CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 3600

_id maver_071
id maver_071
authors Mathur, K. and Maver, T.W.
year 1993
title Information Technology in the Management of Design and Construction
source Management of Information Technology for Construction (Ed: K Mathur et al) World Scientific, 585-594
summary This paper provides an overview of the developments in Information Technology (IT) and its impact on the Architecture, Engineering and Construction (AEC) industry. It takes note of what has transpired in the last two decades and how the evolution of this subject corresponds to the predictions which had been made at various times in the past. It concludes that changes in procedures, processes and structure of organisations are needed if the most effective use of IT is to be achieved, and it is timely to go beyond solutions which mimic and automate current processes. Strategic frameworks must be defined within which new solutions will emerge rather than specific technical solutions for individual design or automation tasks. Concurrent changes in the AEC professions and the management of projects and organisations will be required to support the new tools and techniques offered by IT. Thus no promises should be made purely on the basis of emerging technologies. Hence the paper makes no attempt to predict the future of the AEC industry even though integrated systems may become available to support creative, cooperative, multi-disciplinary design, and though such systems will assist construction automation tasks, maintenance and facility management.
series other
type normal paper
email
last changed 2015/02/20 11:30

_id 8023
authors Lang, M.S., Cohen, R.L. and Eschenberg, K.E. (et al)
year 1979
title Implementation of An Interactive Computer Graphics Environment at NASA/JSC
source SIGGRAPH '79 Conference Proceedings. August, 1979. vol. 13 ; no. 2: pp. 246-252 : ill. includes bibliography
summary The implementation of visually-oriented software for graphics support on the high-performance computer graphics hardware at NASA's Johnson Space Center is the latest step in the evolution of an interactive computer applications technology being developed by the Computer Graphics Group at The Applied Research Laboratory of Penn State University. This technology is designed to aid the typical scientist or engineer in learning and using computer graphics productively, including writing his own programs and interfacing to software specialists who will write and maintain his programs. Key aspects of the current development include the creation and incorporation of a visually-oriented learning package for graphics geometric perception and graphics programming, as well as a sophisticated control environment which aides the user in obtaining a quick understanding of and access to the system. Preliminary results indicate that this software support can substantially reduce the start-up time for a novice graphics user with some background in Fortran
keywords computer graphics, user interface, software, learning, programming, control, education
series CADline
last changed 2003/06/02 13:58

_id caadria2007_659
id caadria2007_659
authors Chen, Zi-Ru
year 2007
title The Combination of Design Media and Design Creativity _ Conventional and Digital Media
doi https://doi.org/10.52842/conf.caadria.2007.x.w5x
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
summary Creativity is always interested in many fields, in particular, creativity and design creativity have many interpretations (Boden, 1991; Gero and Maher, 1992, 1993; Kim, 1990; Sternberg, 1988; Weisberg, 1986). In early conceptual design process, designers used large number of sketches and drawings (Purcell and Gero, 1998). The sketch can inspire the designer to increase the creativity of the designer’s creations(Schenk, 1991; Goldschmidt, 1994; Suwa and Tversky, 1997). The freehand sketches by conventional media have been believed to play important roles in processes of the creative design thinking(Goldschmidt, 1991; Schon and Wiggins, 1992; Goel, 1995; Suwa et al., 2000; Verstijnen et al., 1998; Elsas van and Vergeest, 1998). Recently, there are many researches on inspiration of the design creativity by digital media(Liu, 2001; Sasada, 1999). The digital media have been used to apply the creative activities and that caused the occurrenssce of unexpected discovery in early design processes(Gero and Maher, 1993; Mitchell, 1993; Schmitt, 1994; Gero, 1996, 2000; Coyne and Subrahmanian, 1993; Boden, 1998; Huang, 2001; Chen, 2001; Manolya et al. 1998; Verstijinen et al., 1998; Lynn, 2001). In addition, there are many applications by combination of conventional and digital media in the sketches conceptual process. However, previous works only discussed that the individual media were related to the design creativity. The cognitive research about the application of conceptual sketches design by integrating both conventional and digital media simultaneously is absent.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ddss9426
id ddss9426
authors Duijvestein, Kees
year 1994
title Integrated Design and Sustainable Building
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary In the international student-project "European Environmental Campus 91 TU Delft Dordrecht" 20 students from 13 European countries worked in september 1991, during three weeks on "EcologicalSketches for the Island of Dordrecht". They worked on four different scales: the region isle of Dordt / the district Stadspolders / the neighbourhood I the house and the block. The environmentaltheme's Energy, Water, Traffic & Noise, Landscape & Soil were together with spatial analyses combined with the different scales. This combination was organised following the scheme mentioned below. The characters stand for the students. During the first period they worked in research groups, during the last period more in design groups. For instance: student L works in the beginning with the students B, G and Q in the research group water. In the last period sheworks with K, M, N and 0 in the design group Neighbourhood. Those students worked earlier in the other research-groups and contribute now in the design-group their thematic environmental knowledge. The results were presented to the Dordrecht council, officials and press. In the next project in september and october 1993 we started earlier with the design groups. Ten Dutch and ten "Erasmus" students worked for six weeks on proposals for the Vinex location Wateringenthe Hague. Each morning they worked in the research groups each afternoon in the design groups. The research groups used the EcoDesign Tools, small applications in Excel on Apple Macintoshto quantify the environmental pressure.
series DDSS
last changed 2003/08/07 16:36

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 1766
id 1766
authors Gero, J. S.
year 1993
title New knowledge-based CAD models of design
source K. Mathur, M. Betts and K. W. Tham (eds), Management of Information Technology for Construction, World Scientific, Singapore, pp. 199-208
summary Knowledge-based systems utilise concepts from artificial intelligence. They are the bases of new models of design which have the potential to extend the utility of computers in design. This paper briefly reviews current research support new knowledge-based CAd-models if design before describing and elaborating two such models. One is case-based design and the other is creative design.
series other
type normal paper
email
more http://www.arch.usyd.edu.au/~john/
last changed 2006/05/27 18:27

_id 56de
authors Handa, M., Hasegawa, Y., Matsuda, H., Tamaki, K., Kojima, S., Matsueda, K., Takakuwa, T. and Onoda, T.
year 1996
title Development of interior finishing unit assembly system with robot: WASCOR IV research project report
source Automation in Construction 5 (1) (1996) pp. 31-38
summary The WASCOR (WASeda Construction Robot) research project was organized in 1982 by Waseda University, Tokyo, Japan, aiming at automatizing building construction with a robot. This project is collaborated by nine general contractors and a construction machinery manufacturer. The WASCOR research project has been divided into four phases with the development of the study and called WASCOR I, II, III, and IV respectively. WASCOR I, II, and III finished during the time from 1982 to 1992 in a row with having 3-4 years for each phase, and WASCOR IV has been continued since 1993. WASCOR IV has been working on a automatized building interior finishing system. This system consists of following three parts. (1) Development of building system and construction method for automated interior finishing system. (2) Design of hardware system applied to automated interior finishing system. (3) Design of information management system in automated construction. As the research project has been developing, this paper describes the interim report of (1) Development of building system and construction method for automated interior finishing system, and (2) Design of hardware system applied to automated interior finishing system.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 98bd
authors Pea, R.
year 1993
title Practices of Distributed Intelligence and Designs for Education
source Distributed Cognitions, edited by G. Salomon. New York, NY: CambridgeUniversity Press
summary v Knowledge is commonly socially constructed, through collaborative efforts... v Intelligence may also be distributed for use in designed artifacts as diverse as physical tools, representations such as diagrams, and computer-user interfaces to complex tasks. v Leont'ev 1978 for activity theory that argues forcibly for the centrality of people-in-action, activity systems, as units of analysis for deepening our understanding of thinking. v Intelligence is distributed: the resources that shape and enable activity are distributed across people, environments, and situations. v Intelligence is accomplished rather than possessed. v Affordance refers to the perceived and actual properties of a thing, primarily those functional properties that determine how the thing could possibly be used. v Norman 1988 on design and psychology - the psychology of everyday things" v We deploy effort-saving strategies in recognition of their cognitive economy and diminished opportunity for error. v The affordances of artifacts may be more or less difficult to convey to novice users of these artifacts in the activities to which they contribute distributed intelligence. v Starts with Norman's seven stages of action Ø Forming a goal; an intention § Task desire - clear goal and intention - an action and a means § Mapping desire - unable to map goal back to action § Circumstantial desire - no specific goal or intention - opportunistic approach to potential new goal § Habitual desire - familiar course of action - rapidly cycle all seven stages of action v Differentiates inscriptional systems from representational or symbol systems because inscriptional systems are completely external, while representational or symbol systems have been used in cognitive science as mental constructs. v The situated properties of everyday cognition are highly inventive in exploiting features of the physical and social situation as resources for performing a task, thereby avoiding the need for mental symbol manipulations unless they are required by that task. v Explicit recognition of the intelligence represented and representable in design, specifically in designed artifacts that play important roles in human activities. v Once intelligence is designed into the affordances properties of artifacts, it both guides and constrains the likely contributions of that artifact to distributed intelligence in activity. v Culturally valued designs for distributed intelligence will change over time, especially as new technology becomes associated with a task domain. v If we treat distributed intelligence in action as the scientific unit of analysis for research and theory on learning and reasoning... Ø What is distributed? Ø What constraints govern the dynamics of such distributions in different time scales? Ø Through what reconfigurations of distributed intelligence might the performance of an activity system improve over time? v Intelligence is manifest in activity and distributed in nature. v Intelligent activities ...in the real world... are often collaborative, depend on resources beyond an individual's long-term memory, and require the use of information-handling tools... v Wartofsky 1979 - the artifact is to cultural evolution what the gene is to biological evolution - the vehicle of information across generations. v Systems of activity - involving persons, environment, tools - become the locus of developmental investigation. v Disagrees with Salomon et al.'s entity-oriented approach - a language of containers holding things. v Human cognition aspires to efficiency in distributing intelligence - across individuals, environment, external symbolic representations, tools, and artifacts - as a means of coping with the complexity of activities we often cal "mental." "
series other
last changed 2003/04/23 15:14

_id ebb2
authors Proctor, George
year 2000
title Reflections on the VDS, Pedagogy, Methods
doi https://doi.org/10.52842/conf.acadia.2000.015.2
source ACADIA Quarterly, vol. 19, no. 1, pp. 15-16
summary After having conducted a Digital Media based design studio at Cal Poly for six years, we have developed a body of experience I feel is worth sharing. When the idea of conducting a studio with the exclusive use of digital tools was implemented at our college, it was still somewhat novel, and only 2 short years after the first VDS- Virtual Design Studio (UBC, UHK et.al.-1993). When we began, most of what we explored required a suspension of disbelief on the part of both the students and faculty reviewers of studio work. In a few short years the notions we examined have become ubiquitous in academic architectural discourse and are expanding into common use in practice. (For background, the digital media component of our curriculum owes much to my time at Harvard GSD [MAUD 1989-91] and the texts of: McCullough/Mitchell 1990, 1994; McCullough 1998; Mitchell 1990,1992,1996; Tufte 1990; Turkel 1995; and Wojtowicz 1993; and others.)
series ACADIA
email
last changed 2022/06/07 08:00

_id f4df
id f4df
authors Rosenman, M. A., Gero, J. S. and Hwang, Y-S.
year 1993
title Representation of multiple concepts of a design object based on multiple functions
source K. Mathur, M. Betts and K. W. Tham (eds), Management of Information Technology for Construction, World Scientific, Singapore, pp. 239-254
summary Current representatuin schemas for design objects in CAD environments make assumptions regarding particular representations of the design object. In the AEC environemnt, many disciplines are involved, each with its own concept of the design object. Each such concept must be respected and accomodated in any representation. This paper presents the ideas behind the representation of multiple concepts from an underlying description of a design such that the inter and intra-discipline views of that design can be formed dynamically.
keywords information technology, concewptual modeling, multiple abstraction representation, building design, function
series other
type normal paper
email
more http://www.arch.usyd.edu.au/~john/
last changed 2006/05/27 18:35

_id fc80
authors Ubbelohde, S. and Humann, C.
year 1998
title Comparative Evaluation of Four Daylighting Software Programs
source 1998 ACEEE Summer Study on Energy Efficiency in Buildings Proceedings. American Council for an Energy-Efficient Economy
summary By the mid-1980's, a number of software packages were under development to predict daylighting performance in buildings, in particular illumination levels in daylighted spaces. An evaluation in 1988 by Ubbelohde et al. demonstrated that none of the software then available was capable of predicting the simplest of real daylighting designs. In the last ten years computer capabilities have evolved rapidly and we have four major packages widely available in the United States. This paper presents a comparative evaluation from the perspective of building and daylighting design practice. A contemporary building completed in 1993 was used as a base case for evaluation. We present the results from field measurements, software predictions and physical modeling as a basis for discussing the capabilities of the software packages in architectural design practice. We found the current software packages far more powerful and nuanced in their ability to predict daylight than previously. Some can accurately predict quantitative daylight performance under varying sky conditions and produce handsome and accurate visualizations of the space. The programs differ significantly, however, in their ease of use, modeling basis and the emphasis between quantitative predictions and visualization in the output.
series other
last changed 2003/04/23 15:50

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id 5d15
authors Clayton, M.J., Song, Y., Han, K., Darapureddy, K., Al-Kahaweh, H. and Soh, I.
year 2001
title Data for Reflection: Monitoring the Use of Web-Based Design Aids
doi https://doi.org/10.52842/conf.acadia.2001.142
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 142-152
summary Web technology provides a new way of generating information about design processes. By monitoring student use of Web-based design aids, it is possible to collect empirical, quantitative evidence regarding the time and sequence of activities in design. The research team has undertaken several software development projects to explore these concepts. In one project, students can use a Web browser running alongside CAD software to access a cost database and evaluate their designs. In a second project, students use a browser to record their time expenditures. They can better document, plan and predict their time needs for a project and better manage their efforts. In a third project, students record the rationale supporting their design decisions. The information is stored in databases and HTML files and is hyperlinked into the CAD software. Each tool provides facilities to record key information about transactions. Interactions are documented with student identification, time of activity, and kind of activity. The databases of empirical information tracking student activity are a unique substantiation of design process that can feed back into teaching and the creation of ever better design tools.
keywords Design Methods, Empirical, Web, Cost Estimating, Time Management
series ACADIA
email
last changed 2022/06/07 07:56

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.545
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id c4bd
id c4bd
authors Derix C, Gamlesæter A, Miranda P, Helme L and Kropf K
year 2012
title Simulation Heuristics for Urban Design
source In Mueller Arisona et al (eds), Digital Urban Modelling and Simulation: Communications in Computer and Information Science, Springer, Heidelberg, 2012
summary Designing simulations for urban design not only requires explicit performance criteria of planning standards but a synthesis of implicit design objectives, that we will call ‘purpose rules’, with computational approaches. The former would at most lead to automation of the existing planning processes for speed and evaluation, the latter to an understanding of perceived urban qualities and their effect on the planning of cities. In order to transform purpose rules into encoded principles we argue that the focus should not be on defining parametric constraints and quantities, but on aligning the perceptual properties of the simulations with the strategies of the stakeholders (planner/ urban designer/ architect/ developer/ community). Using projects from the Computational Design and Research group at Aedas [CDR] as examples, this chapter will discuss how an open framework of lightweight applications with simple functionality can be integrated into the design and planning process by using computational simulations as urban design heuristics.
keywords urban design, design heuristics, meta-heuristics, simulation, algorithm visualization
series book
type normal paper
email
more http://www.springerlink.com/content/g58114676q4228h8/?MUD=MP
last changed 2012/09/20 14:17

_id caadria2018_134
id caadria2018_134
authors Kawabe, Akihiro and Watanabe, Shun
year 2018
title An Analysis of Mixed Land Use Toward Designing the Compact City
doi https://doi.org/10.52842/conf.caadria.2018.2.493
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 493-502
summary Applying the method of "Land-Use Mix" (Amindabari et al. (2013)) and Focusing on changes in highly mixed land use areas within an extensive survey area and detailed analytical unit, the analysis in this study revealed some trends of distribution of mixed land use areas and their declining patterns in the eastern part of Saitama Prefecture, Japan. For example, among the changing land use patterns of Highly-Mixed-Points-as-of-1994, the pattern that a decreasing mixture index was associated with increasing residential land and decreasing commercial land occurred most often, and the points that changed with that pattern accounted for about 32% of all the Highly Mixed Points, and about 51% of the decrease in mixture index points.
keywords Metropolitan Form Analysis; Land-Use Mix; GIS; Mixed land use; Compact City
series CAADRIA
email
last changed 2022/06/07 07:52

_id f2ed
authors Kós, José R., et al.
year 2000
title The city that doesn‚t exist: multimedia reconstruction of Latin American cities
source IEEE internet computing, 7(2), pp. 12-16
summary Contributed by Jose Ripper Kós (josekos@ufrj.br)
keywords 3D City modeling
series other
more http://www.fau.ufrj.br/prourb/cidades/vsmm99
last changed 2001/06/04 20:27

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 179HOMELOGIN (you are user _anon_967932 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002