CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 5507

_id ga9916
id ga9916
authors Elzenga, R. Neal and Pontecorvo, Michael S.
year 1999
title Arties: Meta-Design as Evolving Colonies of Artistic Agents
source International Conference on Generative Art
summary Meta-design, the act of designing a system or species of design instead of a design instance, is an important concept in modern design practice and in the generative design paradigm. For meta-design to be a useful tool, the designer must have more formal support for both design species definition/expression and the abstract attributes which the designer is attempting to embody within a design. Arties is an exploration of one possible avenue for supporting meta-design. Arties is an artistic system emphasizing the co-evolution of colonies of Artificial Life design or artistic agents (called arties) and the environment they inhabit. Generative design systems have concentrated on biological genetics metaphors where a population of design instances are evolved directly from a set of ‘parent’ designs in a succession of generations. In Arties, the a-life agent which is evolved, produces the design instance as a byproduct of interacting with its environment. Arties utilize an attraction potential curve as their primary dynamic. They sense the relative attraction of entities in their environment, using multiple sensory channels. Arties then associate an attractiveness score to each entity. This attractiveness score is combined with a 'taste' function built into the artie that is sensitized to that observation channel, entity, and distance by a transfer function. Arties use this attraction to guide decisions and behaviors. A community of arties, with independent evolving attraction criteria can pass collective judgement on each point in an art space. As the Artie moves within this space it modifies the environment in reaction to what it senses. Arties support for Meta-design is in (A) the process of evolving arties, breeding their attraction potential curve parameters using a genetic algorithm and (B) their use of sensory channels to support abstract attributes geometries. Adjustment of these parameters tunes the attraction of the artie along various sensing channels. The multi-agent co-evolution of Arties is one approach to creating a system for supporting meta-design. Arties is part of an on-going exploration of how to support meta-design in computer augmented design systems. Our future work with Arties-like systems will be concerned with applications in areas such as modeling adaptive directives in Architecture, Object Structure Design, spatio-temporal behaviors design (for games and simulations), virtual ambient spaces, and representation and computation of abstract design attributes.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 57b7
authors Dijkstra, Jan and Timmermans, Harry J.P.
year 1999
title Towards a Multi-Agent System for Network Decision Analysis
doi https://doi.org/10.52842/conf.caadria.1999.373
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 373-382
summary We introduce the outline of a multi-agent system that can be used for network decision analysis. This system is based on cellular automata and multi-agent technology. The system simulates how agents move around in a particular 3D (or 2D) environment, in which space is represented as a lattice of cells. Agents represent objects or people with their own behavior, moving over the network. We think that the system provides a potentially valuable tool to support design and decision-making processes, related to user behavior, in architecture and urban planning.
series CAADRIA
last changed 2022/06/07 07:55

_id 3ddc
authors Dijkstra, Jan and Timmermans, Harry
year 1999
title Towards a Multi-Agent Model for Visualizing Simulated User Behavior to Support the Assessment of Design Performance
doi https://doi.org/10.52842/conf.acadia.1999.226
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 226-237
summary We introduce the outline of a multi-agent model that can be used for visualizing simulated user behavior to support the assessment of design performance. We will consider various performance indicators of building environments, which are related to user reaction to design decisions. This system may serve as a media tool in the design process for a better understanding of what the design will look like, especially for those cases where design or planning decisions will affect the behavior of individuals. The system is based on cellular automata and multi-agent simulation technology. The system simulates how agents move around in a particular 3D (or 2D) environment, in which space is represented as a lattice of cells. Agents represent objects or people with their own behavior, moving over the network. Each agent will be located in a simulated space, based on the cellular automata grid. Each iteration of the simulation is based on a parallel update of the agents conforming local rules. Agents positioned within an environment will need sensors to perceive their local neighborhood and some means with which to affect the environment. In this way, autonomous individuals and the interaction between them can be simulated by the system. As a result, designers can use the system to assess the likely consequences of their design decisions on user behavior. We think that the system provides a potentially valuable tool to support design and decision-making processes, related to user behavior in architecture and urban planning.
series ACADIA
email
last changed 2022/06/07 07:55

_id ae38
authors Jabi, Wassim
year 1999
title Integrating Databases, Objects and the World-Wide Web for Collaboration in Architectural Design
source Proceedings of the focus symposium: World Wide Web as Framework for Collaboration in conjunction with the 11th International Conference on Systems Research, Informatics and Cybernetics, The International Institute for Advanced Studies in Systems Research
summary Architectural design requires specialized vertical knowledge that goes beyond the sharing of marks on paper or the multi-casting of video images. This paper briefly surveys the state-ofthe- art in groupware and outlines the need for vertical and integrated support of synchronous and asynchronous design collaboration. The paper also describes a software prototype (WebOutliner) under development that uses a three-tier persistent object-oriented, web-based technology for a richer representation of hierarchical architectural artifacts using Apple’s WebObjects technology. The prototype contributes to earlier work that defined a framework for a shared workspace consisting of Participants, Tasks, Proposals, and Artifacts. These four elements have been found through observation and analysis to be adequate representations of the essential components of collaborative architectural design. These components are also hierarchical which allows users to filter information, copy completed solutions to other parts of the program, analyze and compare design parameters and aggregate hierarchical amounts. Given its object orientation, the represented artifacts have built-in data and methods that allow them to respond to user actions and manage their own sub-artifacts. In addition, the prototype integrates this technology with Java tools for ubiquitous synchronous web-based access. The prototype uses architectural programming (defining the spatial program of a building) and early conceptual design as examples of seamlessly integrated groupware applications.
keywords Computer Supported Collaborative Design, WebObjects, Synchronous and Asynchronous Collaboration, Java Applets, Application Server, Web-based Interface
series other
email
last changed 2002/03/05 19:55

_id 221d
authors Lee, Sanghyun
year 1999
title Internet-based collaborative design evaluation : an architect's perspective
source Harvard University
summary This research aims at developing a design evaluation system that employs a Product Model as the logical basis for integrating building design and construction processes. The system is implemented with Java language, which allows the system to work over the Internet. Accordingly, the system helps architects to collaborate with remote participants. Thus, this design evaluation system is a building performance evaluator like DOE-2, RADIANCE, HVAC, and the Automated Building Code Checker. This research, however, is mainly concerned with an architect's view during the schematic design and design development stage, while the existing design evaluation systems cover other special consultants' views such as those of HVAC designers, structural engineers, and contractors. From an architect's view, this evaluation system checks the compliance of design objects represented by means of physical objects such as walls and windows and conceptual objects such as rooms as well, to the design criteria focused on accommodating human behavior, rather than other building performances such as sustaining building structures and maintaining indoor livability. As such, the system helps designers analyze and evaluate design solutions according to their original intent. The innovative points of this research lie in the following: (1) Unlike other inquiries, it addresses a systematic evaluation of building design from an architect's view focusing on the experiential quality of the built environment. This research demonstrates that such an evaluation becomes available by introducing human activity-based evaluation. (2) It can take a multi-agenda for several groups of different interests by providing an Aspect Model based on human activity-centered systematic translation of their design considerations and 3D model-based graphical representations into system readable ones. (3) As a result, it addresses the possibility of expanding the capability of the design evaluator from a mere code checker to a general design evaluator while simultaneously, enhancing the availability from stand alone to Internet based networking.
keywords Architectural Rendering; Data Processing; Evaluation; Buildings; Performance; World Wide Web; Internet
series thesis:PhD
last changed 2003/02/12 22:37

_id 6810
authors Makkonen, Petri
year 1999
title On multi body systems simulation in product design
source KTH Stockholm
summary The aim of this thesis is to provide a basis for efficient modelling and software use in simulation driven product development. The capabilities of modern commercial computer software for design are analysed experimentally and qualitatively. An integrated simulation model for design of mechanical systems, based on four different "simulation views" is proposed: An integrated CAE (Computer Aided Engineering) model using Solid Geometry (CAD), Finite Element Modelling (FEM), Multi Body Systems Modelling (MBS) and Dynamic System Simulation utilising Block System Modelling tools is presented. A theoretical design process model for simulation driven design based on the theory of product chromosome is introduced. This thesis comprises a summary and six papers. Paper A presents the general framework and a distributed model for simulation based on CAD, FEM, MBS and Block Systems modelling. Paper B outlines a framework to integrate all these models into MBS simulation for performance prediction and optimisation of mechanical systems, using a modular approach. This methodology has been applied to design of industrial robots of parallel robot type. During the development process, from concept design to detail design, models have been refined from kinematic to dynamic and to elastodynamic models, finally including joint backlash. A method for analysing the kinematic Jacobian by using MBS simulation is presented. Motor torque requirements are studied by varying major robot geometry parameters, in dimensionless form for generality. The robot TCP (Tool Center Point) path in time space, predicted from elastodynamic model simulations, has been transformed to the frequency space by Fourier analysis. By comparison of this result with linear (modal) eigen frequency analysis from the elastodynamic MBS model, internal model validation is obtained. Paper C presents a study of joint backlash. An impact model for joint clearance, utilised in paper B, has been developed and compared to a simplified spring-damper model. The impact model was found to predict contact loss over a wider range of rotational speed than the spring-damper model. Increased joint bearing stiffness was found to widen the speed region of chaotic behaviour, due to loss of contact, while increased damping will reduce the chaotic range. The impact model was found to have stable under- and overcritical speed ranges, around the loss of contact region. The undercritical limit depends on the gravitational load on the clearance joint. Papers D and E give examples of the distributed simulation model approach proposed in paper A. Paper D presents simulation and optimisation of linear servo drives for a 3-axis gantry robot, using block systems modelling. The specified kinematic behaviour is simulated with multi body modelling, while drive systems and control system are modelled using a block system model for each drive. The block system model has been used for optimisation of the transmission and motor selection. Paper E presents an approach for re-using CAD geometry for multi body modelling of a rock drilling rig boom. Paper F presents synthesis methods for mechanical systems. Joint and part number synthesis is performed using the Grübler and Euler equations. The synthesis is continued by applying the theory of generative grammar, from which the grammatical rules of planar mechanisms have been formulated. An example of topological synthesis of mechanisms utilising this grammar is presented. Finally, dimensional synthesis of the mechanism is carried out by utilising non-linear programming with addition of a penalty function to avoid singularities.
keywords Simulation; Optimisation; Control Systems; Computer Aided Engineering; Multi Body Systems; Finite Element Method; Backslash; Clearance; Industrial Robots; Parallel Robots
series thesis:PhD
last changed 2003/02/12 22:37

_id a6a6
authors Peyret, F., Jurasz, J., Carrel, A., Zekri, E. and Gorham, B.
year 2000
title The Computer Integrated Road Construction project
source Automation in Construction 9 (5-6) (2000) pp. 447-461
summary This paper is about the "Computer Integrated Road Construction" (CIRC) project, which is a Brite-EuRam III funded project, lasting 1997–1999, aiming at introducing a new generation of control and monitoring tools for road pavements construction. These new tools are designed to bring on the sites significant improvements by creating a digital link between design office and job site. The first part of the paper describes the background of the project, which gathers seven European partners from five different countries, and gives the objectives of the project, in general and for each of the two targeted products: one for the compactors (CIRCOM) and one for the asphalt pavers (CIRPAV). Then, the two prototypes are described, each of them being broken down into three main sub-systems: the ground sub-system (GSS), the on-board sub-system (OB) and the positioning sub-system (POS). The expected benefits for the different users are also presented and quantified. The central part of the paper is devoted to the main technical innovations that have been developed in the frame of the project: universal vector database for road equipment guidance, multi-machine functionalities of CIRCOM and the two positioning systems which are actually the technological keys of the systems. Finally, the state of progress of the developments of the two CIRC products and the first commercial success achieved in parallel are presented.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id acadia17_18
id acadia17_18
authors Abdel-Rahman, Amira; Michalatos, Panagiotis
year 2017
title Magnetic Morphing
doi https://doi.org/10.52842/conf.acadia.2017.018
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 18-27
summary In an attempt to design shape-morphing multifunctional objects, this thesis uses programmable matter to design self-organizing multi-agent systems capable of morphing from one shape into another. The research looks at various precedents of self-assembly and modular robotics to design and prototype passive agents that could be cheaply mass-produced. Intelligence will be embedded into these agents on a material level, designing different local interactions to perform different global goals. The initial exploratory study looks at various examples from nature like plankton and molecules. Magnetic actuation is chosen as the external actuation force between agents. The research uses simultaneous digital and physical investigations to understand and design the interactions between agents. The project offers a systemic investigation of the effect of shape, interparticle forces, and surface friction on the packing and reconfiguration of granular systems. The ability to change the system state from a gaseous, liquid, then solid state offers new possibilities in the field of material computation, where one can design a "material" and change its properties on demand.
keywords material and construction; construction/robotics; smart materials; smart assembly/construction; simulation & optimization
series ACADIA
email
last changed 2022/06/07 07:52

_id architectural_intelligence2022_6
id architectural_intelligence2022_6
authors Achim Menges, Fabian Kannenberg & Christoph Zechmeister
year 2022
title Computational co-design of fibrous architecture
doi https://doi.org/https://doi.org/10.1007/s44223-022-00004-x
source Architectural Intelligence Journal
summary Fibrous architecture constitutes an alternative approach to conventional building systems and established construction methods. It shows the potential to converge architectural concerns such as spatial expression and structural elegance, with urgently required resource effectiveness and material efficiency, in a genuinely computational approach. Fundamental characteristics of fibre composite are shared with fibre structures in the natural world, enabling the transfer of design principles and providing a vast repertoire of inspiration. Robotic fabrication based on coreless filament winding, a technique to deposit resin impregnated fibre filaments with only minimal formwork, as well as integrative computational design methods are imperative to the development of complex fibrous building systems. Two projects, the BUGA Fibre Pavilion as an example for long-span structures, and Maison Fibre as an example of multi-storey architecture, showcase the application of those techniques in an architectural context and highlight areas of further research opportunities. The highly interrelated aesthetic, structural and fabrication characteristics of fibre nets are difficult to understand and go beyond a designer’s comprehension and intuition. An AI powered, self-learning agent system aims to extend and thoroughly explore the design space of fibre structures to unlock the full design potential coreless filament winding offers. In order to ensure feedback between all relevant design and performance criteria and enable interdisciplinary convergence, these novel design methods are embedded in a larger co-design framework. It formalizes the interaction of involved interdisciplinary domains and allows for interactive collaboration based on a central data model, serving as a base for design optimisation and exploration. To further advance research on fibre composites in architecture, bio-based materials are considered, continuing the journey of discovery of fibrous architecture to fundamentally rethinking design and construction towards a novel, computational material culture in architecture.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id cf2005_1_64_168
id cf2005_1_64_168
authors ACHTEN Henri
year 2005
title Resolving some Ambiguities in Real-time Design Drawing Recognition by means of a Decision Tree for Agents
source Computer Aided Architectural Design Futures 2005 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-3460-1] Vienna (Austria) 20–22 June 2005, pp. 311-320
summary In this paper, we present a theoretical study on automated understanding of the design drawing. This can lead to design support through the natural interface of sketching. In earlier work, 24 plan-based conventions of depiction have been identified, such as grid, zone, axial system, contour, and element vocabulary. These are termed graphic units. Graphic units form a good basis for recognition of drawings as they combine shape with meaning. We present some of the theoretical questions that have to be resolved before an implementation can be made. The contribution of this paper is: (i) identification of domain knowledge which is necessary for recognition; (ii) outlining combined strategy of multi-agent systems and online recognition; (iii) functional structure for agents and their organisation to converge on sketch recognition.
keywords multi-agent system, decision tree, pattern recognition, sketch
series CAAD Futures
email
last changed 2006/11/07 07:27

_id ba50
authors Achten, Henri and Jessurun, Joran
year 2002
title An Agent Framework for Recognition of Graphic Units in Drawings
doi https://doi.org/10.52842/conf.ecaade.2002.246
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 246-253
summary Architects use graphic conventions in their drawings that have meaningful content to the design task. In previous work, such well-defined sets of graphic entities have been identified and defined. These sets are called graphic units. In this paper, we discuss how graphic unit recognition in drawings can take place using a multi-agent systems approach. This approach seems promising as singular agents may specialize in graphic unit-recognition, and multi-agent systems can address problems of ambiguity through negotiation mechanisms. We present an agent framework for this purpose, how it connects to the theory of graphic units, and how agents for recognizing graphic units are defined. The paper ends with a discussion of current findings and future work.
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2003_m_006
id cf2003_m_006
authors ACHTEN, Henri and JESSURUN, Joran
year 2003
title Learning From Mah Jong - Towards a Multi-Agent System that can Recognize Graphic Units
source Digital Design - Research and Practice [Proceedings of the 10th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-1210-1] Tainan (Taiwan) 13–15 October 2003, pp. 115-124
summary Sketching is a major means of exploiting the first conceptual developments in architectural design. If we want to support the architect in the ideas-developing phase of design, then we need to understand the conventions of depiction and encoding in drawings. The theory of graphic units provides an extended list of such conventions that are widely used. We propose that a multi-agent system for recognition of graphic units in drawings is fruitful: agents can specialize in graphic units, a multi-agent system can deal with ambiguity through negotiation and conflict resolution, and multi-agent systems function in dynamically changing environments. We first make a multi-agent system that can do something simpler: playing Mah Jong solitary. The Mah Jong solitary system shares the following important features with a multi-agent system that can recognize graphic units: (1) specialized agents for moves; (2) negotiation between agents to establish the best move; (3) dynamically changing environment; and (4) search activity in more advanced strategies. The paper presents the theoretical basis of graphic units and multi-agents systems. The multi-agent framework and its implementation is presented. Various levels of game play are distinguished, and these are correlated to the multi-agent system. The paper shows how the findings form the basis for graphic unit recognition.
keywords artificial intelligence, games, graphic units, agents
series CAAD Futures
email
last changed 2003/11/22 16:39

_id acadia14_479
id acadia14_479
authors Achten, Henri
year 2014
title One and Many: An Agent Perspective on Interactive Architecture
doi https://doi.org/10.52842/conf.acadia.2014.479
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 479-486
summary Agent theory from Distributed Artificial Intelligence can form a strong theoretical foundation for the conception and following the design of interactive architecture. New concepts are introduced: style of interaction and attitude. For design support they can be unified under the notion of intentionality.
keywords Interactive Architecture, Interaction Style, Building Attitude, Multi Agent Systems in Design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id ascaad2016_047
id ascaad2016_047
authors Algeciras-Rodríguez, José
year 2016
title Trained Architectonics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 461-468
summary The research presented here tests the capacity of artificial-neural-network (ANN) based multi-agent systems to be implemented in architectural design processes. Artificial Intelligence algorithms allow for a new approach to design, taking advantage of its generic functioning to produce meaningful outcomes. Experimentation within this project is based on Self-Organizing Maps (SOMs) and takes advantage of its behavior in topology to produce architectural geometry. SOMs as full stochastic processes involve randomness, uncertainty and unpredictability as key features to deal with during the design process. Following this behavior, SOMs are used to transmit information, which, instead of being copied, is reproduced after a learning (training) process. Pre-existent architectural objects are taken as learning models as they have been considered masterpieces. In this context, by defining the SOM input set, masterpieces become measurement elements and can be used to set a distance to the new element position in a comparatistic space. The characteristics of masterpieces get embedded within the code and are transmitted to 3D objects. SOM produced objects from a population with shared characteristics where the masterpiece position is its probabilistic center point.
series ASCAAD
email
last changed 2017/05/25 13:33

_id sigradi2014_109
id sigradi2014_109
authors Alves, Gilfranco Medeiros; Anja Pratschke
year 2014
title O projeto enquanto jogo: colaboração digital livre? [Design as a game: free digital collaboration?]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 53-56
summary The paper will present one specific aspect of the PhD research called Cibersemiótica e Processos de Projeto: Metodologia em Revisão, funded by FAPESP, which in turn is linked to the Nomads.usp research group of the University of São Paulo. The paper discusses aspects of digital design processes within an approach on social collaboration with digital mediation, from concepts based on Actor Network Theory, developed by the French Philosopher Bruno Latour, Swarm Behaviour, which is observed in nature, as well as the Multi-Agent Systems. The paper aims to examine collaborative procedures and hybrid design methods involving several actors or players, trying to redefine the possibilities of conception in Architecture with a bottom-up approach, considering the concept of game applied to digital design processes.
keywords Actors Network Theory; Cybersmiotics; games;Multi-Agent System; Swarm Behaviour
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2012_066
id ecaade2012_066
authors Aschwanden, Gideon ; Zhong, Chen ; Papadopoulou, Maria ; Vernay, Didier Gabriel ; Arisona, Stefan Müller ; Schmitt, Gerhard
year 2012
title System Design Proposal for an Urban Information Platform: A systems proposal
doi https://doi.org/10.52842/conf.ecaade.2012.1.665
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 665-673.
summary This paper focuses on information modelling and proposes a system design for an urban model encompassing multi-scale data. The system employs procedural modelling on top of GIS information to allow different simulation tools to interact with the data. This is a promising approach for an urban information platform integrating multi-scale urban information to support different simulations important in urban design. In an initial instance the information platform is used to scale-up and scale-down in information modelling, linking technologies on different spatial levels, and utilizing the advantages of different tools to evaluate the built environment. The platform is applied in Singapore to manage urban data and support urban formation.
wos WOS:000330322400070
keywords Urban information model; Scale; Urban Simulation; Urban Design; CFD; Multi Agent System
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_343
id caadria2016_343
authors Asriana, Nova and Aswin Indraprastha
year 2016
title Making Sense of Agent-based Simulation: Developing Design Strategy for Pedestrian-centric Urban Space
doi https://doi.org/10.52842/conf.caadria.2016.343
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 343-352
summary This study investigates the relationships of field observa- tion, multi-agent simulation and space-syntax theory in spatial config- uration for developing design strategy for a case study, a tourist hub area in Musi Riverside, Palembang. Having such potential advantage and to tackle existing social and urban issues, our study developed a design approach based on multi-agent simulation enhanced by space syntax theory. The goal of this study is a deep understanding of multi agent simulation through mechanism of validation using field obser- vation and by taking into account the existing urban features. The purpose is to develop design strategy of pedestrian-centric urban space to be functioned as a tourist hub based on computational modelling. Following the paths result of pedestrian flow by multi-agents simula- tion, we elaborated the analysis of facility programming by means of Space Syntax theory. It shows the ranking of facility programs based on their relative connectivity and integration. By merging this result, it assembles programs and their circulation spaces by means of compu- tational simulation. Experimenting in both fields show a novel ap- proach for pedestrian-centric design in urban scale, particularly since behavioural models rarely used in early stage of design process. It shows that multi-agent simulation should be coupled with field obser- vation.
keywords Multi-agents simulation; network analysis; Space Syntax theory; design strategy; urban space
series CAADRIA
email
last changed 2022/06/07 07:54

_id ddss2004_ra-161
id ddss2004_ra-161
authors Bandini, S., S. Manzoni, and G. Vizzari
year 2004
title Crowd Modeling and Simulation
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 161-175
summary The paper introduces a Multi Agent Systems (MAS) approach to crowd modelling and simulation, based on the Situated Cellular Agents (SCA) model. This is a special class of Multilayered Multi Agent Situated System (MMASS), exploiting basic elements of Cellular Automata. In particular SCA model provides an explicit spatial representation and the definition of adjacency geometries, but also a concept of autonomous agent, provided with an internal architecture, an individual state and behaviour. The latter provides different means of space-mediated interaction among agents: synchronous, between adjacent agents, and asynchronous among at-a-distance entities. Heterogeneous entities may be modelled through the specification of different agent types, defining different behaviours and perceptive capabilities. After a brief description of the model, its application to simple crowd behaviours will be given, and an application providing the integration of a bidimensional simulator based on this model and a 3D modelling application (3D Studio) will also be described. The adoption of this kind of system allows the specification and simulation of an architectural design with reference to the behaviour of entities that will act in it. The system is also able to easily produce a realistic visualization of the simulation, in order to facilitate the evaluation of the design and the communication with involved decision-makers. In fact, while experts often require only abstract and analytical results deriving from a quantitative analysis of simulation results, other people involved in the decision-making process related to the design may be helped by qualitative aspects better represented by other forms of graphical visualization.
keywords Multi-Agent Systems, 3D modelling, Simulation
series DDSS
last changed 2004/07/03 22:13

_id ddss2004_d-269
id ddss2004_d-269
authors Beetz, J., J. van Leeuwen, and B. de Vries
year 2004
title Towards a Multi Agent System for the Support of Collaborative Design
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 269-280
summary In this paper we are drafting the outline of a framework for a Multi Agent System (MAS) for the support of Collaborative Design in the architectural domain. The system we are proposing makes use of Machine Learning (ML) techniques to infer personalized knowledge from observing a users’ action in a generic working environment using standard tools such as CAD packages. We introduce and discuss possible strategies to combine Concept Modelling (CM)-based approaches using existing ontologies with statistical analysis of action sequences within a domain specific application. In a later step, Agent technologies will be used to gather additional related information from external resources such as examples of similar problems on the users hard disk, from corresponding work of team-members within an intranet or from advises of expert from different knowledge domains, themselves represented by agents. As users deny or reward resulting proposals offered by the agent(s) through an interface the system will be enhanced over time using methods like Reinforced Learning.
keywords Multi Agent Systems, Design & Decision Support Systems, Collaborative Design, Human Computer Interfaces, Machine learning, Data Mining
series DDSS
last changed 2004/07/03 22:13

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 275HOMELOGIN (you are user _anon_855513 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002