CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 14375

_id caadria2014_071
id caadria2014_071
authors Li, Lezhi; Renyuan Hu, Meng Yao, Guangwei Huang and Ziyu Tong
year 2014
title Sculpting the Space: A Circulation Based Approach to Generative Design in a Multi-Agent System
doi https://doi.org/10.52842/conf.caadria.2014.565
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 565–574
summary This paper discusses an MAS (multiagent system) based approach to generating architectural spaces that afford better modes of human movement. To achieve this, a pedestrian simulation is carried out to record the data with regard to human spatial experience during the walking process. Unlike common practices of performance oriented generation where final results are achieved through cycles of simulation and comparison, what we propose here is to let human’s movement exert direct influence on space. We made this possible by asking "humans" to project simulation data on architectural surroundings, and thus cause the layout to change for the purpose of affording what we designate as good spatial experiences. A generation experiment of an exhibition space is implemented to explore this approach, in which tentative rules of such spatial manipulation are proposed and tested through space syntax analyse. As the results suggested, by looking at spatial layouts through a lens of human behaviour, this projection-and-generation method provides some insight into space qualities that other methods could not have offered.
keywords Performance oriented generative design; projection; multi-agent system; pedestrian simulation; space syntax
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2008_22_session3a_180
id caadria2008_22_session3a_180
authors Li, Li; Jingwen Gu, Jing Ma
year 2008
title A solution of geometric security based on autoCAD
doi https://doi.org/10.52842/conf.caadria.2008.180
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 180-184
summary There are numerous electronic blueprints used in engineering today. The geometric security of these blueprints is a big problem to be solved. Based on the research on CAD system mechanics, this paper gives a solution that makes geometric access and use secure,, and gives an implementation on AutoCAD system. It designs a new encryption system compatible with the built-in encryption according to the exploration of variants and commands mechanism in AutoCAD system, and the analysis of structure of drawing database. The solution provides a safe access to files for different level users, and it places the control of edit authority on special geometrics via adding customized objects which contains authority information and password to the graphic information database.
keywords geometric security, order mechanism, customized object
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia20_170
id acadia20_170
authors Li, Peiwen; Zhu, Wenbo
year 2020
title Clustering and Morphological Analysis of Campus Context
doi https://doi.org/10.52842/conf.acadia.2020.2.170
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 170-177.
summary “Figure-ground” is an indispensable and significant part of urban design and urban morphological research, especially for the study of the university, which exists as a unique product of the city development and also develops with the city. In the past few decades, methods adapted by scholars of analyzing the figure-ground relationship of university campuses have gradually turned from qualitative to quantitative. And with the widespread application of AI technology in various disciplines, emerging research tools such as machine learning/deep learning have also been used in the study of urban morphology. On this basis, this paper reports on a potential application of deep clustering and big-data methods for campus morphological analysis. It documents a new framework for compressing the customized diagrammatic images containing a campus and its surrounding city context into integrated feature vectors via a convolutional autoencoder model, and using the compressed feature vectors for clustering and quantitative analysis of campus morphology.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2017_129
id ecaade2017_129
authors Li, Qinying and Teng, Teng
year 2017
title Integrated Adaptive and Tangible Architecture Design Tool
doi https://doi.org/10.52842/conf.ecaade.2017.1.619
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 619-628
summary In this paper, we identified two majority issues of current CAAD development situating from the standpoint of CAAD history and the nature of design. On one hand, current CAAD tools are not adaptive enough for early design stage, since most of CAAD tools are designed to be mathematical correct. as we conducted a detailed survey of CAAD development history, we find out that most of the techniques of Computer-Aided Design applied into architecture are always adopted from engineering track. On other hand, the interaction between Architects/Designer and CAAD tools needs to be enhanced. Design objects are operated by 2d based tools such as keyboard, mouse as well as monitors which are less capable of comprehensively representing physical 3D building objects. In addition, we proposed a working in progress potential solution with HCI approaches to fix these issues. We summarize that , the prototype proved that architects and designers could benefit from utilizing adaptive and tangible design tools, especially during massing studies in the early phases of architectural design.
keywords CAAD development,; Human Computer Interaction; Tangible User Interfaces; Design Tool development; Design Process
series eCAADe
email
last changed 2022/06/07 07:59

_id 5b5d
authors Li, S.-P., Frazer, J.H. and Tang M.-X.
year 2000
title A Constraint Based Generative System for Floor Layouts
doi https://doi.org/10.52842/conf.caadria.2000.441
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 441-450
summary This paper presents the current study of using a constraint based approach to solve floor layout problems. Nonlinear programming technique is used for the solution searching. This paper presents the authors' attempt to improve the nonlinear programming techniques for floor layout problems. Unlike most nonlinear programming systems, multiple optimized solutions can be provided with this system. The process of solving a layout problem, from constraint specification to solution searching, is described in detail. A case study is given in the last section before the conclusions to illustrate how the proposed model works.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 4109
authors Li, Shu-Xiang and Leow, Murray H.
year 1987
title The Quadcode and its Arithmetic
source Communications of the ACM. July, 1987. vol. 30: pp. 621-626 : ill. includes bibliography
summary The quadcode is a hierarchical data structure for describing digital images. It has the following properties: (1) straightforward representation of dimension, size, and the relationship between an image and its subsets; (2) explicit description of geometric properties, such as location, distance, and adjacency; and (3) ease of conversion from and to raster representation. The quadcode has applications to computer graphics and image processing because of its ability to focus on selected subsets of the data and to allow utilization of multiple resolutions in different parts of the image. A related approach is the quadtree. Samet recently presented a thorough survey of the literature in that field. Gargantini and Abel and Smith presented linear quadtrees and linear locational keys that are efficient labeling techniques for quadtrees. In those papers the geometric concepts of the image are discussed by using the tree as an interpretive medium, and the approaches and procedures are based on traversal of the nodes in the tree. In this paper the authors present the quadcode system, which is a direct description of the image, and discuss the geometric concepts in terms of the coded images themselves
keywords quadtree, image processing, representation, computer graphics, search
series CADline
last changed 2003/06/02 13:58

_id caadria2022_195
id caadria2022_195
authors Li, Shuyang, Sun, Chengyu and Lin, Yinshan
year 2022
title A Method of VR Enhanced POE for Wayfinding Efficiency in Mega Terminals of Airport
doi https://doi.org/10.52842/conf.caadria.2022.1.079
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 79-88
summary The airport is one of the most essential infrastructures of cities. An important issue of the airport design is that passengers must be able to find their way efficiently. Although the designers adopt the post-evaluation after the operation, it takes a long time to conduct the on-site wayfinding experiment, and the number of participants of the experiment is also limited. Moreover, conventional post-occupancy evaluation suffers from security control and quarantine inspection that can not be carried out in the field. We proposed a VR enhanced POE approach that carries out an online wayfinding experiment to obtain numerous and detailed data, which significantly improves the efficiency of the post-occupancy evaluation project, and is validated by an affordable small-scale on-site experiment. Meanwhile, the cause for low wayfinding efficiencies, such as the symmetric space, the ambiguous direction and the redundant information on signboards are found and corresponding optimization suggestions are presented. The following signage system optimization project conducted in the terminal is welcomed by the passengers according to monthly questionnaires.
keywords Transportation Building, Post-Occupancy Evaluation, Digital Twins, Signage System Design, Wayfinding, Virtual Reality, Eye-Tracking, SDG 9.
series CAADRIA
email
last changed 2022/07/22 07:34

_id 85db
authors Li, Siu Pan Thomas and Will, Barry F.
year 1997
title A Computer Based Evaluation Tool for the Visual Aspects in Window Design
doi https://doi.org/10.52842/conf.caadria.1997.247
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 247-256
summary Windows in buildings must respond to five major issues – daylight, sunshine, view, ventilation and sound. Each of these processes in its own way can be critical to the synthesis of a successful architectural design. All factors except view are engineering criteria that can be evaluated by some mathematical formulae provided there is sufficient information for the calculations. In contrast view” being a qualitative entity has difficulty in being measured by using conventional mathematical tools but it is probably the major factor that leads to the satisfaction and comfort of the users inside the building enclosure. This paper introduces a new approach in analyzing views by the use of computers. One of the advantages of this analysis process is that the psychological aspects are less biased in the end product. This paper explains the methodologies, theories and principles underlying these modeling and analyzing tools.
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac20053405
id ijac20053405
authors Li, Siu-Pan; Kvan, Thomas
year 2005
title Enhancing Interaction in Architectural Presentations with Laser Pointers
source International Journal of Architectural Computing vol. 3 - no. 4, 503-517
summary In a common meeting environment with projector-and-screen settings, the discussion may be dominated by a presenter who has the control of the content displayed. Although frequently used for architectural discussions, this digitally-engaged setting may not be optimal in its support of participation and discussion of design ideas. This paper presents a novel use of laser pointers to enhance the interaction in architectural presentations. A laser pointing system designed for a projector-and-screen environment was developed. To compare the performance of the laser pointer with other interaction devices, a controlled user study was carried out to test the efficiency of different devices in point-and-selection interactions. The usability of the system was also tested in a design critique. These two tests show that laser pointer is useful and able to encourage participation in group discussions. Details of the laser pointing system, the experiments and the results are reported in this paper.
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00002
last changed 2007/03/04 07:08

_id caadria2023_80
id caadria2023_80
authors Li, Weiqiong, Lo, Tiantian and Guo, Xiangmin
year 2023
title Exploring the Application of the Digital Gamification Mechanisms to the Experience of Physical Architectural Exhibitions
doi https://doi.org/10.52842/conf.caadria.2023.1.717
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 717–726
summary This study aims to respond to the 'human-centred' theme of digital heritage and visualisation by exploring a new approach to applying gamification mechanisms to design physical architectural exhibitions. This paper analyses the current exhibition's gamification design in three parts-core drivers, defining characteristics and development models. Then constructs a design model for "digital gamification". The history museum of Harbin Institute of Technology (Shenzhen) is selected as an example to conduct an empirical investigation. Finally, future experiments are proposed to evaluate the design process's effects on improving the platform's design. It is expected that the demonstration of this study will enrich the exploration of the application of the emerging design method of digital gamification mechanism in exhibition design. On the one hand, it attempts to construct the relationship between the influence of digital gamification mechanisms on the tangible and intangible information in the audience's cognitive space, thus providing new ideas for designing cultural experiences in future exhibition spaces. On the other hand, it gives new vitality to the exhibition design and enhances the audience's motivation to interact, which helps to expand cultural communication's influence.
keywords Exhibition space, Experiential mechanism, Digital interaction, Gamification, Extended reality
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2024_360
id ecaade2024_360
authors Li, Wen-Ting; Fang, Han; Mak, Michele W. T.; Iuorio, Ornella
year 2024
title Impacts of Human Energy-Related Behaviours on the Energy Efficiency of Adaptive Building Façade: A Review
doi https://doi.org/10.52842/conf.ecaade.2024.2.557
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 557–566
summary Amid growing imperatives for heightened building energy efficiency and occupant comfort, adaptive façades have garnered significant attention and research efforts aimed at refining their structure and techniques to achieve energy savings. However, studies frequently overlook the consideration of human factors that impact the energy performance of adaptive façades, with limited discussions on potential solutions. In this review study, an investigation is undertaken to firstly delineate the challenges posed by occupant disruptive behaviour to the expectation of adaptive façade operations. Secondly, this study focuses on reviewing gamification design and implementation techniques aimed at enhancing operational efficiency and fostering increased user engagement. Findings from this review indicate that occupant-oriented adaptivity is crucial for the effective operation of adaptive façades, underscoring the importance of incorporating occupant-empowered control when automation systems are involved. Furthermore, the review highlights the necessity for gamification implementation methods to align with the unique characteristics of the building type and its occupants. Particularly, achieving a balance between extrinsic and intrinsic motivation appears as crucial. This study serves as a foundational resource for researchers and practitioners seeking to leverage the gamification for enhancing data communication and collection by promoting users’ engagement and positive behavioural change within the context of building adaptive façades - users interaction.
keywords adaptive façade, building energy efficiency, human factors, occupant energy behaviour, gamification
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2024_80
id ecaade2024_80
authors Li, Wenpei; Wu, Jiaqian; M. Herr, Christiane; Stouffs, Rudi
year 2024
title Enhancing Lexicon Based Evaluation of Urban Green Space Characteristics and Perceptions with a Large Language Model
doi https://doi.org/10.52842/conf.ecaade.2024.2.059
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 59–68
summary Evaluating Urban green space Characteristics and Human Perceptions (UCHP) is crucial for landscape design and management due to their impact on public health. Online park reviews provide valuable insights into human-environment interactions, enabling the large-scale evaluation of UCHP. However, existing approaches to classify online park reviews commonly ignore text context, leading to low precision of UCHP quantification and supervised approaches are rarely applied due to huge cost. To improve the precision and effectiveness of UCHP quantification, we propose a novel workflow comprising five stages: custom lexicon creation, design of labels for a Large Language Model (LLM), sentence classification using lexicon and LLM, and performance evaluation using a manually annotated dataset and four metrics: precision, recall, accuracy, and F1 score. To examine the performance of the LLM, we compared the classification of 15 UCHP using LLM, lexicon, and lexicon+LLM. The analysis involved utilizing online park review sentences from Google Map and TripAdvisor using the proposed workflow. The higher precision, accuracy and F1 score demonstrate that combination of lexicon and LLM yields the highest performance, followed by using only lexicon and then solely LLM. This performance evaluation demonstrates the validity of the proposed LLM-aided workflow, providing a practical, reliable, and efficient alternative to the lower performance of unsupervised methods, or costly supervised classification methods. We discuss the limitations of lexicon+LLM and outline new opportunities for LLM application in landscape studies.
keywords urban green space, characteristics and human perceptions, large language model, evaluation
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2024_273
id caadria2024_273
authors Li, Xiaoqian, Han, Zhen, Liu, Gang and Stouffs, Rudi
year 2024
title A Rapid Prediction Model for View-Based Glare Performance With Multimodal Generative Adversarial Networks
doi https://doi.org/10.52842/conf.caadria.2024.1.029
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 1, pp. 29–38
summary Machine learning-based glare prediction has greatly improved the efficiency of performance feedback. However, its limited generalizability and the absence of intuitive predictive indicators have constrained its practical application. In response, this study proposes a prediction model for luminance distribution images based on the multimodal learning approach. This model focuses on objects within the field of view, integrating spatial and material features through images. It also employs semantic feature mapping and multimodal data integration to flexibly represent building information, removing limitations on model validity imposed by changes in design scenarios. Additionally, the study proposes a multimodal Generative Adversarial Network tailored for the multimodal inputs. This network is equipped with unique feature fusion and reinforcement blocks, along with advanced up-sampling techniques, to efficiently distill and extract pertinent information from the inputs. The model's efficacy is verified by cases focusing on residential building luminance distribution, with a 97% improvement in computational speed compared to simulation methods. Offering both speed and accuracy, this model provides designers with a rapid, flexible, and intuitive supporting approach for daylight performance optimization design, particularly beneficial in the early design stage.
keywords Glare Prediction, Prediction Model, Multimodal Model, Generative Adversarial Networks
series CAADRIA
email
last changed 2024/11/17 22:05

_id caadria2020_260
id caadria2020_260
authors LI, Yan, DU, Hongwu and WANG, Qing
year 2020
title The Association Study Between Residential Building Interface and Perceived Density based on VR Technology - Taking 2 Enclosed Residential Districts of Guangzhou as Examples
doi https://doi.org/10.52842/conf.caadria.2020.1.711
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 711-720
summary As urban development enters the stock increment era , the demand of environmental quality in urban residential districts gradually improves, making the construction of livable residential environment an important direction of urban development. The improvement of livable environment is the inevitable result of this process and perceived density is an indispensable and important part. Among the statistical methods, preference study is the most commonly one to explore the subjective factors affecting preference. The experience of immersive virtual environment can provide a more appropriate analytical method better for traditional image selection. Different permeability of architectural interface has significant influences on the perception of space comfortability, crowding and fascination. In this paper, two existing enclosed residential districts are selected for case study. The factors closely related to perceived density, such as solid Wall, grille, glass, open space, greening, etc, are selected by using immersive virtual technology. Through the interviewees' evaluations of perceived density of the virtual environment, the relationship between building interface and the perceived density of the residential area will be established.
keywords Spatial Perceived Density; Virtual Reality Technology; Enclosed Residential District; Housing Interface; Association Study
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2023_390
id caadria2023_390
authors Li, Yu, Li, Lingling and Yue, Naihua
year 2023
title A Surrogate-Assisted Optimization Approach to Improve Thermal Comfort and Energy Efficiency of Sports Halls in Subtropical Climates
doi https://doi.org/10.52842/conf.caadria.2023.1.301
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 301–310
summary Balancing the thermal comfort and energy efficiency has been recognized as a critical issue in sports hall design, which is yet to be properly implemented in early design stages due to the huge computational cost and delayed simulation feedback. This paper develops an accelerated optimization approach for thermal comfort and energy efficiency of sports halls by combining surrogate modelling with evolutionary algorithms. An integrated computational workflow designated for early-stage application was established that consists of Design of experiments, Surrogate modelling, Surrogate-assisted multi-objective optimization, and Multi-criteria decision making. Specifically, a parametric sports hall model was set up for batch physics-based simulations to generate abundant training samples, which was then utilized to develop surrogate models for the rapid prediction of thermal comfort and energy efficiency. The validated surrogate models were eventually linked with evolutionary algorithms to quickly identify the optimal design solution(s). The performance of the developed approach was evaluated against the traditional simulation-based optimization (SBMOO) method. Results indicated that the proposed approach could save 70.91% of total computational time for this case study, whilst achieving better optimized thermal comfort and energy efficiency with a reduction of mean PMV and site EUI by 0.001 and 1.60 kWh/m2/yr versus the SBMOO method.
keywords Thermal comfort, Energy efficiency, Multi-objective optimization, Surrogate model, Sports hall
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2023_412
id caadria2023_412
authors Li, Yuanyuan, Huang, Chenyu and Yao, Jiawei
year 2023
title Optimising the Control Strategies for Performance-Driven Dynamic Building Facades Using Machine Learning
doi https://doi.org/10.52842/conf.caadria.2023.1.199
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 199–208
summary The balance between energy consumption and indoor environmental comfort is a continuing research topic in building energy efficiency. The dynamic façades (DF) are considered a practical approach to separate the sun and create more shadows for buildings with curtain walls, reducing the HVAC system's energy consumption. However, the design complexity of the DF leads to a time-consuming simulation process, making it difficult to modify the design parameters in the early design stage efficiently. This paper provides optimized control strategies for four dynamic façade prototypes. We use explainable machine learning to explore the relationship between design parameters of DF and indoor performance, including Energy Use Intensity (EUI) and Daylight Glare Probability (DGP). We deployed the trained model in optimizing the rotation angle of DF per hour on a typical day to minimize the EUI and DGP of the target room. The results show that the rotation angle of DF significantly affects the DGP, whereas the room size affects EUI performance more than rotation angles. Optimized control strategies of DF bring a maxim 13.5% EUI decrease and 51.7% reduction of DGP. Our work provides a generalizable design flow for performance-driven dynamic skin design.
keywords Dynamic façade, Energy consumption, Indoor comfort, computational simulation, Multi-objective optimization, Machine learning
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2022_394
id caadria2022_394
authors Li, Yuanyuan, Huang, Chenyu, Zhang, Gengjia and Yao, Jiawei
year 2022
title Machine Learning Modeling and Genetic Optimization of Adaptive Building Facade Towards the Light Environment
doi https://doi.org/10.52842/conf.caadria.2022.1.141
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 141-150
summary For adaptive facades, the dynamic integration of architectural and environmental information is essential but complex, especially for the performance of indoor light environments. This research proposes a new approach that combines computer-aided design methods and machine learning to enhance the efficiency of this process. The first step is to clarify the design factors of adaptive facade, exploring how parameterized typology models perform in simulation. Then interpretable machine learning is used to explain the contribution of adaptive facade parameters to light criteria (DLA, UDI, DGP) and build prediction models for light simulation. Finally, Wallacei X is used for multi-objective optimization, determines the optimal skin options under the corresponding light environment, and establishes the optimal operation model of the adaptive facades against changes in the light environment. This paper provides a reference for designers to decouple the influence of various factors of adaptive facades on the indoor light environment in the early design stage and carry out more efficient adaptive facades design driven by environmental performance.
keywords Adaptive Facades, Light Environment, Machine learning, Light Simulation, Genetic Algorithm, SDG 3, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2020_113
id ecaade2020_113
authors Li, Yunqin, Yabuki, Nobuyoshi, Fukuda, Tomohiro and Zhang, Jiaxin
year 2020
title A big data evaluation of urban street walkability using deep learning and environmental sensors - a case study around Osaka University Suita campus
doi https://doi.org/10.52842/conf.ecaade.2020.2.319
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 319-328
summary Although it is widely known that the walkability of urban street plays a vital role in promoting street quality and public health, there is still no consensus on how to measure it quantitatively and comprehensively. Recent emerging deep learning and sensor network has revealed the possibility to overcome the previous limit, thus bringing forward a research paradigm shift. Taking this advantage, this study explores a new approach for urban street walkability measurement. In the experimental study, we capture Street View Picture, traffic flow data, and environmental sensor data covering streets within Osaka University and conduct both physical and perceived walkability evaluation. The result indicates that the street walkability of the campus is significantly higher than that of municipal, and the streets close to large service facilities have better walkability, while others receive lower scores. The difference between physical and perceived walkability indicates the feasibility and limitation of the auto-calculation method.
keywords walkability; WalkScore; deep learning; Street view picture; environmental sensor
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2019_134
id caadria2019_134
authors Li, Yunqin, Zhang, Jiaxin and Yu, Chuanfei
year 2019
title Intelligent Multi-Objective Optimization Method for Complex Building Layout based on Pedestrian Flow Organization - A case study of People's Court building in Anhui, China
doi https://doi.org/10.52842/conf.caadria.2019.1.271
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 271-280
summary The pedestrian flow of the building influences and determines the layout of the building's plan. For buildings with complex flow such as courts, airports, and stations, mixed flow line and low traffic efficiency are prone to be problems. However, the optimization of the layout of complex flow buildings usually relies on the architect's experience to judge and trials to improve. To overcome these problems, we attempt to establish a parametric model of buildings' plan (taking a typical court building as an example) with information about the different pedestrian flow and functional groups. Based on the Rhino and Grasshopper platform, we take the minimum of different pedestrian flow path length and the maximum of total spatial integration value and the minimum of total spatial entropy value as the starting point, combines pathfinding algorithm, Space Syntax and multi-objective genetic algorithm to optimize space allocation. The result shows that, compared with the original scheme, the intelligent optimised scheme can reduce the spatial waste caused by improper flow organisation, effectively improve space transportation capacity and spatial organization efficiency.
keywords Intelligent optimisation; space allocation; multi-objective optimization algorithm; Space Syntax; pathfinding algorithm
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia22_714
id acadia22_714
authors Li, Yunqin; Zhang, Jiaxin; Wang, Xueqiang; Ma, Kai
year 2022
title Measuring Street Vitality Based on Video-image Using Deep Learning
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 714-725.
summary This paper proposes a deep convolutional neural network-based framework for fine-scale studies on automatic evaluation of street-level vitality using multiple object tracking and image segmentation with video data. A deep learning model for street vitality evaluation was proposed based on the intensity and complexity of pedestrian activities.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 718HOMELOGIN (you are user _anon_192718 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002