CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 16923

_id ecaaderis2023_41
id ecaaderis2023_41
authors Hadighi, Mahyar and Hadighi, Mehrdad
year 2023
title Between System and Improvisation: Aesthetic performance in Donald Judd’s 100 untitled works in mill aluminum
source De Luca, F, Lykouras, I and Wurzer, G (eds.), Proceedings of the 9th eCAADe Regional International Symposium, TalTech, 15 - 16 June 2023, pp. 79–88
summary In this paper, we intend to analyze Donald Judd’s “100 untiled works in mill aluminum” to see whether they belong to a system, and, if so, what that system is and what delimits it. Our hypothesis is that there is a system driven by shape data, but the system is tempered by improvisational moments at multiple junctures in the project. We are interested in deciphering the systematic, but also the moments of artistic improvisation. To that end, we will look at the roots of data-driven design in the “serial” artworks of the early 1960’s documented in two Artforum essays by Bochner and Coplans, both citing Donald Judd. This period of artistic production is critical in the context of the development of shape grammars in computation which followed in the early 70’s with Stiny and Gips’s Shape Grammar essay. In 1983, Knight used shape grammar to describe the transformation of design languages. In the same period, Donald Judd, without the aid of computation or knowledge of shape grammar, developed a grammar towards the design of “100 untiled works in mill aluminum.” We intend to explore Judd’s 100 works as an example of the utilization of information and its analysis towards design and innovation, and to highlight the role of artistic improvisation in a systemic design process.
keywords Donald Judd, Design System, Shape Grammar, Serial Art.
series eCAADe
email
last changed 2024/02/05 14:28

_id ecaade2021_114
id ecaade2021_114
authors Hadighi, Mahyar
year 2021
title Towards a Configurable Hybridity in Historic Preservation and Design
doi https://doi.org/10.52842/conf.ecaade.2021.2.293
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 293-302
summary This paper fulfills the dual purpose of developing a systematic methodology for designing new constructions and adding to or revivifying existing buildings in historic neighborhoods and demonstrating an effective pedagogy in regard to historic preservation at the undergraduate level. A previously developed methodology for verifying and analyzing hybridity in architectural design is expanded as a foundation for designing an addition to a historic building in a famous urban context, i.e., a registered historic structure in the museum district of New York City. Shape grammar as a computational design methodology is used to analyze the historic fabric of the urban area and to create a configurable hybrid design that is both compatible with that context and reflective of the needs and design of the contemporary urban setting. The validity of shape grammar as a methodology for designing configurable hybrid constructions in historic neighborhoods and its effectiveness in relation to a teaching focus on historic preservation are considered through an analysis of projects from an upper-undergraduate-level architectural design studio. The students used the shape grammar methodology to analyze and understand historic contexts and features in order to generate new designs for the given context.
keywords Configurable hybridity; Historic preservation ; Shape grammar; Neue Galerie; Vienna Secession
series eCAADe
email
last changed 2022/06/07 07:49

_id 100d
authors Hadikusumo, B.H.W. and Rowlinson, S.
year 2001
title Development of a virtually real construction site - design for safety
source CIDAC, Volume 3 Issue 2 May 2001
summary Interpreting two-dimensional drawings presents problems for builders since they are required to transfer these into three-dimensional mental images. Virtual Reality (VR) technology has several advantages. One is that it can be used to solve the problem of image transfer since VR supports a What-You-See-Is-What-You-Get object together with a binocular effect, improving users' visual sense. Another advantage of VR is the capability to present a real time dynamic simulation, which can be used to represent construction processes. By representing virtually real construction components and processes, users can walk through the virtual project. Using his/her safety knowledge, he/she can identify safety hazards inherent within the virtually real construction components and processes and determine the appropriate safety precautions to employ to make the virtual construction site safe.

This hazard identification process can be better achieved if a guideline is provided. Therefore, a Design-For-Safety-Process (DFSP) guideline is developed to assist users to identify safety hazards as well as to recommend remedial safety measures. This paper discusses how virtual reality benefits the construction industry in terms of a design representation. In addition, important issues in developing virtually real construction components and processes as well as functions of virtual reality which are needed to support the DFSP are discussed.

series journal paper
last changed 2003/05/15 20:36

_id ascaad2014_027
id ascaad2014_027
authors Hadilou, Arman
year 2014
title Flexible Formwork: A methodology for casting funicular structures
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 345-352
summary This paper describes a method for design and fabrication of funicular structures from discrete precast concrete components. It has a critical look over traditional casting techniques and proposes a new methodology to fabricate a flexible formwork. The design process is engaged with a thorough series of analytical models and employs digital computation techniques to test their structural efficiency. Scripting, modeling and prototyping have been integrated to investigate several case studies through which a set of criteria was developed. Digital modeling tries to keep a limited number of varied components that have certain conditions at joints and flexible in other parts. This variation helps to meet the structural criterion and the flexibility of formwork results the efficiency of fabrication.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2015_033
id caadria2015_033
authors Hadilou, Arman
year 2015
title Phototropism of Tensile Façade System through Material Agency
doi https://doi.org/10.52842/conf.caadria.2015.127
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 127-136
summary This paper researches material agencies, mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on plants and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The design approach of this research is based on a data-driven methodology spanning from design inception to simulation and physical modeling. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. The driving concepts are three types of evolutionary adaptation: flexibility, acclimation, and learning. The proposed façade system is a responsive textile shading structure which uses integrated actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli and ultimately effective performance of the whole system.
keywords Responsive facade; phototropism; material intelligence.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ijac20097107
id ijac20097107
authors Hadjimitsis, D.G.; Themistocleous, K.; Agapiou, A.; Clayton, C.R.I.
year 2009
title Monitoring Archaeological Site Landscapes in Cyprus using Multi-temporal Atmospheric Corrected Image Data
source International Journal of Architectural Computing vol. 7 - no. 1, 121-138
summary This paper aims to examine the use of satellite remote sensing for monitoring archaeological and more generally cultural heritage sites. For this purpose, multi-temporal data from Landsat 5 TM, Landsat 7 ETM+ and Quickbird images were applied. The paper also discusses the importance of atmospheric correction at the pre-processing step in order to determine true surface reflectance values by removing these effects from satellite images. Atmospheric correction is arguably the most important part of the pre-processing of satellite remotely sensed data and any omission produces erroneous results. The effects of the atmosphere are more severe where dark targets are shown in the satellite image. In the management of cultural heritage sites, since temporal satellite images are required for monitoring purposes, the effect of the atmosphere must be considered. In-situ spectro-radiometric measurements using the GER1500 field spectro-radiometer have been used to assess the reflectance values found after applying the darkest pixel atmospheric correction to the image data. The study area consist the Amathus archaeological site in Limassol and the Nea Paphos archaeological site area located in Paphos district area in Cyprus. Vegetation Index (NDVI) change detection algorithm has been applied to a series of thirteen Landsat TM/ETM+ images of Amathus archaeological site in Limassol. Classification and extraction algorithms have been applied to Landsat TM and Quickbird high resolution images of Nea Paphos archaeological site area.
series journal
last changed 2009/06/23 08:07

_id f371
authors Hadjisophocleous, G.V. and Benichou, N.
year 1999
title Performance criteria used in fire safety design
source Automation in Construction 8 (4) (1999) pp. 489-501
summary In many countries around the world, building codes are shifting from prescriptive- to performance-based for technical, economic, and social reasons. This move is made possible by progress in fire safety technologies, including the development of engineering tools that are required to implement performance codes. The development of performance-based codes follows a transparent, hierarchical structure in which there are usually three levels of objectives. The top level objectives usually state the functional requirements and the lowest level the performance criteria. Usually, one middle level exists, however, more levels can be used in this hierarchical structure depending on the complexity of the requirements. The success of performance-based codes depends on the ability to establish performance criteria that will be verifiable and enforceable. The performance criteria should be such that designers can easily demonstrate, using engineering tools, that their designs meet them and that the code authority can enforce them. This paper presents the performance criteria that are currently used by fire protection engineers in designing fire safety systems in buildings. These include deterministic and probabilistic design criteria as well as safety factors. The deterministic criteria relate mainly to life safety levels, fire growth and spread levels, fire exposure and structural performance. The probabilistic criteria focus on the incident severity and incident likelihood. Finally, the inclusion of safety factors permits a conservative design and allows for a smaller margin of error due to uncertainty in the models and the input data.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 2005_319
id 2005_319
authors Hadjri, Karim
year 2005
title Assessing the Use of Contact and Non-Contact 3-Dimensional Digitization in Architectural Design Studios
doi https://doi.org/10.52842/conf.ecaade.2005.319
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 319-327
summary This paper presents a recent experience related to the use of 3D digitization and digital modelling. This was done with the aim to bridge the gap between physical and digital models produced by students as part of their design development exercise. The paper examines the use of 3D digitization in architectural design education, by using both contact and non-contact scanning technology. The main aim was to translate physical models using 3-Dimensional digitization in order to create accurate digital copies. Finally, the paper discusses the results of the use of 3D digitisation and the digital modelling process, and assesses the benefit of this technology within an educational setting.
keywords Digitization; Laser Scanning; Studio; Models; Modelling
series eCAADe
email
last changed 2022/06/07 07:49

_id ijac20064205
id ijac20064205
authors Hadjri, Karim
year 2006
title Experimenting with 3D Digitization of Architectural Physical Models using Laser Scanning Technology
source International Journal of Architectural Computing vol. 4 - no. 2, 67-80
summary This paper assesses the use of 3D Digitization techniques by carrying out laser scanning of typical physical models produced by architecture students. The aim was to examine the product of laser scanning with respect to scanning and 3D modeling processes, and the effects of variables such as characteristics of the models, materials used, and design complexity. In order to assess the similarities and accuracies achieved by the scanning and 3D modeling processes, the research investigated human perception of differences between analogue and digital models. This enabled an assessment of the degree to which digital models were accurate representations of the real ones, and whether laser scanning can successfully be used as a medium to recreate and represent complex architectural physical models. The study presents a potential direction for digital translation in architectural education.
series journal
last changed 2007/03/04 07:08

_id ecaade2017_011
id ecaade2017_011
authors Haeusler, M. Hank, Asher, Rob and Booth, Lucy
year 2017
title Urban Pinboard - Development of a platform to access open source data to optimise urban planning performance
doi https://doi.org/10.52842/conf.ecaade.2017.1.439
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 439-448
summary In this paper we present our research to design and develop 'Urban Pinboard', a platform to optimise urban planning process and performance. We argue that second machine age general purpose technologies can now be accessed for city modelling. Based on the observation that: GIS does offer a depository that can display urban data; data sets exist but often stored at different locations; there is a discrepancy of access to planning information; and the data often are not accessible to private / public sector and the general public on one location, Urban Pinboard aims to address these problems as an integrated digital platform that enables the public, private and community sectors to connect by contributing ideas, comments and proposals on all planning issues in a single platform. The paper outlines the background research, methodology and introduces the Urban Pinboard's features to create a single source of truth for planning data.
keywords Software development; web-based GIS platform; Urban Planning; planning data
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2021_013
id caadria2021_013
authors Haeusler, M. Hank, Butler, Andrew, Gardner, Nicole, Sepasgozar, Samad and Pan, Shan
year 2021
title Wasted ... Again - Or how to understand waste as a data problem and aiming to address the reduction of waste as a computational challenge
doi https://doi.org/10.52842/conf.caadria.2021.1.371
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 371-380
summary The global construction industry is the single largest consumer of materials on the planet. Of that material consumption anywhere between 10-20% will end up in landfills as waste. Currently, there are three approaches to tackle this problem - reduce, reuse, and recycle. Concentrating purely on the challenge of reducing waste this research aims to address the problem of waste in the construction industry by addressing it in the preliminary design stage. It does so by asking the research question if computational design offers opportunities towards lean construction or to achieve Zero Waste by understanding waste as a data management challenge. For our research materials are specified in databases outlining geometrical and quantitative information either in material supplier databases (homepage) or in architecture and construction databases via Revit or Grasshopper. Consequently, one can collect via web scraping, investigate via databases, inspect and compare via Grasshopper and Python these databases to understand if one can transform data into information towards material use and consequently into knowledge on waste production and reduction. This investigation, its proposed hypothesis, methodology, implications, significance, and evaluation are presented in the paper.
keywords Construction industry; waste reduction; databases; web scraping; computational design
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2017_002
id caadria2017_002
authors Haeusler, M. Hank, Muehlbauer, Manuel, Bohnenberger, Sascha and Burry, Jane
year 2017
title Furniture Design Using Custom-Optimised Structural Nodes
doi https://doi.org/10.52842/conf.caadria.2017.841
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 841-850
summary Additive manufacturing techniques and materials have evolved rapidly during the last decade. Applications in architecture, engineering and construction are getting more attention as 3D printing is trying to find its place in the industry. Due to high material prices for metal 3d printing and in-homogenous material behaviour in printed plastic, 3D printing has not yet had a very significant impact at the scale of buildings. Limitations on scale, cost, and structural performance have also hindered the advancement of the technology and research up to this point. The research presented here takes a case study for the application of 3D printing at a furniture scale based on a novel custom optimisation approach for structural nodes. Through the concentration of non-standard geometry on the highly complex custom optimised nodes, 3D printers at industrial product scale could be used for the additive manufacture of the structural nodes. This research presents a design strategy with a digital process chain using parametric modeling, virtual prototyping, structural simulation, custom optimisation and additive CAD/CAM for a digital workflow from design to production. Consequently, the digital process chain for the development of structural nodes was closed in a holistic manner at a suitable scale.
keywords Digital fabrication; node optimisation; structural performance; 3D printing; carbon fibre.
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2014_002
id caadria2014_002
authors Haeusler, M. Hank; Danny Nguyen and Margaret Goldsack
year 2014
title Ruled Surface Media Facades
doi https://doi.org/10.52842/conf.caadria.2014.689
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 689–698
summary Traditionally media facades have been created using 2D surfaces, not dissimilar to televisions. As computational architecture continues to explore non-Euclidian shapes it is a logical process to investigate the use and possibilities of emerging complex curved surfaces for the display of media content to match architectural design aspirations with demands of ubiquitous city concepts of penetrating surfaces with information. Drawing on existing architectural knowledge of ruled surfaces the paper outlines the implementation of adopting existing principles from architecture and mathematics to contemporary discussions in media architecture. It demonstrates that ruled surfaces can function as media facades by simulating ten different ruled surface types in Grasshopper and overlaying them with different video content. Based on the results the team proceeded to build a 1:1 prototype of a hyperbolic paraboloid to test if the simulated results in the computer matched with the physical model. The prototype was further tested using media content to observe the visibility of the display from various viewing positions. Based on the findings the paper concludes that ruled surface media facades are feasible. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords Media facades; responsive architecture; ruled surfaces; non-Euclidian spaces
series CAADRIA
email
last changed 2022/06/07 07:49

_id ijac202119407
id ijac202119407
authors Haeusler, Matthias H.; Gardner, Nicole; Yu, Daniel K.; Oh, Claire; Huang, Blair
year 2021
title (Computationally) designing out waste: Developing a computational design workflow for minimising construction and demolition waste in early-stage architectural design
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 594–611
summary In the architecture, engineering and construction (AEC) industry, waste is oft framed as an economic problemtypically addressed in a building’s construction and demolition phase. Yet, architectural design decision-making can significantly determine construction waste outcomes. Following the logic of zero waste, thisresearch addresses waste minimisation‘at the source’. By resituating the problem of construction wastewithin the architectural design process, the research explores waste as a data and informational problem in adesign system. Accordingly, this article outlines the creation of an integrated computational design decisionsupport waste tool that employs a novel data structure combining HTML-scraped material data and historicbuilding information modelling (BIM) data to generate waste evaluations in a browser-based 3D modellingplatform. Designing an accessible construction waste tool for use by architects and designers aims to heightenawareness of the waste implications of design decisions towards challenging the systems of consumption andproduction that generate construction and demolition waste.
keywords Construction and demolition waste, waste minimisation, zero waste, BIM databases, design process, designmanagement, web scraping, computational design, software product development
series journal
email
last changed 2024/04/17 14:29

_id ecaade2020_197
id ecaade2020_197
authors Haghighi, MohammadYousef and Mahdavinejad, Mohammadjavad
year 2020
title HelioPhilia Intelligent Kinetic Canopy
doi https://doi.org/10.52842/conf.ecaade.2020.2.243
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 243-250
summary In the contemporary changing world, digital architecture is to bring us new horizons and opportunities to take a determining step toward future. It results in speed and precision in process of design and construction. Moreover, the world is shifting to smartness. This paper is to develop a comprehensive mechanism to design an innovative canopy inspired from nature. Therefore, the canopy is going to inspire from young sunflowers. The canopy consists of a multi-functional waffle-frame. The main wing of the platform structure can have alternative utilization and the amount of light passing through it can be adjusted by using shade on the waffle spaces. Solar panels can also be used on the frames conductive to supply the energy independently. This HelioPhilia canopy always seeking the daylight, therefore, it cast a shadow behind itself to provide much more comfortable environment for whom choose there to be inside as a user. The results emphasize on the role of learning from nature in successful digital design process.
keywords HelioPhilia Architecture; Intelligent Architecture; Kinetic Spaces; Digital Fabrication; High-Performance Architecture; Interactive Design
series eCAADe
email
last changed 2022/06/07 07:51

_id 85b9
authors Haglund, Bruce and Sumption, Brian
year 1988
title Toward a Computer Integrated Design Studio
doi https://doi.org/10.52842/conf.acadia.1988.291
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 291-299
summary The formation of our vision for a computer-integrated design studio is outlined. The ways in which our experience in teaching with computers in a variety of settings and in developing our own computer tools has contributed to this is explained. The next step in actualization of our vision is the creation of a design curriculum and a computerized studio which support the integration of this new technology into the traditions of architectural education.
series ACADIA
last changed 2022/06/07 07:51

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
doi https://doi.org/10.52842/conf.caadria.2019.1.553
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia19_448
id acadia19_448
authors Hahm, Soomeen
year 2019
title Augmented Craftsmanship
doi https://doi.org/10.52842/conf.acadia.2019.448
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 448-457
summary Over the past decade, we have witnessed rapid advancements on both practical and theoretical levels in regard to automated construction as a consequence of increasing sophistication of digital fabrication technologies such as robotics, 3D printing, etc. However, digital fabrication technology is often very limited when it comes to dealing with delicate and complex crafting processes. Although digital fabrication processes have become widely accessible and utilized across industries in recent times, there are still a number of fabrication techniques—which heavily rely on human labour—due to the complex nature of procedures and delicacy of materials. With this in mind, we need to ask ourselves if full automation is truly an ultimate goal, or if we need to (re)consider the role of humans in the architectural construction chain, as automation becomes more prevalent. We propose rethinking the role which human, machine, and computer have in construction— occupying the territory between purely automated, exclusively robotically-driven fabrication and highly crafted processes requiring human labour. This is to propose an alternative to reducing construction to fully automated assembly of simplified/discretized building parts, by appreciating physical properties of materials and nature of crafting processes. The research proposes a design-to-construction workflow pursued and enabled by augmented humans using AR devices. As a result, proposed workflows are tested on three prototypical inhabitable structure, aiming to be applicable to other projects in the near future, and to bridge the gap between purely automated construction processes on one hand, and craft-based, material-driven but labour-intensive processes on the other.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2023_308
id ecaade2023_308
authors Haidar, Adonis
year 2023
title Evolution of Modelling in Architecture: A Framework for the categorisation and evaluation of digital models in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2023.2.811
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 811–820
summary Apart from being an integral part of the architectural design process, modelling is becoming central to architecture as well as to neighbouring fields. The technologies and tools applicable for the generation, development and coordination of models are growing rapidly. In one single project, a wide range of models is used which poses challenges in practice in terms of establishing a systematic way to utilise those modelling techniques and access their potential benefits. Aiming to enhancing the effectiveness and efficiency of the various modelling methods, this paper establishes a framework for the different types of models where the models are categorised and evaluated based on different criteria. To achieve this, a critical review of the literature related to the history of modelling in architecture and the emergence of the different methods of modelling is conducted. Beyond classical, CAD-based 3D models, the framework identifies four categories of modelling methods: performative modelling, algorithmic modelling, parametric modelling, and BIM. Each category is evaluated based on the generation and modification process, model entity and model function. Subsequently, the paradigm shifts associated with each modelling method are identified and discussed.
keywords 3D Modelling History, CAD, BIM, Generative/Algorithmic Modelling, Parametric Modelling, Performative Modelling, Paradigm Shift, Computational Design
series eCAADe
email
last changed 2023/12/10 10:49

_id sigradi2005_564
id sigradi2005_564
authors Haiek Coll, Alejandro
year 2005
title Occupation strategies in vertical contexts: anchorages, connections, bonds and other hybrid operations on urban preexistences. Vertical development of flexible domestic programs in surfaces, interstices or grounds.
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 2, pp. 564-569
summary Vertical development of flexible domestic programs in surfaces, interstices or grounds. The studio explores several possibilities on coupling, adherence, or hybridation as a method of strategies of urban occupation and urban preexistences. The main subject centers its intentions on sustentation of an architectonic device and evaluates in them the conditions to implement a program domestic servant of extreme survival. Its focuses in the development of structural systems and process of adaptation and in the construction of dwellings devices with transformable components and technical details brought from them specially characteristics in operative furniture as an articulator of the house daily use. [Full paper in Spanish]
series SIGRADI
email
last changed 2016/03/10 09:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 846HOMELOGIN (you are user _anon_198365 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002