CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 16648

_id ecaade2020_049
id ecaade2020_049
authors Kretzer, Manuel and Mostafavi, Sina
year 2020
title Robotic Fabrication with Bioplastic Materials - Digital design and robotic production of biodegradable objects
doi https://doi.org/10.52842/conf.ecaade.2020.1.603
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 603-612
summary Bioplastics are materials that are composed of renewable organic biomass sources and thus they are inherently biodegradable. On top of their ecological advantages to standard plastics they help to conserve fossil raw materials and the dependency on mineral oil. Recent advancements in digital design and robotic materialisation have introduced innovative methods for the realisation of complex geometries and direct experimentation through physical prototyping. Within this collaborative course between the Dessau Department of Design and the Dessau Institute of Architecture, we set out to explore the potentials of self-made bioplastic materials in combination with cutting-edge robotic fabrication in order to produce compostable products. Throughout the course the participants got acquainted with the fundamentals of parametric design to robotic production while performing systematic scientific experiments with bioplastics to develop the perfect material for robotic production. The paper presents a number of recipes on how to create bioplastics in a DIY manner. Moreover, the material research methodology, as well as robotic fabrication strategies behind each of the projects, are discussed in detail.
keywords Bioplastic; Robotic 3D Printing; Digital Materiality; Material Architecture; Biomaterial; Material Ecology
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2013_067
id ecaade2013_067
authors Kretzer, Manuel
year 2013
title Information Materials
doi https://doi.org/10.52842/conf.ecaade.2013.1.615
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 615-623
summary This paper questions the current use of materials in architecture, which furthers the preference of surface and form over inherent material properties. It then investigates recent advancements towards the notion of a Digital Materiality, comparing various international research activities and approaches. It concludes with the potentials of Smart Materials for the creation of dynamic, adaptive spatial design. With a focus on the work of the Author it represents a number of projects that have been realized in this area within the past years and gives an insight in his recently established Materiability Research Network, a community platform that reveals Smart Materials, their properties and how to self-make them in an applied hands-on manner.
wos WOS:000340635300064
keywords Smart materials; digital materiality; open source; do-it-yourself; adaptive architecture.
series eCAADe
email
last changed 2022/06/07 07:51

_id lasg_whitepapers_2019_157
id lasg_whitepapers_2019_157
authors Kretzer, Manuel
year 2019
title Tomorrowland
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.157 - 172
summary This essay is a transcript of a series of lectures I presented entitled ‘Tomorrowland’ and is partially based on material which has been previously published in ‘Information Materials – Smart Materials for Adaptive Architecture, Manuel Kretzer. Bern: Springer International Publishing, 2017’ as well as an unpublished paper co-written with Adil Bokhari on our common design studio ‘Synthetic Ecologies.’
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia13_137
id acadia13_137
authors Kretzer, Manuel; In, Jessica; Letkemann, Joel; Jaskiewicz, Tomasz
year 2013
title Resinance: A (Smart) Material Ecology
doi https://doi.org/10.52842/conf.acadia.2013.137
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 137-146
summary What if we had materials that weren’t solid and static like traditional building materials are? What if these materials could dynamically change and adapt to varying environmental situations and stimulations and evolve and learn over time? What if they were autonomous, self-sufficient and independent but could communicate with each other and exchange information? What would this “living matter” mean for architecture and the way we perceive the built environment? This paper looks briefly at current concepts and investigations in regards to programmable matter that occupy various areas of architectural research. It then goes into detail in describing the most recent smart material installation “Resinance” that was supervised by Manuel Kretzer and Benjamin Dillenburger and realized by the 2012/13 Master of Advanced Studies class as part of the materiability research at the Chair for CAAD, ETH Zürich in March 2013. The highly speculative sculpture links approaches in generative design, digital fabrication, physical/ubiquitous computing, distributed networks, swarm behavior and agent-based communication with bioinspiration and organic simulation in a responsive entity that reacts to user input and adapts its behavior over time.
keywords Smart Materials; Distributed Networks; Digital Fabrication; Physical Computing; Responsive Environment
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id ecaade2016_057
id ecaade2016_057
authors Kreutzberg, Anette
year 2016
title High quality Virtual Reality for Architectural Exhibitions
doi https://doi.org/10.52842/conf.ecaade.2016.2.547
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 547-554
summary This paper will summarise the findings from creating and implementing a visually high quality Virtual Reality (VR) experiment as part of an international architecture exhibition. It was the aim to represent the architectural spatial qualities as well as the atmosphere created from combining natural and artificial lighting in a prominent not yet built project. The outcome is twofold: Findings concerning the integration of VR in an exhibition space and findings concerning the experience of the virtual space itself. In the exhibition, an important aspect was the unmanned exhibition space, requiring the VR experience to be self-explanatory. Observations of different visitor reactions to the unmanned VR experience compared with visitor reactions at guided tours with personal instructions are evaluated. Data on perception of realism, spatial quality and light in the VR model were collected with qualitative and quantitative methods at two different occasions and setups after the exhibition, both showing a high degree of immersion and experience of reality.
wos WOS:000402064400055
keywords Virtual Reality; Oculus Rift; GearVR; Exhibition display
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_230
id ecaade2018_230
authors Kreutzberg, Anette
year 2018
title Visualising Architectural Lighting Concept with 360° Panoramas
doi https://doi.org/10.52842/conf.ecaade.2018.2.745
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 745-752
summary This paper presents the establishment and refinement of a visualisation workflow based on initial learnings from introducing mobile Virtual Reality (VR) as representational medium for visualising and visually evaluating architectural lighting concepts using rendered 360° panoramas. Four student projects are described, each with a different aim and approach towards visualising architectural light in space: Two projects aiming at conveying reality with physically based lighting simulations and two projects with an artistic approach to conveying light impressions. The 360° panoramas were used at low resolution during the design process to qualify the projects, and the final panoramas were presented with great success as a supplement to visualisations, diagrams, technical drawings and physical models at Bachelor and Master exams. The benefits of using familiar simulation and render software together with low cost, accessible and portable VR HMD's in the authors opinion far outweighs the reduced Field of View, lower frame-rate, lack of parallax and dynamic Point of View compared to realtime rendered high end VR.
keywords Architectural lighting; 360° panorama; Virtual Reality; Visualisation workflow
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2022_344
id caadria2022_344
authors Krezlik, Adrian
year 2022
title Considering Energy, Materials and Health Factors in Architectural Design, Two Renovation Strategies for the Portuguese Building Stock
doi https://doi.org/10.52842/conf.caadria.2022.2.619
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 619-628
summary According to the Intergovernmental Panel on Climate Change, the built environment has a significant share in global final energy use, greenhouse gases emission, land-system change, and biodiversity loss to list some indicators. In Europe, the biggest challenge is to regenerate existing building stock to create a positive impact on Nature. The Portuguese housing stock is old: 56% is more than 30 years old, and it has a low level of thermal comfort and energy efficiency. The first thermal regulations appeared in 1990 and therefore most of the houses need urgent renovation to meet EU decarbonization goals, and to improve energy efficiency, as well as well-being and comfort of residents. This paper presents a method that aims to verify existing solutions known from vernacular architecture as complementary to existing strategies. It employs digital simulation to verify whether they could be used for renovation, measuring their impact on human and planetary health. The paper shows that there is a wide spectrum of parameters that influence the renovation process and that it is possible to enhance building performance using vernacular knowledge.
keywords Building Energy Modelling, Life Cycle Assessment, Occupant Health, Energy Renovation, Vernacular Mimicry, SDG 3, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ddssup9612
id ddssup9612
authors Kribbe, Willeke and Sanders, Frank
year 1996
title Growth of spatial network constructions: a decision support systems oriented approach
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The paper describes a method that has been developed to be used in a process for a systematic search of alternative designs for a network configuration. In the design process we will take into account that we may not be able to implement the full configuration all at once. Logical partial configurations must be derived. The process can than also be used to investigate the expansion of (railroad) networks. The basic idea is that either the most profitable trajectories or the trajectories that contribute most to the improved quality of the configuration will be developed first. A method cannot incorporate all criteria that are relevant for the final decision simultaneously, one of the reasons being that not all criteria are suitable for a mathematical formulation. Therefore a method cannot be used to replace current legal and political procedures. However it can be considered to be part of a decision support system that could be used in a preliminary investigation preceeding such procedures. In the example presented in this paper the criteria and calculations are kept simple for illustrative purposes. However they can easily be made more complex and realistic without damaging the fundamental concepts of the search algorithm. If the system is implemented in a way that the criteria to be used in the selection process can be chosen in interaction with the decision maker (or moderator) one can truly speak of a decision support system for the project formulation phase for the construction of the physical network. In the algorithm the network is represented as a graph and the nodes connected by the network are termed centers of attraction, supply and demand.
series DDSS
last changed 2003/08/07 16:36

_id ecaade2011_035
id ecaade2011_035
authors Krieg, Oliver David; Dierichs, Karola; Reichert, Steffen; Schwinn, Tobias; Menges, Achim
year 2011
title Performative Architectural Morphology: Robotically manufactured biomimetic finger-joined plate structures
doi https://doi.org/10.52842/conf.ecaade.2011.573
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.573-580
summary Performative Architectural Morphology is a notion derived from the term Functional Morphology in biology and describes the capacity of an architectural material system to adapt morphologically to specific internal constraints and external influences and forces. The paper presents a research project that investigates the possibilities and limitations of informing a robotically manufactured finger-joint system with principles derived from biological plate structures, such as sea urchins and sand dollars. Initially, the material system and robotic manufacturing advances are being introduced. Consequently, a performative catalogue is presented, that analyses both the biological system’s basic principles, the respective translation into a more informed manufacturing logic and the consequent architectural implications. The paper concludes to show how this biologically informed material system serves to more specifically respond to a given building environment.
wos WOS:000335665500066
keywords Robotic Manufacturing; Biomimetics; Parametric Design; Wood Joints; Plate Structures
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia13_253
id acadia13_253
authors Krieg, Oliver David; Menges, Achim
year 2013
title HygroSkin: A climate-responsive prototype project based on the elastic and hygroscopic properties of wood
doi https://doi.org/10.52842/conf.acadia.2013.023
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 23-260
summary The paper presents current research into architectural potentials of robotic fabrication in wood construction based on elastically bent timber sheets with robotically fabricated finger joints. Current developments in computational design and digital fabrication propose an integrative design approach contrary to classical, hierarchical architectural design processes. Architecture related fields, such as material science, engineering and fabrication have been seen as separate disciplines in a linear design process since the Industrialization era. However, current research in computational design reveals the potentials of their integration and interconnection for the development of material-oriented and performance-based architectural design.In the first part, the paper discusses the potentials of robotic fabrication based on its extended design space. The robot’s high degree of kinematic freedom opens up the possibility of developing complex and highly performative mono-material connections for wood plate structures. In the second part, the integration of material behavior is presented. Through the development of robotically fabricated, curved finger joints, that interlock elastically bent plywood sheets, a bending-active construction system is being developed (Figure 1,Figure 2). In the third part, the system’s architectural application and related constructional performance is discussed.
keywords Robotic Fabrication; Finger Joints; Material Computation; Wood Construction; Computational Design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id ecaade2012_152
id ecaade2012_152
authors Krieg, Oliver David; Mihaylov, Boyan; Schwinn, Tobias; Reichert, Steffen; Menges, Achim
year 2012
title Computational Design of Robotically Manufactured Plate Structures Based on Biomimetic Design Principles Derived from Clypeasteroida
doi https://doi.org/10.52842/conf.ecaade.2012.2.531
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 531-540
summary The paper presents the current development of an ongoing research project about the integration of robotic fabrication strategies in computational design through morphological and functional principles derived from natural systems. Initially, a developed plate structure material system based on robotically fabricated fi nger joints is being informed by biomimetic principles from the sea urchin Clypeasteroida in order to be able to adapt effi ciently to its building environment. Consequently, the paper’s main focus lies on translating the biomimetic design principles into a computational design tool, also integrating fabrication parameters as well as structural and architectural demands. The design tool’s capability to integrate these parameters is shown by the design, development and realization of a full-scale research pavilion. The paper concludes with discussing the performative capacity of the developed material system and the introduced methodology.
wos WOS:000330320600056
keywords Biomimetics; Digital Simulation; Parametric Design; Robotic Manufacturing
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2014_249
id caadria2014_249
authors Krietemeyer, Bess
year 2014
title An Adaptive Decision-Making Framework for Designing Material Behaviours
doi https://doi.org/10.52842/conf.caadria.2014.055
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 55–64
summary This paper describes an adaptive decision-making design framework for investigating the synergies between aesthetically-driven and performance-driven criteria, specifically in designing the material behaviour of an electroresponsive building envelope system. An immersive and interactive simulation environment developed in the C++ programming language provides a computational tool for testing the visual and energetic performance of a dynamic building envelope as it negotiates bioclimatic energy flows with participants’ aesthetic preferences and interactions. Experiments in bioresponsive feedback loops examine the impacts that user engagement and real-time energy performance feedback have on participants’ design choices. Preliminary results demonstrate that exposure to energy performance feedback and to the collective design choices of multiple users leads to adaptive decision-making that favours synergistic system performance with the potential for increased socio-ecological connections. Critically, this research provides new methods for supporting the design of emerging material behaviours for dynamic building envelopes that can negotiate multiple performance criteria.
keywords Participatory design; decision-making tool; interactive environment; dynamic building envelopes; immersive simulation
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac201917203
id ijac201917203
authors Krietemeyer, Bess; Amber Bartosh and Lorne Covington
year 2019
title A shared realities workflow for interactive design using virtual reality and three-dimensional depth sensing
source International Journal of Architectural Computing vol. 17 - no. 2, 220-235
summary This article presents the ongoing development and testing of a “shared realities” computational workflow to support iterative user-centered design with an interactive system. The broader aim is to address the challenges associated with observing and recording user interactions within the context of use for improving the performance of an interactive system. A museum installation is used as an initial test bed to validate the following hypothesis: by integrating three- dimensional depth sensing and virtual reality for interaction design and user behavior observations, the shared realities workflow provides an iterative feedback loop that allows for remote observations and recordings for faster and effective decision-making. The methods presented focus on the software development for gestural interaction and user point cloud observations, as well as the integration of virtual reality tools for iterative design of the interface and system performance assessment. Experimental testing demonstrates viability of the shared realities workflow for observing and recording user interaction behaviors and evaluating system performance. Contributions to computational design, technical challenges, and ethical considerations are discussed, as well as directions for future work.
keywords Interactive architecture, user-centered design, virtual reality, three-dimensional depth sensing, user interactions
series journal
email
last changed 2019/08/07 14:04

_id acadia17_330
id acadia17_330
authors Krietemeyer, Bess; Bartosh, Amber; Covington, Lorne
year 2017
title Shared Realities: A Method for Adaptive Design Incorporating Real-Time User Feedback using Virtual Reality and 3D Depth-Sensing Systems
doi https://doi.org/10.52842/conf.acadia.2017.330
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 330- 339
summary When designing interactive architectural systems and environments, the ability to gather user feedback in real time provides valuable insight into how the system is received and ultimately performs. However, physically testing or simulating user behavior with an interactive system outside of the actual context of use can be challenging due to time constraints and assumptions that do not reflect accurate social, behavioral, or environmental conditions. Employing evidence based, user-centered design practices from the field of human–computer interaction (HCI) coupled with emerging architectural design methodologies creates new opportunities for achieving optimal system performance and design usability for interactive architectural systems. This paper presents a methodology for developing a mixed reality computational workflow combining 3D depth sensing and virtual reality (VR) to enable iterative user-centered design. Using an interactive museum installation as a case study, user pointcloud data is observed via VR at full scale and in real time for a new design feedback experience. Through this method, the designer is able to virtually position him/herself among the museum installation visitors in order to observe their actual behaviors in context and iteratively make modifications instantaneously. In essence, the designer and user effectively share the same prototypical design space in different realities. Experimental deployment and preliminary results of the shared reality workflow are presented to demonstrate the viability of the method for the museum installation case study and for future interactive architectural design applications. Contributions to computational design, technical challenges, and ethical considerations are discussed for future work.
keywords design methods; information processing; hci; VR; AR; mixed reality; computer vision
series ACADIA
email
last changed 2022/06/07 07:52

_id ijac201513101
id ijac201513101
authors Krietemeyer, Bess; Brandon Andow, Anna Dyson
year 2015
title A Computational Design Framework Supporting Human Interaction with Environmentally-Responsive Building Envelopes
source International Journal of Architectural Computing vol. 13 - no. 1, 1–24
summary Emerging materials present opportunities to fundamentally shift current expectations of dynamic building envelope functionality towards systems that can respond to occupant needs while meeting the energy demands of buildings. In order to assess the environmental, social, and architectural opportunities that are increasing with responsive building envelopes, new tools are needed to simulate their multi-performance capabilities. This paper describes a computational design framework to support human interaction with environmentally-responsive electroactive dynamic daylighting systems. The objective is to develop algorithms for variable solar control and visible transmittance that simultaneously address occupant preferences for visual effects and interaction. Results demonstrate that energy performance and user satisfaction are not mutually exclusive and can be co-optimized. The effectiveness and limitations of the computational framework in assessing strategies to balance environmental performance and human interaction are discussed. Conclusions present areas of ongoing work that integrate multi-user interactions and immersive visualization techniques with multiscalar energy modeling tools.
series journal
last changed 2019/05/24 09:55

_id acadiaregional2011_008
id acadiaregional2011_008
authors Krietemeyer,Elizabeth A.; Anna H. Dyson
year 2011
title Electropolymeric Technology for Dynamic Building Envelopes
doi https://doi.org/10.52842/conf.acadia.2011.x.s0s
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary Human health and energy problems associated with the lack of control of natural light in contemporary buildings have necessitated research into dynamic windows for energy efficient buildings. Existing dynamic glazing technologies have made limited progress towards greater energy performance for curtain wall systems because they are still unable to respond to dynamic solar conditions, fluctuating building demands, and a range of user preferences for visual comfort and individual control. Recent breakthroughs in the field of information display provide opportunities to transfer electropolymeric technology to building envelopes that can achieve geometric and spectral selectivity in concert with pattern variation within the façade. Integrating electroactive polymers within the surfaces of an insulated glazing unit (IGU) could dramatically improve the energy performance of windows while enabling user empowerment through the control of the visual quality of this micro-material assembly, in addition to allowing for the switchable patterning of information display. Using parametric modeling as a generative design and analysis tool, this paper examines the technical intricacies linking system variables with visual comfort, daylight quality, and pattern design of the proposed electropolymeric dynamic facade technology.
series ACADIA
last changed 2022/06/07 07:49

_id ecaade2012_191
id ecaade2012_191
authors Krijnen, Thomas ; Beetz, Jakob ; Voorthuis, Jacob ; Vries, Bauke de
year 2012
title Explauralisation: The experience of exploring architecture made audible
doi https://doi.org/10.52842/conf.ecaade.2012.1.593
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 593-598
summary In this paper we propose an open source design tool that allows designers to easily conceive, evaluate and design the full auditory experience of a building, based on a digital three-dimensional model. A guiding principle has been the dynamic nature of the confi guration of sound sources and listeners. Hence, a system is created that enables sound sources as well as listeners to be defi ned as moving entities. Furthermore, the ability exists for listeners, in their own movements and interactions, to generate sounds as well. In the system, proposed in this paper, ray-tracing is used to simulate the spatial acoustics. The paper discusses the considerations regarding several implementation choices and regarding adoption of the tool in the architectural design process.
wos WOS:000330322400061
keywords Auditory perception; Architectural design; Acoustics; Simulation; Auralisation
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2009_101
id ecaade2009_101
authors Krijnen, Thomas; Beetz, Jakob; de Vries, Bauke
year 2009
title Airport Schiphol: Behavioral Simulation of a Design Concept
doi https://doi.org/10.52842/conf.ecaade.2009.559
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 559-564
summary In this paper, we introduce an agent-based simulation of passengers in airport terminal buildings. A case study is described during which a prototype simulation tool is used to test the impact of a conceptual design change in an existing airport terminal building. We illustrate how this real-time, geometry-aware simulation can be generalized and integrated into the design process to support designers in configuring the spatial layout of public and functional buildings.
wos WOS:000334282200067
keywords User behavior, agent-based simulation, airport terminal, design process, design evaluation
series eCAADe
email
last changed 2022/06/07 07:51

_id 4839
authors Kripac, Jiri
year 1985
title Classification of Edges and its Application in Determining Visibility
source Computer Aided Design. January/ February 1985. vol. 17: pp.30-36 : ill. includes bibliography
summary A new hidden-line algorithm is proposed for illustrating objects consisting of plane faces. The algorithm determines the degree of edge and classifies edges and faces into contoural and non-contoural. To reduce memory requirements, sequential files and sorting are used. The algorithm is particularly intended for illustrating complex objects, such as curved surfaces approximated by plane faces
keywords algorithms, hidden lines, curved surfaces, geometric modeling, computer graphics
series CADline
last changed 1999/02/12 15:08

_id ae5f
authors Krishnamurti, Ramesh
year 1986
title Modelling Design Descriptions
source January, 1986. [5] p. : ill
summary This paper reports some of the principles that underlie a modelling environment being developed at EdCAAD. It describes research that is part of a larger programme directed at computer-based systems that can accommodate the idiosyncratic nature of design practice, without prescriptions to the form or content of designs. That is, towards developing systems to assist in the design process by enabling designers -via conversations with the machine - to make 'reasonable' statements about design objects; to ask 'reasonable' questions about these objects; and to perform 'reasonable' tasks on these objects. Implicit in the authors' approach is the view that designing is an activity dependent on designers' perceptions of design tasks and their resolution. In the context of computer-aided design, this view of design demands that the crucial element in any machine environment lies in the ability of the machine to accept (partial) descriptions of design objects. Moreover, these descriptions can be manipulated according to some (perhaps unanticipated) criteria that the designer may wish to apply. The authors present a model for intentional descriptions of objects. That is, a description that can be structures so that it can be used to recognize objects and can be compared with other descriptions. Such a description of an object should be organized around entities with associated descriptions, it must be able to represent partial knowledge about an object, and it must accommodate multiple descriptors which can describe the object from different viewpoints. Last, but not least, these descriptions should possess a quality of 'truth' in that they reflect the (factual or otherwise) beliefs held by the designer. One way to treat these descriptions is to regard them as statements that belong to some logical framework
keywords design process, representation, intentionallity
series CADline
last changed 1999/02/12 15:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 832HOMELOGIN (you are user _anon_514949 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002