CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 17544

_id caadria2012_104
id caadria2012_104
authors Lu, Kai-Tzu; Hsin-Hou Lin, Ting-Han Chen and Chi-Fa Fan
year 2012
title Finding the vital houses information using immersive multi-touch interface
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 379–386
doi https://doi.org/10.52842/conf.caadria.2012.379
summary This paper discusses the creation of natural behaviours for multi-touch house information (MTHI) system using Frustrated Total Internal Reflection (FTIR) technology. After analysing how APPLE and Microsoft defined their touch behaviours we discovered that not enough were responding of commercial application. Therefore using basic touching functions as reference we developed some new gestures and GUI for the real estate market. This system was launched to assist real estate salesmen in Taiwan.
keywords House information; navigation; multi-touch; user interface
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2020_062
id caadria2020_062
authors Lu, Ming and Yuan, Philip F.
year 2020
title A New Algorithm to Get Optimized Target Plane on 6-Axis Robot For Fabrication
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 393-402
doi https://doi.org/10.52842/conf.caadria.2020.2.393
summary In usual robotic fabrication by 6 axis industrial robot such as KUKA ,ABB and other brands ,the usual robot's 4th ,5th and 6th axis is exactly converge in one point .When this type robot (pieper) is doing movement commands ,setting the degree of 4th axis close to zero is an ideal condition for motion stability ,especially for putting device which connect to tool head on 4th axis arm part.In plastic melting or others print which not cares the rotation angle about the printing direction(the printing direction means the effector's output normal direction vector, KUKA is X axis,ABB is Z axis) ,the optimization of 4th axis technology not only makes printing stable but also makes better quality for printing.The paper introduces a new algorithm to get the analytics solution.The algorithm is clear explained by mathematics and geometry ways. At the end of paper, a grasshopper custom plugin is provided ,which contains this new algorithm ,with this plugin, people can get the optimized target path plane more easily.
keywords 3D printing; brick fabrication; robotic; optimization algorithm; grasshopper plugin
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2021_014
id ecaade2021_014
authors Lu, Ming, Zhou, Xinjie, Zhou, Yifan, Zhang, Liming, Zhu, Weiran and Yuan, Philip F.
year 2021
title Research on Realtime Communication and Control Workflow with Vision Feedback Integrated in Robotic Fabrication
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 145-152
doi https://doi.org/10.52842/conf.ecaade.2021.2.145
summary On-site construction is one of the main research directions of robot construction. Due to the complex and everchanging construction environment on the site, traditional offline programming and simple conditional programming cannot meet the needs of robot on-site construction at all. Realtime adjustment of the robot's operating program for the real-time situation in the field is the appropriate solution. Therefore, the real-time communication and control of robots has become a key issue for robot on-site construction. This article discusses in turn the way of robot offline program control through EthernetKRL and grasshopper. A remote real-time communication and control method for an on-site construction robot is studied, and the application of the method in the on-site construction process of an actual robot is introduced with the Wuzhen coffee kiosk project as an example. Based on the above methods, remote real-time monitoring of the construction robot on site can be realized, which provides a reference for the actual engineering application of the construction robot on site.
keywords on-site; robot; fabrication; communication; sensor
series eCAADe
type normal paper
email
last changed 2022/06/07 07:59

_id caadria2021_027
id caadria2021_027
authors Lu, Ming, Zhou, Yifan, Wang, Xiang and Yuan, Philip F.
year 2021
title An optimization method for large-scale 3D printing - Generate external axis motion using Fourier series
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 683-692
doi https://doi.org/10.52842/conf.caadria.2021.1.683
summary With the increase in labor costs, more and more robot constructions appear in building construction and spatial structure fabrication. There are many robots working on large-scale objects. When the reach range of the robot cannot meet the requirements, so an external axis is needed. The external axis is usually a linear motion device, which can significantly increase the operating range of the robotic arm. In actual construction, it is also widely used. This article introduces a 3d printing coffee bar project. Because this project is of a large scale and needs to be printed at one time, the XYZ external axis was used in this project to complete the task. Inspired by this project, this article study several methods of optimizing the motion of external axes in large-scale construction. Finally, we chose to use the Fourier series as the most suitable method to optimize the printing path and programed this method as a component of FUROBOT for more convenient use. This article explains the principle of this method in detail. Finally, this article uses a 3D printing example to illustrate the precautions in actual use.
keywords robotics; motion optimize; Fourier series; 3D printing; external axis
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2024_49
id caadria2024_49
authors Lu, Owen Zhiyuan, Meng, Leo Lin, Ramos Jaime, Cristina and Haeusler, M. Hank
year 2024
title Clicking is All You Need: Implementing Wave Function Collapse in Early-Stage Design for Manufacturing and Assembly Projects
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 1, pp. 303–312
doi https://doi.org/10.52842/conf.caadria.2024.1.303
summary Wave Function Collapse (WFC) is a constraint-solving algorithm inspired by the quantum mechanics process. However, few attempts have been made in the Architectural, Engineering, and Construction (AEC) industry. WFC literature indicates that it is constrained by its low-fidelity, stochastic process, making it hard to apply in real-world designs, hence its potential lack of application in the AEC sector. Yet this research sees an opportunity in Design for Manufacturing and Assembly (DfMA). Unlike typical architectural projects, DfMA is often more constrained due to modularity. How the DfMA modularity benefits and constricts the spatial planning process, and if such a priori modular definition better informs the design process, is yet to be explored. Thus, how can the highly constrained spatial rules in DfMA architectural design be used in implementing WFC for higher-fidelity fast design concept prototyping? During the research, a prototype was experimented with and implemented while demonstrating several advantages jointly inherited from both the DfMA and WFC, namely (a) high-resolution rapid prototyping with little user intervention for early-stage DfMA and (b) further building material and topological analytics, were enabled for decision support. Hence, this paper addressed the rarely discussed early-stage design problems in the DfMA lifecycle and contributed to a real-world architectural project-based implementation of WFC integrated into an automated computer-aided architectural design workflow inspired by DfMA’s modularity that aligns with Sustainable Development Goals (SDGs) of 11 Sustainable Cities and Communities and 12 Responsible Consumption and Production.
keywords Wave Function Collapse (WFC), Decision Support Tool, Computational Design, Design for Manufacturing and Assembly (DfMA), Modular Building and Construction.
series CAADRIA
email
last changed 2024/11/17 22:05

_id eaea2015_t1_paper06
id eaea2015_t1_paper06
authors Lu, Shaoming
year 2015
title Port Heritage: Urban Memory of Harbor Cities (Case Study of Shanghai)
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.71-81
summary Through literary review on historical ports from the 1st Opium War to 1949, this paper mainly focuses on the elements and value of modern ports along the Huangpu River from Baoshan to Minhang. These ports with historical events, places and objects are viewed as urban heritage to arise people’s attention to this kind of memory place during the process of urban transformation. Port heritage with unique material relics and immaterial information makes a great contribution to recalling the massive memory and making identity of the port city, which should be preserved definitely.
keywords port heritage; urban memory
series EAEA
email
last changed 2016/04/22 11:52

_id caadria2018_046
id caadria2018_046
authors Lu, Siliang and Cochran Hameen, Erica
year 2018
title Integrated IR Vision Sensor for Online Clothing Insulation Measurement
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 565-573
doi https://doi.org/10.52842/conf.caadria.2018.1.565
summary As one of the most important building systems, HVAC plays a key role in creating a comfortable thermal environment. Predicted Mean Vote (PMV), an index that predicts the mean value of the votes of a large group of persons on the thermal sensation scale, has been adopted to evaluate the built environment. Compared to environmental factors, clothing insulation can be much harder to measure in the field. The existing research on real-time clothing insulation measurement mainly focuses on expensive infrared thermography (IR) cameras. Therefore, to ensure cost-effectiveness, the paper has proposed a solution consisting of a normal camera, IR and air temperature sensors and Arduino Nanos to measure clothing insulation in real-time. Moreover, the algorithm includes the initialization from clothing classification with pre-trained neural network and optimization of the clothing insulation calculation. A total of 8 tests have been conducted with garments for spring/fall, summer and winter. The current results have shown the accuracy of T-shirt classification can reach over 90%. Moreover, compared with the results with IR cameras and reference values, the accuracies of the proposed sensing system vary with different clothing types. Research shall be further conducted and be applied into the dynamic PMV-based HVAC control system.
keywords clothing insulation; skin temperature; clothing classification; IR temperature sensor; Optimization
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2017_104
id caadria2017_104
authors Lu, Xiao, Dounas, Theodoros, Spaeth, Benjamin, Bissoonauth, Chitraj and Galobardes, Isaac
year 2017
title Robotic Simulation of Textile as Concrete Reinforcement and Formwork
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 863-872
doi https://doi.org/10.52842/conf.caadria.2017.863
summary New possibilities of concrete constructions in architecture, the traditional formwork can be gradually replaced by the use of flexible textile. At the same time textile reinforcement combined with fabric formwork, introduces an innovative integrated solution in the fabrication of concrete. Based on a simple understanding of the textile weaving and knitting techniques, this project concentrates on the architectural production and the structural optimization of the textile as both concrete reinforcement and formwork. Furthermore, we present a robotic simulation of the process that develops using a series of computational experiments to research the sequence of weaving and/or knitting. Through the computational process and the design simulations, the research is firmly rooted in analog and digital exploration of material and its implementation in architecture, with particular emphasis on the convergence of robotics and computation. Note that the paper deals mainly with the software and weaving simulation as part of a larger research project, without dealing with the production of physical artefacts.
keywords robotic weaving; textile-reinforcement; parametric design; lightweight structure; textile-reinforced concrete
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2022_302
id ecaade2022_302
authors Lu, Xin, Meng, Zeyuan, Rodriguez, Alvaro Lopez and Pantic, Igor
year 2022
title Reusable Augmented Concrete Casting System - Accessible method for formwork manufacturing through holographic guidance
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 371–380
doi https://doi.org/10.52842/conf.ecaade.2022.1.371
summary Reinforced concrete has been one of the essential materials for modern architecture for the last hundred years. Its use is entirely global, having been adopted by all cultures and styles since its invention in the late 19th century. Although its value is excellent due to its low cost, durability and adaptability, its environmental impact is significant, being, in fact, one of the most polluting industries in the world (Babor et al. 2009). This experimental project will research a more sustainable use of concrete, exploring a new form of reusable concrete formwork that will ideally reduce the CO2 footprint by removing wood waste in the casting process and replacing it with adaptable metal components. The modular part-based system for the concrete casting also attempts to simplify one of the current complexities for concrete construction, the Skilled-Labour shortage. (Yusoff et al. 2021). To mitigate this problem, the project also proposes using an Augmented Assembly logic for the casting parts to guide the ensemble and dismantle the formwork through an optimised algorithmic logic. The use of Augmented Reality as a replacement for traditional paper instructions will facilitate access to more workers to this construction art and potentially improve access to optimised use of concrete in developing communities with restricted building technological resources.
keywords Mixed Reality, Distributed Manufacturing, Augmented Manufacturing, Sustainability, Computational Design, Concrete Casting
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2020_257
id caadria2020_257
authors Lu, Yao, Birol, Eda Begum, Johnson, Colby, Hernandez, Christopher and Sabin, Jenny
year 2020
title A Method for Load-responsive Inhomogeneity and Anisotropy in 3D Lattice Generation Based on Ellipsoid Packing
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 395-404
doi https://doi.org/10.52842/conf.caadria.2020.1.395
summary 3D lattice structures are gaining widespread application in multiple design fields. While the number of projects that utilize load-responsive inhomogeneous and anisotropic 3D lattices in design applications increase, accessible and effective algorithmic generation methodologies remain lacking. This paper addresses this gap by introducing a novel computational method for controlled load-responsive inhomogeneity and anisotropy in 3D lattice generation. The presented methods employ a responsive Ellipsoid Packing algorithm informed by the global tensor field of the packing geometry, followed by a Kissing Ellipsoids algorithm to generate the lattice. Load specific anisotropy and inhomogeneity in the ellipsoid packing process is achieved in response to the magnitude and directionality values of the global tensor field and specialized responsive lattices are easily generated. The proposed Ellipsoid Packing workflow is compared to various common lattice generation algorithms. Results show improvement in mechanical performance.
keywords 3D lattice; ellipsoid packing; bio-inspired; algorithmic design; ceramic brick
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia22pr_166
id acadia22pr_166
authors Lu, Yao; Seyedahmadian, Alireza; Chhadeh, Philipp Amir; Cregan, Matthew; Bolhassani, Mohammad; Schneider, Jens; Yost, Joseph Robert; Brennan, Gareth; Akbarzadeh, Masoud
year 2022
title Tortuca: An Ultra-Thin Funicular Hollow Glass Bridge
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 166-171.
summary Designed with Polyhedral Graphic Statics (PGS), a geometry-based structural form-finding method, Tortuca presents an efficient and innovative structural system constructed by the dry assembly of thirteen hollow glass units (HGU). It also proposes a new language for glass that is carefully treated, structurally informed, fabrication-aware, and environmentally responsible. 
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id caadria2020_164
id caadria2020_164
authors Lu, Yi-Heng, Wang, Shih-Yuan, Sheng, Yu-Ting, Lin, Che-Wei, Pang, Yu-Hsuan and Hung, Wei-Tse
year 2020
title Transient Materialization – Robotic Metal Curving
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 423-432
doi https://doi.org/10.52842/conf.caadria.2020.2.423
summary This paper introduces the notion of transient materialization to investigate a novel approach of robotic fabrication. Transient materialization explores a new logic of materialization that takes the advantage of differentiated material states to generate form at a particular moment through computation and fabrication technologies. Specifically, this design research explains a unique design and fabrication process, opening up a new method of materializing architectural form that emerges from the interweaving of data, the material capacity (plastic deformation), timing, and machine capacity. Hence, to examine this research direction, this paper conducts an experimental project, Robotic Metal Curving, through hands-on material experiments, as well as the development of algorithms, robot motion, and prototyping machines. This experiment utilizes an induction heating technique in cooperation with a six-axis industrial robotic arm and fabrication equipment used to shape each metal rod into a three-dimensional curve at a transient moment. In addition, the project focuses not only on developing a robotic metal curving system but also apply this technique in large scale by fabricating a wire-frame structure.
keywords Robotic Fabrication; Digital Fabrication; Metal Bending
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2021_196
id caadria2021_196
authors Lu, Yueheng, Tian, Runjia, Li, Ao, Wang, Xiaoshi and Jose Luis, Garcia del Castillo Lopez
year 2021
title CubiGraph5K - Organizational Graph Generation for Structured Architectural Floor Plan Dataset
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 81-90
doi https://doi.org/10.52842/conf.caadria.2021.1.081
summary In this paper, a novel synthetic workflow is presented for procedural generation of room relation graphs of floor plans from structured architectural datasets. Different from classical floor plan generation models, which are based on strong heuristics or low-level pixel operations, our method relies on parsing vectorized floor plans to generate their intended organizational graph for further graph-based deep learning. This research work presents the schema for the organizational graphs, describes the generation algorithms, and analyzes its time/space complexity. As a demonstration, a new dataset called CubiGraph5K is presented. This dataset is a collection of graph representations generated by the proposed algorithms, using the floor plans in the popular CubiCasa5K dataset as inputs. The aim of this contribution is to provide a matching dataset that could be used to train neural networks on enhanced floor plan parsing, analysis and generation in future research.
keywords Graph Theory; Algorithm; Architecture Design Dataset; Organizational Graph
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2016_539
id caadria2016_539
authors Lublasser, E.; J. Braumann, D. Goldbach and S. Brell-Cokcan
year 2016
title Robotic Forming: Rapidly Generating 3D Forms and Structures through Incremental Forming
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 539-548
doi https://doi.org/10.52842/conf.caadria.2016.539
summary The past years have seen significant developments in the area of robotic design interfaces. Building upon visual programming environments, these interfaces now allow the creative industry to de- fine even complex fabrication processes in an easy, accessible way, while providing instant, production-immanent feedback. However, while these software tools greatly speed up the programming of robot- ic arms, many processes are still inherently slow: Subtractive process- es need to remove a large amount of material with comparably small tools, while additive processes are limited by the speed of the extruder and the properties of the extruded material. In this research we present a new method for incrementally shaping transparent polymer materi- als with a robotic arm, without requiring heat or dies for deep- drawing, thus allowing us to rapidly fabricate individual panels within a minimum of time.
keywords Incremental forming; robotic fabrication; visual programming
series CAADRIA
email
last changed 2022/06/07 07:59

_id ddss2006-pb-235
id DDSS2006-PB-235
authors Luca Caneparo, Francesco Guerra, and Elena Masala
year 2006
title UrbanLab - Generative platform for urban and regional design
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) 2006, Progress in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN-10: 90-386-1756-9, ISBN-13: 978-90-386-1756-5, p. 235-251
summary UrbanLab is a computer system supporting urban and regional design. The papers outlines two leading aspects of this large research project, aimed respectively to make explicit the dynamic of the design in its time and geographic dimensions, and to interactively represent the interplay of some, explicitly, recognised factors, for instance the role of a multitude of different (local) actors in the design process. UrbanLab has been applied to several projects at different scales. We consider the applications to dynamically and interactively generating models of an Alpine valley. The modelling in the spatial and temporal dimensions provided us with the elements to study the evolution over the next twenty years.
keywords Generative modelling, Participatory design, DSS, GIS, Software agent, Urban design, Regional design
series DDSS
last changed 2006/08/29 12:55

_id ddssup9615
id ddssup9615
authors Lucardie, L., de Gelder, J. and Duursma, C.
year 1996
title Matching the Knowledge Needs of Trade and Industry: Advanced and Operational Knowledge Based Systems
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary Complex tasks that are being performed in trade and industry such as diagnosis, engineering and planning, increasingly require rapid and easy access to large amounts of complicated knowledge. To cope with these demands on trade and industry, advanced automated support for managing knowledge seems to be needed. Knowledge based systems are claimed to match these needs. However, to deal with the vast volume and complexity of knowledge through knowledge based systems, preconditions at three computer systems levels should be fulfilled. At the first level, called the knowledge level, the development of knowledge based systems requires a well-elaborated theory of the nature of knowledge that helps to get a clear and consistent definition of knowledge. By providing guidelines for selecting and developing methodologies and for organising the mathematical functions underlying knowledge representation formalisms, such a definition significantly advances the process of knowledge engineering. Here, we present the theory of functional object-types as a theory of the nature of knowledge. At the second level, called the symbol level, the representation formalisms used must be compatible with the chosen theory of the nature of knowledge. The representation formalisms also have to be interpretable as propositions representing knowledge, so that their knowledge level import can be assessed. Furthermore, knowledge representation formalisms have to play a causal role in the intelligent behaviour of the knowledge based system. At the third level, called the systems level, a knowledge based system should be equipped with facilities that enable an effective management of the representation formalisms used. Yet other system facilities are needed to allow the knowledge base to communicate with existing computer systems used in the daily practice of trade and industry, for instance Database Management Systems, Geographical Information Systems and Computer Aided Design Systems. It should be taken into account that these systems may run in different networks and on different operating systems. A real-world knowledge based system that operates in the field of soil contamination exemplifies the development of an advanced and operational knowledge-based system that complies with the preconditions at each computer systems level.
series DDSS
last changed 2003/08/07 16:36

_id 8573
authors Lucardie, L., De Gelder, J. and Huijsing, A.
year 1995
title The Advanced Knowledge Transfer System
source Sixth International Conference on Computer-Aided Architectural Design Futures [ISBN 9971-62-423-0] Singapore, 24-26 September 1995, pp. 163-171
summary The joint application of decision tables and Prolog seems to meet all the necessary requirements to be met by a language or modelling knowledge. Despite the high complementarity of decision tables and Prolog, it appears that they still yield a language with certain drawbacks. The Advanced Knowledge Transfer System (AKTS) has been developed to take advantage of this complementarity and simultaneously eliminate these drawbacks. To show the capabilities of AKT three knowledge-based systems in the building and construction sector are described which recently have been developed using AKTS.
keywords Knowledge-Based Systems, Modelling Language, Decision Tables, Prolog
series CAAD Futures
last changed 1999/08/03 17:16

_id ddss9463
id ddss9463
authors Lucardie, Larry
year 1994
title A Functional Framework For Conceptual Modelling
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary A conceptual model is not only indispensable for the design and implementation of knowledge based systems, but also for their validation, modification, maintenance and enhancement. Experience indicates, however, that in many cases reality is not well reflected in a full-fledged conceptual model. What is systematically lacking in the prevailing conceptualization methods is a well-developed theory of knowledge that underlies conceptualization methods: a theory that precedes the process of forming meaningful classifications and that precedes the specification of a conceptual model. To date, conceptualization methods are based on the probabilistic assumption that, in essence, all conditions necessary for creating a classification, are provided initially and can easily be revealed by utilizing mathematical measures of similarity. Another frequently occurring prototypical assumption is that for creating a classification, necessary conditions are sufficient. Furthermore, it is assumed that the categories of conditions are a priori fixed and unconditional. That conceptualizing takes place without any explicit background knowledge about goals of classifications and without contextual influences and that categorizations have an unconditional status are not viewed as problems. In contrast to these approaches, the functional view states that relevant descriptive attributes are not necessarily a priori given but should be acquired through knowledge about goals of classifications and about contexts. It is also asserted that an explicit concern for necessary conditions will not suffice for capturing the dynamics of reality. Furthermore, the functional view puts forward that a goal- and context-oriented strategy leads to the reconstruction of new attributes and categorizations with a dynamic status. The aim of this paper is to discuss the theoretic and practical merits of the functional view compared to the probabilistic and prototype approaches. Conceptual models developed in the Computer Integrated Manufacturing-Project will serve as illustrations for the main ideas.
series DDSS
email
last changed 2003/08/07 16:36

_id lasg_whitepapers_2016_050
id lasg_whitepapers_2016_050
authors Lucinda Presley, Becky Carrol, Rob Gorbet
year 2016
title Promoting Creative and Innovative Thinking in the Classroom: The Role of Living Architecture Systems
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada pp. 050 - 061
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
email
last changed 2019/07/29 14:00

_id sigradi2004_036
id sigradi2004_036
authors Lucía Gómez; Lola Vico
year 2004
title Infografia aplicada al patrimonio cultural: El caso del ninfeo de campetti (Veio) [Infographics Applied to Cultural Heritage: The Case of "Ninfeo de Campetti (Veio)"]
source SIGraDi 2004 - [Proceedings of the 8th Iberoamerican Congress of Digital Graphics] Porte Alegre - Brasil 10-12 november 2004
summary This paper presents the results of an in-depth study and virtual reconstruction of the Nymphaeum of Veio, in the archaeological zone of Villa Campetti, Rome. The study consisted in analysing the vestiges and enlightening the findings with a thorough literature review about the Nymphaeum itself as well as about contemporary and similar constructions. A digital model was then elaborated, as an attempt to recreate the Nymphaeum of Veio as it may have stood during the Roman period. The Nymphaeum had been decorated with roman frescoes of the III style, now highly deteriorated. The virtual reconstruction intends to reproduce the harmony of volumes, structure and paintings of the chamber. It also helps to better understand its configuration. This kind of reconstruction, based on historical and architectural research, offers great possibilities in the world or architectonic and archaeological heritage, allows the recovery and analysis of spaces otherwise lost forever.
series SIGRADI
email
last changed 2016/03/10 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 877HOMELOGIN (you are user _anon_575562 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002