CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 16674

_id ecaade2009_099
id ecaade2009_099
authors Kinayoglu, Gökçe
year 2009
title Using Audio-Augmented Reality to Assess the Role of Soundscape in Environmental Perception: An Experimental Case Study at UC Berkeley Campus
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 639-648
doi https://doi.org/10.52842/conf.ecaade.2009.639
wos WOS:000334282200077
summary Sounds, along with other senses, have a profound influence on our perception of the environment. The multi-modality of perceptual processing is influential in cognitive interpretation, semantic and aesthetic evaluations of environmental scenes. This paper describes an experimental case study using audio-augmented reality, carried out in order to better understand how sound influences sense of place. A correlation is established between soundscape and sense of place that depends on audio-visual congruence based on cultural, aesthetic and semantic factors. Subjective influences of soundscape on place experience are grouped and discussed under 5 areas that were possible to identify: Emotive and synaesthetic effects; effects on attention, gaze and behavior; effects on spatial orientation and sense of scale; influence of audio-visual congruence on sense of place; and perception of personal and social space.
keywords Augmented reality, soundscape, environmental perception, place theory, environmental acoustics
series eCAADe
type normal paper
email
last changed 2022/06/07 07:52

_id acadia21_546
id acadia21_546
authors King, Cyle; Gasper, Jacob
year 2021
title Process / Product
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 546-553.
doi https://doi.org/10.52842/conf.acadia.2021.546
summary Academic papers are full of final drawings and diagrams but gloss over process work, “less glamorous” images, and the amount of time and labor behind a fi nal product. Certain skills and expertise cannot be taught but are instead collected from years of personal experience – a body of knowledge inaccessible to some unless passed on through e-mails, Zoom calls, or personal observations. When dealing with these seemingly esoteric topics, it becomes easy to feel isolated in the problems, failures, or questions that arise and cannot be easily accessed in academic journals or a simple Google search. Although exacerbated by the global pandemic’s mandates and shifts in the way work is done - this feeling is not new.

The following pages record clay 3D printing research on a KUKA industrial robotic arm completed by two 5th year undergraduate architecture students. Through drawings, images, and text, this field note documents decisions, failures, messes, and successes compiled from a year of socially distanced learning, researching, and living.

series ACADIA
type field note
email
last changed 2023/10/22 12:06

_id ecaade2022_122
id ecaade2022_122
authors Kinoshita, Airi, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2022
title Enhanced Tracking Method with Object Detection for Mixed Reality in Outdoor Large Space
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 457–466
doi https://doi.org/10.52842/conf.ecaade.2022.2.457
summary Mixed-reality landscape simulation is one of the visual methods used in landscape design studies. A markerless tracking method using image processing has been proposed for properly aligning the real and virtual worlds involved with landscape simulations in large spaces. However, this method is challenging because tracking breaks down if a dynamic object is encountered during the mixed-reality execution. In this study, we integrated deep-learning object detection with natural feature-based tracking, which tracks manually defined feature points (tracking reference points), with the aim of reducing the impact of moving objects such as people and cars on mixed-reality tracking. The prototype system was implemented and tracking was performed on pre-recorded video taken outdoors. Performance was verified in terms of the number of errors associated with tracking the reference points and the accuracy of the mixed-reality display results (camera pose estimation results). Compared to the conventional system, our system was able to reduce the influence of moving objects that cause errors when tracking reference points. The accuracy of the camera pose estimation results was also verified to be improved. This research will contribute to developing mixed-reality simulation systems for large-scale spaces that are accessible to everyone, including users in the architectural field.
keywords Landscape Visualization, Mixed Reality, Object Detection, Tracking, Deep Learning
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaadesigradi2019_339
id ecaadesigradi2019_339
authors Kinugawa, Hina and Takizawa, Atsushi
year 2019
title Deep Learning Model for Predicting Preference of Space by Estimating the Depth Information of Space using Omnidirectional Images
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 61-68
doi https://doi.org/10.52842/conf.ecaade.2019.2.061
summary In this study, we developed a method for generating omnidirectional depth images from corresponding omnidirectional RGB images of streetscapes by learning each pair of omnidirectional RGB and depth images created by computer graphics using pix2pix. Then, the models trained with different series of images shot under different site and weather conditions were applied to Google street view images to generate depth images. The validity of the generated depth images was then evaluated visually. In addition, we conducted experiments to evaluate Google street view images using multiple participants. We constructed a model that estimates the evaluation value of these images with and without the depth images using the learning-to-rank method with deep convolutional neural network. The results demonstrate the extent to which the generalization performance of the streetscape evaluation model changes depending on the presence or absence of depth images.
keywords Omnidirectional image; depth image; Unity; Google street view; pix2pix; RankNet
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ijac202220303
id ijac202220303
authors Kirdar, Gulce; Gulen Cagdas
year 2022
title A decision support model to evaluate liveability in the context of urban vibrancy
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 528–552
summary Liveability can be accepted as an umbrella term covering all the factors that make a place to live. We recognize the versatility of urban liveability and focus on the vibrancy aspect. Regarding the literature, we compile variables affecting urban liveability under the economic, image, and use value of place. This article aims to present a data-driven decision support system to evaluate different dimensions of vibrancy-focused liveability. We adopt a knowledge discovery process to handle the complexity of the liveability concept. This study develops a conditional-based relationship network of vibrancy parameters through the Bayesian Belief Network (BBN). Then, we assess the BBN’s correlations with statistics and causal relations with the survey in this study.These results mostly agree with the findings of the relevant literature. The economic value results show that the high density, diversity and accessibility add a premium to the land value of properties. The use value results also demonstrate that the diversity and density of activities, cultural attributes, and high accessibility support place attractiveness. The selected streetscape variables improve image value, except for building enclosure and condition. The study has the potential for urban planners to vitalize neighborhoods by considering urban activities and urban physical attributes
keywords liveability, vibrancy, knowledge discovery process, big data, locative data, Bayesian belief network
series journal
last changed 2024/04/17 14:29

_id acadia20_84
id acadia20_84
authors Kirova, Nikol; Markopoulou, Areti
year 2020
title Pedestrian Flow: Monitoring and Prediction
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 84-93.
doi https://doi.org/10.52842/conf.acadia.2020.1.084
summary The worldwide lockdowns during the first wave of the COVID-19 pandemic had an immense effect on the public space. The events brought up an opportunity to redesign mobility plans, streets, and sidewalks, making cities more resilient and adaptable. This paper builds on previous research of the authors that focused on the development of a graphene-based sensing material system applied to a smart pavement and utilized to obtain pedestrian spatiotemporal data. The necessary steps for gradual integration of the material system within the urban fabric are introduced as milestones toward predictive modeling and dynamic mobility reconfiguration. Based on the capacity of the smart pavement, the current research presents how data acquired through an agent-based pedestrian simulation is used to gain insight into mobility patterns. A range of maps representing pedestrian density, flow, and distancing are generated to visualize the simulated behavioral patterns. The methodology is used to identify areas with high density and, thus, high risk of transmitting airborne diseases. The insights gained are used to identify streets where additional space for pedestrians is needed to allow safe use of the public space. It is proposed that this is done by creating a dynamic mobility plan where temporal pedestrianization takes place at certain times of the day with minimal disruption of road traffic. Although this paper focuses mainly on the agent-based pedestrian simulation, the method can be used with real-time data acquired by the sensing material system for informed decision-making following otherwise-unpredictable pedestrian behavior. Finally, the simulated data is used within a predictive modeling framework to identify further steps for each agent; this is used as a proof-of-concept through which more insights can be gained with additional exploration.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia23_v2_130
id acadia23_v2_130
authors Kirova, Nikol; Markopoulou, Areti; Bury, Jane; Latifi, Mehrnoush
year 2023
title Grading CharCrete: Embodied carbon optimization of load-bearing walls
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 130-139.
summary This paper presents a computational method for designing architectural elements using functionally graded (FG) cementitious materials to reduce embodied carbon and mass. Functionally graded materials (FGM), commonly found in nature, have a graded variation in their composition or properties, which can be tailored to specific structural requirements. The research utilizes three grades CharCrete (biochar-cementitious mortar) developed by the author as part of more extensive research on the applications of biochar, a type of carbon-sequestering material derived from biomass. Finite element method (FEM) is used to optimize the distribution of three grades according to structural requirements. By maximizing the quantity of biochar in the CharCrete mate- rial system, the method aims to minimize embodied carbon and mass while maintaining structural integrity. The method is implemented using FEM within the Grasshopper envi- ronment with the Karamba3D plug-in and demonstrated through a design case study on load-bearing walls, comparing homogeneous and FG material allocation. The results indicate that the proposed computational method effectively guides achieving a net-negative carbon footprint, while ensuring structural performance, and suggests that a heterogeneous material allocation with two grades of CharCrete is a sufficient carbon offsetting strategy. This approach showcases a promising pathway for the architectural industry to contribute to sustainable construction practices and mitigate environmental impact through the implementation of functionally graded cementitious materials.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id 2005_091
id 2005_091
authors Kirschner, Ursula and Kirschner, Nauka
year 2005
title E-learning in Creative Planning Processes
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 91-97
doi https://doi.org/10.52842/conf.ecaade.2005.091
summary This conference paper examines experimental design exercises on a simulated model in relation to designing on a physical model. In the initial design phases, the process of designing on both a haptic and digital model is analysed with regard to the didactic objectives. In this context, only form-related aesthetic aspects are discussed. The starting point is the didactic necessity of imparting to students the process of designing on spatial models. Reduced to form determination, the question examined is for which aspects of design theory the potentials of real and virtual models, as well as of the interaction of both types, can be exploited.
keywords Design methods; Digital and Physical Models; 3D-Digizer; Design Education
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_151
id ecaade2018_151
authors Kirschner, Ursula and Sperling, David
year 2018
title Mapping Urban Information as an Interdisciplinary Method for Geography, Art and Architecture Representations
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 215-224
doi https://doi.org/10.52842/conf.ecaade.2018.2.215
summary In the current context, access to daily realities is becoming increasingly mediated and processed by maps, flooding us with spatial data that appears to be objective but needs to be questioned, or even disputed. On the other hand, there are some relevant aspects of the urban experience that elude the main maps provided by apps or big data visualizing projects. So this article points out alternative ways of mapping urban information in this context, by means of presenting and discussing the methodology and results of a mapping workshop carried out at a German university in 2017 with interdisciplinary groups of students. The aim was to provide new insights and readings of the contemporary city. We explored and invented the urban with a mix of creative research methods.
keywords urban mapping information; critical cartography; urban spirit; cooperative urban exploration
series eCAADe
email
last changed 2022/06/07 07:52

_id 647a
authors Kirschner, Ursula
year 1996
title Teaching Experimental Design with CAAD
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 221-226
doi https://doi.org/10.52842/conf.ecaade.1996.221
summary 2-D CAAD is the standard tool in architectural work and education. whereas 3-dimensional CAAD is still used to present a finished design. This paper demonstrates that experimental design in 3-D allows students to deal with new methods of design. At North East Lower Saxony Polytechnic, 1995 saw the beginning of development of didactic methods for teaching design with the interactive use of common 3-D CAAD tools. Six exercises were devised, the first two being 2-D exercises in urban and layout design. Subsequent steps introduced three styles of architectural designing with 3-D tools. The students selected one of these styles for their three-day exercise in urban planning. Based on the results, three main ways were developed: the "digital toolkit", the "additive design approach" and the "lighting simulation".
series eCAADe
last changed 2022/06/07 07:52

_id sigradi2008_081
id sigradi2008_081
authors Kirschner, Ursula
year 2008
title Study of digital morphing tools during the design process - Application of freeware software and of tools in commercial products as well as their integration in AutoCAD
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This research work examines methods of experimental designing with CAAD in a CAD laboratory with architecture students as the testing persons. Thereby the main focus is on the early phase of finding forms, in which different techniques with digital media are tried out in the didactic architectural design lessons. In these work have been traced the influences of the media employed on the design processes and combined the approaches of current CAAD research with aspects from classic design theory. For mathematical rules of proportion, atmospheric influence factors and analogy concepts in architecture, I have developed design methods which have been applied and verified in several series of seminars. (Kirschner, U.: 2000, Thesis, a CAAD supported architectural design teaching, Hamburg, school of arts). Previous experimental exercises showed that morphological sequences of modeling are effective sources for playful designing processes. In the current work these approaches are enhanced and supplemented by different morphological architectural concepts for creating shapes. For this purpose 2D based software like Morphit, Winmorph and other freeware were used. Whereas in the further development of this design technique we used 3D freeware morphing programs like zhu3D or Blender. The resulting morphological shapes were imported in CAD and refined. Ideally the morphing tool is integrated in the modeling environment of the standard software AutoCAD. A digital city model is the starting basis of the design process to guarantee the reference to the reality. The applied design didactic is predicated on the theories of Bernhard Hoesli. The act of designing viewed as „waiting for a good idea“ is, according to him, unteachable; students should, in contrast, learn to judge the „the force of an idea“. On the subject of morphology a form-generating method in the pre-design phase has been tested. Starting from urban-planning lines on an area map, two simple geometric initial images were produced which were merged by means of morphing software. Selected images from this film sequence were extruded with CAAD to produce solid models as sectional drawings. The high motivation of the students and the quality of the design results produced with these simple morphing techniques were the reason for the integration of the artistic and scientific software into the creative shape modeling process with the computer. The students learned in addition to the „bottom up “and „ top down” new design methods. In the presentation the properties and benefits of the morphing tools are presented in tables and are analyzed with regard to the architectural shape generating in an urban context. A catalogue of criteria with the following topics was developed: user friendliness, the ability of integrating the tools or as the case may be the import of data into a CAD environment, the artistic aspects in terms of the flexibility of shape generating as well as the evaluation of the aesthetic consideration of shapes.
keywords Architectural design, freeware morphing software, AutoCAD
series SIGRADI
email
last changed 2016/03/10 09:53

_id sigradi2017_095
id sigradi2017_095
authors Kirschner, Ursula
year 2017
title A Hermeneutic Interpretation of Concepts in a Cooperative Multicultural Working Project [A Hermeneutic Interpretation of Concepts in a Cooperative Multicultural Working Project]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.659-665
summary What are frontier zones in contemporary urban cities? This research project was developed in cooperation with an interdisciplinary group of researchers and students from Brazil and Germany and launched with an International Summer School in São Paulo in 2015. Its aim was to explore and invent urban spaces using the method of documentary film making as a medium to provide new insights and readings of the contemporary city. In Germany we analyzed these film productions by examining the main topics of the frontier zones in São Paulo. The method of documentary film making was once again chosen for the hermeneutic interpretation.
keywords Perception of space; documentary film making; hermeneutic analysis
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2007_070
id ecaade2007_070
authors Kirschner, Ursula; Ohler, Armin
year 2007
title Digitized Planning Processes in the Revitalization of Buildings by an Interdisciplinary Project Study
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 717-723
doi https://doi.org/10.52842/conf.ecaade.2007.717
summary In the curricula for students of civil engineering and architecture software training courses have been integrated for long, but didactical training concepts with an application in practice including both the constructional and planning aspects are missing. This conference contribution shows the result of a research work carried out to empirically develop a manual for a constructional, digitally supported project work. It comprised the interdisciplinary teaching with a special focus on two examples of buildings in situ. Different types of presentation, picture software and CAD were used from the very beginning of the planning process in order to create a new form of didactics in teaching and learning. The basic local parameters and approaches are documented and analyzed. As a result of the empirical research work presented herein a manual was developed which is useful as a guideline for the digital interdisciplinary project development in the revitalization of buildings. It reflects the experiences gained in this empirical research work and formulates the steps to take to carry out the project. The paper is presented with a 3-D-video projection on the basis of stereoscope pictures.
keywords Digitized planning, revitalization, interdisciplinary project, practical project, manual
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2009_103
id ecaade2009_103
authors Kirschner, Ursula; Pratschke, Anja
year 2009
title Experiment Digital Space: Composition with Elements Designed by Mies van der Rohe and the Importance of their Web Presentation: Didactical Design Methods Applied in Design Studios for Architectural and Cultural Sciences in Brazil, University of São Paulo and in Germany, Leuphana University of Lüneburg
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 787-792
doi https://doi.org/10.52842/conf.ecaade.2009.787
wos WOS:000334282200096
summary This empirical research project is a didactical teaching method intended to introduce students interested in space to theoretical architecture topics using specific computer capacities. In different variations, this teaching method was tested on students of Cultural Sciences and Architecture in Brazil and in Germany. With this method, even students without previous CAD or architecture experience can creatively design spaces. Visualization of the design process as Web design joins the individual aspects to a logical composite and applies the computer as “brain-craft” to complement handcraft. For the creative tasks, this means interaction in a complex information structure where the borders between the disciplines fade.
keywords Design, didactic, CAD, web design, interdisciplinary
series eCAADe
email
last changed 2022/06/07 07:52

_id 502caadria2004
id 502caadria2004
authors Kirsty A. Beilharz
year 2004
title Designing Generative Sound for Responsive 3D Digital Environment Interaction
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 741-758
doi https://doi.org/10.52842/conf.caadria.2004.741
summary This paper examines three key areas of responsive sound interaction in 3D Digital Environments: designing generative sound that derives its composition and relevance from social and physical human interaction within a digital environment; the relation of sonic structure to the digital visual and spatial experience; and responsive, reactive real time sound generation activated by environmental conditions and human behaviours. The primary purposes for responsive sound design are: (1) to provide navigational cues supporting way-finding and spatial orientation; and (2) to provide realtime generative environmental sound that reflects social behaviour in a way that is meaningful and recognisable. The applied contexts for navigational cues and environmental generative sound include online (multi-user), synchronous Virtual Environments and Digital Installation Spaces (e.g. intelligent rooms, virtual reality and immersive environments). Outcomes of responsive sound design include: a trigger system of aural alerts, warnings and guidance; a computational system for generating sound in real time activated by spatial location and social interaction; and an audio (non-visual) tool aiding spatial orientation and way-finding interaction in 3D immersive Digital Environments.
series CAADRIA
email
last changed 2022/06/07 07:51

_id 7bc9
authors Kjaer, Bodil
year 1987
title PROGRESS TOWARDS AN AMERICAN FULL SCALE ENVIRONMENTAL DESIGN SIMULATION LABORATORY (SIM-LAB)
source Proceedings of the 1st European Full-Scale Workshop Conference / ISBN 87-88373-20-7 / Copenhagen (Denmark) 15-16 January 1987, pp. 45-51
summary The need for a hands-on, full scale mock-up facility where elements of the man-made environment can be tried out before being built has recently become of considerable concern to people from a wide range of fields. This is possibly a result of a more general recognition of all the barriers which crowd our physical environment; the barriers which impede our ability to work effectively and dwell comfortably. It may also have something to do with the fact that funds are no longer available for the building and production of too hastily conceived designs of the sort which need extensive modification and improvement in order to function in an acceptable manner.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:09

_id caadria2019_639
id caadria2019_639
authors Kladeftira, Marirena, Pachi, Maria, Bernhard, Mathias, Shammas, Demetris and Dillenburger, Benjamin
year 2019
title Design Strategies for a 3D Printed Acoustic Mirror
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 123-132
doi https://doi.org/10.52842/conf.caadria.2019.1.123
summary Large scale binder-jetting additive manufacturing has been available since almost a decade. While it offers great opportunities for the fabrication of complex ornate forms, so far, the potential of this printing method is not fully explored. Moreover, binder-jetted objects have never been tested for outdoor use and performance, because of the weak bond of the printed parts. This paper presents a design strategy that makes possible the fabrication of large, outdoor installations, with such a fragile material as printed sandstone. The presented process was developed for a full-scale installation of acoustic mirrors that was designed, manufactured and post processed in only a few steps. In the larger picture, this paper discusses how 3D printing can allow for design optimisation and reduction of material, while it proposes post-processing methods that strengthen and seal the printed objects for exterior use.
keywords 3D printing; acoustic mirror; topology optimization
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia22_406
id acadia22_406
authors Kladeftira, Marirena; Leschok, Matthias; Skevaki, Eleni; Tanadini, Davide; Ole Ohlbrock, Patrick; D’Acunto, Pierluigi; Dillenburger, Benjamin
year 2022
title Digital Bamboo
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 406-417.
summary This paper presents a novel construction system that integrates natural and artificial components through the case study of the Digital Bamboo. A reversible non-standard structure is made of unprocessed bamboo poles connected with 3D printed joints and covered by light- weight 3D printed shading panels. The system combines multiple technologies to prefabricate all parts of the structure, which are controlled with a chain of computational tools.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id acadia18_328
id acadia18_328
authors Kladeftira, Marirena; Shammas, Demetris; Bernhard, Mathias; Dillenburger, Benjamin
year 2018
title Printing Whisper Dishes. Large-scale binder jetting for outdoor installations
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 328-335
doi https://doi.org/10.52842/conf.acadia.2018.328
summary This research explores the design opportunities of a novel fabrication process for large scale architectural installations suitable for outdoor weather conditions. High resolution, bespoke geometries are easily fabricated at no extra cost in a continuous system using Binder Jet printing technology. The material properties of sandstone are considered a design drive for producing structural paths according to a finite element analysis. Several post processing materials are tested for strengthening the final geometry and providing a water resistant solution. The process is tested in a large, 1:1 sound installation of a pair of acoustic mirrors. First, this paper describes the specific potential and challenges of Binder Jet printing for outdoor applications. It, then, outlines the design principles of the sound device, the acoustic mirror, and their integration into a digital model. Finally, the computational design strategy is described, including topology optimization to reduce the weight/material and the integration of functional details
keywords work in progress, 3d printing, form finding, digital fabrication, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ad62
authors Klaus, R. and Urbaniak, A.
year 1998
title Safety algorithms for excavator engine control
source Automation in Construction 7 (5) (1998) pp. 391-400
summary The diesel engine without load and speed controller is a nonlinear astatic object. The torque and moment of internal friction (the diesel engine without load and governor) cross in the field of the engine's destruction (the speed limit was exceeded). Hence, the diesel engine is equipped with a speed governor. The main task of the governor is to counteract exceeding of the speed limit. We did a research on the engine with an injection pump wherein the conventional centrifugal governor was replaced by the microprocessor controller. This is because using a large number of electronic elements microcontroller has smaller reliability in comparison with mechanical governors. In order to protect the engine from the results of the controller's defect, we invented a safety system. The system guarantees the controlled stoppage of the engine's work in dangerous states. Information in this article are presented concerning protection and self-diagnostics of SW 400 engine control system that makes use of DP535 controller with Siemens 80C535 microcontroller. The presented control system is successfully tested in an excavator.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 833HOMELOGIN (you are user _anon_380534 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002