their use for reinforced concrete detailing. An initial forecasting model for the further development of IT in the concrete construction industry and a future-concept for IT-use in reinforced concrete detailing are presented as well
keywords CAD, structures, engineering, building, practice, systems, detailing, construction
series CADline
last changed 2003/06/02 13:58

_id 00bc
authors Chen, Chen-Cheng
year 1991
title Analogical and inductive reasoning in architectural design computation
source Swiss Federal Institute of Technology, ETH Zurich
summary Computer-aided architectural design technology is now a crucial tool of modern architecture, from the viewpoint of higher productivity and better products. As technologies advance, the amount of information and knowledge that designers can apply to a project is constantly increasing. This requires development of more advanced knowledge acquisition technology to achieve higher functionality, flexibility, and efficient performance of the knowledge-based design systems in architecture. Human designers do not solve design problems from scratch, they utilize previous problem solving episodes for similar design problems as a basis for developmental decision making. This observation leads to the starting point of this research: First, we can utilize past experience to solve a new problem by detecting the similarities between the past problem and the new problem. Second, we can identify constraints and general rules implied by those similarities and the similar parts of similar situations. That is, by applying analogical and inductive reasoning we can advance the problem solving process. The main objective of this research is to establish the theory that (1) design process can be viewed as a learning process, (2) design innovation involves analogical and inductive reasoning, and (3) learning from a designer's previous design cases is necessary for the development of the next generation in a knowledge-based design system. This thesis draws upon results from several disciplines, including knowledge representation and machine learning in artificial intelligence, and knowledge acquisition in knowledge engineering, to investigate a potential design environment for future developments in computer-aided architectural design. This thesis contains three parts which correspond to the different steps of this research. Part I, discusses three different ways - problem solving, learning and creativity - of generating new thoughts based on old ones. In Part II, the problem statement of the thesis is made and a conceptual model of analogical and inductive reasoning in design is proposed. In Part III, three different methods of building design systems for solving an architectural design problem are compared rule-based, example-based, and case-based. Finally, conclusions are made based on the current implementation of the work, and possible future extensions of this research are described. It reveals new approaches for knowledge acquisition, machine learning, and knowledge-based design systems in architecture.
series thesis:PhD
email
last changed 2003/05/10 05:42

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ddss2006-hb-487
id DDSS2006-HB-487
authors Chien-Tung Chen and Teng-Wen Chang
year 2006
title 1:1 Spatially Augmented Reality Design Environment
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Innovations in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Springer, ISBN-10: 1-4020-5059-3, ISBN-13: 978-1-4020-5059-6, p. 487-499
summary With the development of ubiquitous computing (Weiser, 1991), what will become of the traditional media such as pen and sketches, especially in the design education environment? Or what will they be transformed into? In this research, we focus on the interior design process with a particular type of media-1:1 spatially augmented reality design environment (SARDE). In this research, we tried to implement SARDE and have a scenario experiment to check how designers interact with such design media. Furthermore, through this research, we have come to know more about how designers use design media to represent their design dream.
keywords Design & Decision Support Systems, Spatially Augmented Reality, Architecture Education, and Computer Visualization
series DDSS
last changed 2006/08/29 12:55

_id 2f73
authors Coad, P.and Yourdon, E.
year 1991
title Object Oriented Analysis
source 2nd. edition, Englewood Cliffs, NJ., Yourdon Press/ Prentice Hall
summary A step-by-step approach to: defining and communicating system requirements; understanding the application domain in which the user operates; integrating the data and process models; analyzing and specifying systems using self-contained partitioning; gaining leverage through explicit representation of commonality; applying a consistent underlying representation for analysis; and accommodating families of systems.
series other
last changed 2003/04/23 15:14

_id 9c37
id 9c37
authors Coates P, Derix C, Krakhofer S and Karanouh A
year 2005
title Generating Architectural Spatial Configurations: two approaches using voronoi tessellations and particle systems
source Proceedings of the Generative Arts conference, Milan, 2005
summary It was one of the primary goals of the original Master’s programme in Computing and design at UEL in 1991 that we should work towards defining morphological generative processes for the conceptual design of architectural objects. These two papers offer a range of techniques which have been developed by two of this years MSc students (04-05) which show that we are getting close to this. The approaches range from computational geometric approaches (3d parametrics and voronoi diagrams) to emergent spatial organisation using agent based modelling. In many cases the resultant geometry is defined to the point where it can be transferred to advanced evaluation and fabrication systems, thus making this work sufficiently developed to begin to form a useful part in practical design processes.
keywords morphology, computational geometry, particle systems, physical simulation, voronoi diagrams
series other
type normal paper
email
more http://www.generativeart.com/
last changed 2012/09/20 18:39

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id cdb1
authors Cornick, T., Noble, B. and Hallahan, C.
year 1991
title The Limitations of Current Working Practices on the Development of Computer Integrating Modelling in Construction
source computer Integrated Future, CIB W78 Seminar. Calibre, The Netherlands: Eindhoven University of Technology, september, 1991. Unnumbered. includes bibliography
summary For the construction Industry to improve its processes through the application computer-based systems, traditional working practices must first change to support the integrated control of design and construction. Current manual methods of practice accept the limitations of man to process a wide range of building performance and production information simultaneously. However when these limitations are removed, through the applications of computer systems, the constraints of manual methods need no longer apply. The first generation of computer applications to the Construction Industry merely modelled the divided and sequential processes of manual methods i.e. drafting, specification writing, engineering and quantity calculations, estimating, billing, material ordering data-bases and activity planning. Use of these systems raises expectations that connections within the computer between the processes modelled can actually be made and faster and more integrated information processing be achieved. 'Linking' software is then developed. The end result of this approach was that users were able to produce information faster, present it in an impressive manner but, in reality, no perceived improvement in actual building performance, production economy or efficiency was realized. A current government sponsored Teaching Company Programme with a UK design and build company is addressing the problem of how real economic benefit can be realized through improvement in, amongst other things, their existing computer applications. This work is being carried out by both considering an academic conceptual model of how 'designing for production' can be achieved in computer applications and what is immediately realizable in practice by modelling the integration of a limited number of knowledge domains to which computers are already being applied. i.e. billing from design, estimating and buying. This paper describes each area of work and how they are impacting on each other
keywords construction, building process, integration
series CADline
last changed 2003/06/02 13:58

_id 2e56
authors Coyne, Robert Francis
year 1991
title ABLOOS : an evolving hierarchical design framework
source Carnegie Mellon University, Department of Architecture
summary The research reported in this thesis develops an approach toward a more effective use of hierarchical decomposition in computational design systems. The approach is based on providing designers a convenient interactive means to specify and experiment with the decompositional structure of design problems, rather than having decompositions pre-specified and encoded in the design system. Following this approach, a flexible decomposition capability is combined with an underlying design method to form the basis for an extensible and evolving framework for cooperative (humdcomputer) design. As a testbed for this approach, the ABLOOS framework for layout design is designed and constructed as a hierarchical extension of LOOS.’The framework enables a layout task to be hierarchically decomposed, and for the LOOS methodology to be applied recursively to layout subtasks at appropriate levels of abstraction within the hierarchy; layout solutions for the subtasks are then recomposed to achieve an overall solution, Research results thus far are promising: ABLOOS has produced high quality solutions for a class of industrial layout design tasks (an analog power board layout with 60 components that have multiple complex constraints on their placement); the adaptability of the framework across domains and disciplines has been demonstrated; and, further development of ABLOOS is underway including its extension to layouts in 2 1/2D space and truly 3D arrangements. The contribution of this work is in demonstrating an effective, flexible and extensible capability for hierarchical decomposition in design. It has also produced a more comprehensive layout system that can serve as a foundation for the further investigation of hierarchical decomposition in a variety of design domains.
series thesis:PhD
last changed 2003/02/12 22:37

_id eaca
authors Davis, L. (ed.)
year 1991
title Handbook of genetic algorithms
source Van Nostrand Reinhold, New York
summary This book sets out to explain what genetic algorithms are and how they can be used to solve real-world problems. The first objective is tackled by the editor, Lawrence Davis. The remainder of the book is turned over to a series of short review articles by a collection of authors, each explaining how genetic algorithms have been applied to problems in their own specific area of interest. The first part of the book introduces the fundamental genetic algorithm (GA), explains how it has traditionally been designed and implemented and shows how the basic technique may be applied to a very simple numerical optimisation problem. The basic technique is then altered and refined in a number of ways, with the effects of each change being measured by comparison against the performance of the original. In this way, the reader is provided with an uncluttered introduction to the technique and learns to appreciate why certain variants of GA have become more popular than others in the scientific community. Davis stresses that the choice of a suitable representation for the problem in hand is a key step in applying the GA, as is the selection of suitable techniques for generating new solutions from old. He is refreshingly open in admitting that much of the business of adapting the GA to specific problems owes more to art than to science. It is nice to see the terminology associated with this subject explained, with the author stressing that much of the field is still an active area of research. Few assumptions are made about the reader's mathematical background. The second part of the book contains thirteen cameo descriptions of how genetic algorithmic techniques have been, or are being, applied to a diverse range of problems. Thus, one group of authors explains how the technique has been used for modelling arms races between neighbouring countries (a non- linear, dynamical system), while another group describes its use in deciding design trade-offs for military aircraft. My own favourite is a rather charming account of how the GA was applied to a series of scheduling problems. Having attempted something of this sort with Simulated Annealing, I found it refreshing to see the authors highlighting some of the problems that they had encountered, rather than sweeping them under the carpet as is so often done in the scientific literature. The editor points out that there are standard GA tools available for either play or serious development work. Two of these (GENESIS and OOGA) are described in a short, third part of the book. As is so often the case nowadays, it is possible to obtain a diskette containing both systems by sending your Visa card details (or $60) to an address in the USA.
series other
last changed 2003/04/23 15:14

_id 2c12
authors De Vries, Bauke
year 1991
title The Minimal Approach
source Computer Integrated Future, CIB W78 Seminar. September, 1991
summary Unnumbered. A distinction is made between data-exchange within a system and between systems. For the latter a datamodel is defined with a clear limited domain called: the minimal model. Moreover a procedure is shown for exchanging data using the minimal model
keywords communication, standards, modeling, construction
series CADline
last changed 1999/02/12 15:08

_id 2e03
authors Diederiks, H.J. and van Staveren, R.J.
year 1991
title Dynamic Information System for Modelling of Design Processes
source Computer Integrated Future, CIB W78 Seminar. september, 1991
summary Unnumbered : ill. DINAMO is a Dynamic Information System for Modelling of Design Processes. It is intended for use along with product models, data management systems and existing applications. In DINAMO a programming user can define processes. These processes are represented by graphs. The graphs are characterized by nodes and relations between nodes. Each node in a graph represents a task, and each relation can be restricted to conditions. So the way in which a process is actually being performed, that is, the actual path to be evaluated through the graph, can depend on certain conditions. Processes and functions (=software modules) are available to the user as tasks. A consuming user can activate tasks; the DINAMO system regulates the dispatch of the tasks, conform the process and function definitions. Tasks are collected on sheets; sheets are collected in a task box. A task box can be regarded as a certain environment, determined by the programming user. A consuming user can choose between the environments which are available at that moment. With the DINAMO system software and process definitions can be re-used in a simple way
keywords design process, modeling, graphs, information, relations, software
series CADline
last changed 2003/06/02 13:58

_id 2b39
authors Duarte, Rovenir Bertola
year 2000
title O Uso do Computador no Ensino de Projeto: (por) uma Avaliação (Or Use do Computer nonEnsino de Project: (by) uma Avaliaction)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 361-363
summary The computer approaches to the discipline of project near the fifties, with the idea that all the systems and processes can be object of mathematical simulation. However in the last times, the computers were used more in drawings than in the projects, “CADrafting is uncommon (...) and CADesign is almost nonexistent...” (STEVEN, 1991). At the same time it happened a surprising approach with to architecture schools. It stimulated more methodological approaches, and the subject moved, placing the computer as element transformer. The computers have really been changing the production and generation of documents, but the question is if it has been altering the method or process of elaboration of ideas. After so much search in direction to the computers it is time of thinking what was gotten with them and the problems that accompanies him. The work search to discuss the subjects where the computer influences in the learning and the students’ development.
series SIGRADI
email
last changed 2016/03/10 09:50

_id ddss9426
id ddss9426
authors Duijvestein, Kees
year 1994
title Integrated Design and Sustainable Building
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary In the international student-project "European Environmental Campus 91 TU Delft Dordrecht" 20 students from 13 European countries worked in september 1991, during three weeks on "EcologicalSketches for the Island of Dordrecht". They worked on four different scales: the region isle of Dordt / the district Stadspolders / the neighbourhood I the house and the block. The environmentaltheme's Energy, Water, Traffic & Noise, Landscape & Soil were together with spatial analyses combined with the different scales. This combination was organised following the scheme mentioned below. The characters stand for the students. During the first period they worked in research groups, during the last period more in design groups. For instance: student L works in the beginning with the students B, G and Q in the research group water. In the last period sheworks with K, M, N and 0 in the design group Neighbourhood. Those students worked earlier in the other research-groups and contribute now in the design-group their thematic environmental knowledge. The results were presented to the Dordrecht council, officials and press. In the next project in september and october 1993 we started earlier with the design groups. Ten Dutch and ten "Erasmus" students worked for six weeks on proposals for the Vinex location Wateringenthe Hague. Each morning they worked in the research groups each afternoon in the design groups. The research groups used the EcoDesign Tools, small applications in Excel on Apple Macintoshto quantify the environmental pressure.
series DDSS
last changed 2003/08/07 16:36

_id 6f3e
authors Eastman, Charles M. and Lang, Jurg
year 1991
title Experiments in Architectural Design Development Using CAD
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 49-64
summary The need to explore development techniques in computer-based design is reviewed. Some premises are given for design development using computers, including integrating multiple representations, the use of object-based modeling and the importance of visual analysis and 3-D modeling. We then present techniques used in a UCLA design studio that explored methods of computer-based design development based on these premises. The two main methods used were hierarchical object structures and multi-representational coordination. They were applied using conventional CAD systems. Some lessons learned from this class are reviewed.
series CAAD Futures
email
last changed 2003/05/16 20:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 205HOMELOGIN (you are user _anon_407996 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002